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Abstract 

Generally, today data analysts and researchers are often faced with a daunting task of reducing high dimensional 

datasets as large volume of data can be easily generated given the explosive activities of the internet. The most widely 

used tools for data reduction is the principal component analysis. Merely in some cases, the singular value 

decomposition method is applied. The study examined the application and theoretical framework of these methods in 

terms of its linear algebra foundation. The study discovered that the SVD method is a more robust and general method 

for a change of basis and low rank approximations. But.in terms of application, the PCA method is easy to interpret as 

illustrated in the work. 

Keywords: principal component, singular value decomposition, eigen values and eigen vectors, simulation, linear 

algebra 

1. Introduction 

Over time, new mathematical methods tend to spring up owing to complex empirical problems. Just like the saying 

‘necessity is the mother of all interventions’, when confronted with a mathematical impasse, the human mind has the 

capability to rediscover new and better ways of solving problems. A brainchild of such mind-probing process is the 

Singular Value Decomposition (SVD) method often abbreviated as SVD. The SVD method in its rights has expanded 

the frontiers and uses of linear algebra as it underpins several methodologies like Principal Component Analysis, 

Orthogonal Function Analysis, Eigen Decomposition, Matrix Decomposition, Cholesky Decomposition, Hessenberg 

Decomposition etc. In this study, the focus of interest of such methods is the Principal Component Analysis (PCA) and 

its derivation from SVD. 

According to Jollife (2002), the SVD methodology is older likened to PCA as it culminated through the works of five 

mathematicians: Eugenio Beltrami, Camille Jordan, James Joseph Sylvester, Erhard Schmidt and Herman Weyl. These 

mathematicians did not just discover the SVD methodology; they also laid the theoretical foundation. Beltrami and 

Jordan are the progenitors of the decomposition methods. Beltrami gave a proof of the outcome for real, invertible 

matrices with distinct singular values in 1873. Subsequently, Jordan refined the concept and eliminated the unnecessary 

restrictions imposed by Beltrami. Sylvester, apparently unfamiliar with Beltrami and Jordan’s work, rediscovered the 

result in 1889 and suggested its importance. 

PCA is a dimension reducing tool employed to reduce a large data set of variables to a few set of variables without 

much loss of information. As a mathematical procedure, it converts many correlated variables into a number of 

uncorrelated variables termed principal components. 

PCA is deeply connected to SVD in terms of dimensionality reduction purposes and change of basis. However, SVD is 

a highly robust method due to its ability to decompose any matrix A with rank r into 𝑼𝚺𝐕𝐓, with orthogonal matrices 𝑼 

and 𝐕 and diagonal 𝚺 . The non-zero value along the diagonal of 𝚺, termed singular values(𝜎1,… ,𝜎𝑟) are positive, 

and 𝜎𝑛 ≥ 𝜎𝑛+1. In this same vein, PCA applies the Eigen Decomposition method on square symmetric matrices by 

searching for new abstract components (eigen-vectors) which clarify most of the information variation in a new 

organized system. Although compared with EVD used in PCA, SVD is a more precise, robust and reliable method with 

no need to compute the input correlation/covariance matrix according to Will (1999). Classical PCA is not useful when 

the number of variables is bigger than the number of observation. In microarray data analysis, Lim, (2013) encountered 

this situation commonly when genes are accepted as the variables. In such instances, it is pertinent to use PCA using 

SVD (Deshunk and Purohit , 2007). For applying PCA using SVD, the DNA microarray data was in use for the small 

round blue cell tumors (SRBCT) of childhood by Khan et al (2001).  
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Nonetheless, in terms of linear algebra, the common underlying idea that coordinates these two methods is the change 

of basis. Succinctly, the idea behind changing the basis of a vector connotes a new presentation of the vector in a 

different coordinate system that best depicts the underlying structure of the vector components.  

In PCA, the original data set is transformed so that the eigen vectors are the basis vectors, then the new coordinates of 

the data points are formed with respect to this new basis. This is the change of basis transformation. It is possible 

because the covariance matrix of the data set is real symmetric. Hence, it’s eigen vector matrix is an orthogonal matrix 

due to an eigen decomposition. 

However, there is a more generic transformation that occurs in SVD, which is even possible for non-square matrices. 

This method is quite powerful for several reasons and one of those is its ability to produce orthonormal bases for the 

four fundamental bases. Due to this robust nature, SVD is considered computationally efficient and numerically stable 

as such that it has been used to solve least square problems and other related problems such as pseudo-inverse, etc. 

(Lyche, 2018).  

There are four basic methods to solving the least square problems. These are: 

Normal equations, QR decomposition, and SVD.  

The first method provides very quick and easy least square solution though these solutions are not that accurate. The 

second method is more accurate than the first method but requires double as much time. Amongst all, SVD is most 

widely used for its capability to deliver quick, accurate and stable results even for unconventional cases like the 

overdetermined system (Least squares problems, 2013).  

Between the SVD and PCA methods, there is a large misconception being thrown around with regards to how these 

methods are being applied to practical problems and its theoretical interconnectedness. This study aims at providing a 

theoretical framework on the relationship that exist between these methods. More so, the study demonstrates the 

interpretative power of PCA over SVD by carrying out an exploratory data analysis on a financial data.  

Understanding the underlying theoretical foundation which these methods utilize in resolving complex structures has 

become somewhat invaluable, if not critical. By unraveling the mathematical mysteries behind these methods, it 

becomes quite easy to navigate the intricacies of dealing with multidimensional data, and also increasing precision of 

data analysis.  

2. Methodology and Data Collection 

The research adopted a financial time series data consisting of the Domestic Debt of State Governments for the 

thirty-six (36) states of Nigeria and its capital (Abuja). As a secondary data, it was sourced from Debt Management 

office (DMO) via Nigeria Statistical Bulletin. A 6-year time period (2011-2016) was considered as the variables 

(features) to be studied against the states (observations). This obtains a 36×6 matrix denoted as X, where there is 36 

number of observations and 6 features to be understudied. 

2.1 Principal Component Analysis 

Mathematically, the PCA method basically obtains the most important basis used to re-express an ambiguous data into 

its principal components. That is, it involves a linear transformation of a high dimensional dataset into simpler groups 

that uncover hidden structures of a garbled data.  

At this point, the questions that would readily come to mind are; how would these new bases be obtained and why are 

they important? In a bid to answer these questions, an arbitrary dataset is assumed and an attempt would be made to 

implement the underlying rigors of the PCA methodology. 

Given an 𝑚 × 𝑛 matrix 𝑿 where the samples are the n columns (e.g. observations) and the m rows  are variables, the 

objective is to transform the matrix 𝑿 linearly to another matrix 𝒀 of similar dimension 𝑚 × 𝑛. Hence, for some 

𝑚 × 𝑚 matrix 𝑷, 

𝒀 = 𝑷𝑿                                         (1) 

The matrix 𝑷 is a transformation matrix which is expected to change the basis from 𝑿 to 𝒀. Geometrically, 𝑷 is a 

rotation and a stretch which moves 𝑿 to 𝒀. 

The rows of 𝑷 are thought to be the vectors row 𝒑𝟏,𝒑𝟐 … , 𝒑𝒎 and columns of  𝑿 to be the vectors of the column 

𝒙𝟏,𝒙𝟐 … , 𝒙𝒏 , then (2.0)  can be construed this way, 

𝑷𝑿 = (Px1, Px2, …, Pxn) = (

 1.  1  1.   …  1.  𝑛
  .  1

 
  .   …

 
  .  𝑛

 
  .  1   .   …   .  𝑛

) = 𝒀                     (2) 
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Such that  𝑗 .  𝑗 ∈  ℝ . 

In essence,  𝑗 .  𝑗 is just the Euclidean inner (dot) standard product. This means that the main data is being projected 

onto columns of  𝑷 . Hence, the new foundation for column representation of 𝑿  is given as the rows of 𝑷 , 

(𝒑𝟏,𝒑𝟐 … , 𝒑𝒎). 

By assuming linearity, the problem reduces to finding the appropriate change of basis. The vector row (𝒑𝟏,𝒑𝟐 … , 𝒑𝒎) in 

the transformation becomes the 𝑿 principal component. 

More underlying questions at this stance would be; 

 What is the most profound way to re-express 𝑿. That is, how can independence between the new basis in the 

principal components be defined? 

 What is a good basis choice for 𝑷? 

Principal component analysis defines independence by considering the variance of the data in the original basis. Its 

purpose is to search for new directions that maximize the variance which defines the new bases. Recall that variance of 

𝑿 with mean 𝜇 is given as, 

𝜎 
 =  [   𝜇 ) ]                                       (3) 

For instance, if given a vector of p discrete measurements, that is, 

 = ( 1,   , . . ,   )      𝑚  𝑛 𝜇  

If the mean is subtracted from individual measurements, then we get a translated measurement set. Thus, the relation for 

the measurement variance measurements is given thus, 

𝜎 
 = 

1

𝑛
                                            (4) 

The normalization constant 
1

𝑛
 becomes 

1

𝑛−1
 as that will provide a biased estimation of the variance particularly for 

small sample sizes. Hence, equation (1.3) becomes 

  
 = 

1

𝑛−1
                                          (5) 

Additionally, if given another vector 𝒍 =  𝑙1, 𝑙 , . . , 𝑙 ) again with absent mean, the idea can be generalized to derive 

the covariance of   and 𝑙 - covariance is considered a degree of how much two variables alternate simultaneously 

while variance is essentially a special covariance case where we find two identical variables. The covariance of   and 

𝑙 is given as, 

  
  = 

1

𝑛−1
 𝑙                                         (6) 

For an 𝑚 × 𝑛 matrix 𝑿 where the data matrix is considered with regards to m row vectors, individual length n, that is 

𝑿 = (

 1,1
 1, …  1,𝑛

  ,1

 

  , …

       

  ,𝑛

 
  ,1

  ,1 …   ,𝑛

) = (

 1
  

 
  

) ∈  ℝ ×𝑛                        (7) 

   𝑟    
𝑗 ∈  ℝ ×𝑛 

Since we own vector for individual variables, each variable contains one specific variable samples. Then the ensuing 

matrix product can be thought as 

                       =
 

𝑛   
   =

 

𝑛   
(

 1 1
 

   1
 

 1  
  

    
 …

 1  
 

    
 

           
   1

     
 …     

 

)                                     ) 
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A closer view at the matrix elements, it is obvious that the possible covariance pairs amongst m variables have been 

computed. This matrix is hence termed the covariance matrix or the dispersion matrix, denoted by 𝚺𝒙. 

Going back to equation (1) 

𝒀 = 𝑷𝑿 

Where 𝑿 is the foremost data matrix,  

          𝑷 is the transformation matrix & 

          𝒀 is the new matrix 

A decision has to be agreed on the best possible method to re-express 𝚺𝒚 to 𝚺𝒙 and what characteristics to look out for 

in  𝚺𝒚. 

The covariance measures how well the correlation between two variables. A key assumptions made about PCA method 

was independence. This means, the desired 𝚺𝒙 matrix has to be un-correlated as possible and that is to say that these 

variables covariances in 𝚺𝒚 should be near zero. Large variances are rather an interesting feature because they tell you 

so much about the structure. Consequent upon that, it becomes imperative to maximize inherent information (measured 

by the variance) by maximizing the variance and reducing the covariance between variables. 

Reducing the 𝚺𝒚 matrix to a minimum covariance (zero) and maximizing the variances to as much information each 

component can hold for, this ensues in a matrix which is diagonal. In essence, the matrix of transformation P will be 

chosen to result in the diagonalization of 𝚺𝒚. 

The foregoing’s implication is that the new basis 𝒑𝟏,𝒑𝟐 … , 𝒑𝒎 should be orthogonal. From linear algebra, the row 

vectors of an orthogonal matrix are orthonormal vectors. That is each row has a unit length and the vectors are equally 

perpendicular. 

By this assumption, PCA seeks for a normalized direction in m-directional space along which the variance is maximized. 

Also, by the orthogonality condition, it circumscribes this search to directions that are perpendicular to pre-determined 

directions; this makes intuitive sense since geometrically the axes of Cartesian systems are usually perpendicular. This 

continues until m directions are selected. These P’s are the principal components.      

The orthonormality condition lessens the challenge to a stage of being solvable by linear algebra decomposition tools. 

As we know, direct and effective solutions can be obtained easily by certain decompositions in linear algebra. 

For the dispersion matrix 𝚺𝒚 and by re-expressing Y with regards to P and X, we obtain, 

                                                                               𝚺𝒚 =
1

𝑛−1
𝒀𝒀 =

1

𝑛−1
 𝑷𝑿) 𝑷𝑿)  

                                  =
1

𝑛−1
 𝑷𝑿) 𝑿 𝑷 ) =

1

𝑛−1
𝑷 𝑿𝑿 )𝑷   

𝚺𝒚 =
1

𝑛−1
𝑷 𝑷     𝑟   = 𝑿𝑿                                  (9) 

Obviously, S is going to be symmetric since (𝑿𝑿 ) =  𝑿 )  𝑿) = 𝑿𝑿  

At this point, a common theorem in algebra will be introduced. 

Theorem 1.0 

If a matrix is orthogonally diagonalizable, then it is symmetric. 

Proof 

We have     =    

Multiplying   on the left and    on the right gives  =         𝑛     =  −𝟏) 

Then   =      ) =    )     =     =   

So A is symmetric. Given that the converse is also true, it can be adopted to support equation (2.8).  

Therefore, since the symmetric matrix   = 𝑿𝑿  is diagonalizable by a matrix which is orthonormal of its eigen 

vectors, such that, 

 =      
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Where D is a matrix that is diagonal contains the eigen-values of S, E is a matrix that is orthonormal whose columns are 

orthogonal eigen-vectors of S. 

The rank r of S is the number of orthonormal eigen-vectors that it contains. If r is less than m then the constraint of 

orthogonality would have to be maintained by generating (m-r) orthonormal vectors to fill in the remaining spaces. 

The foregoing galvanizes our choice of the conversion matrix P holding that the P rows become the eigen-vectors of S, 

that is =    . If substituted into equation (9), 𝚺𝒚 becomes 

𝚺𝒚 =
1

𝑛−1
𝑷 𝑷    = 

1

𝑛−1
       )  

Since a matrix that is orthonormal   =  −𝟏, hence, 

𝚺𝒚 =
1

𝑛−1
                                           (10) 

In conclusion, the objective of diagonalising the covariance matrix 𝚺𝒚 has been achieved. The principal components 

(the rows of P) are the eigen-vectors of the covariance matrix, 𝑿𝑿  and the rows are in order of importance. 

2.2 Singular Value Decomposition 

The SVD is intimately related to the familiar theory of diagonalising a symmetric matrix. Recall from theorem 1.0, if A 

is a symmetric real 𝑛 × 𝑛 matrix, there is an orthogonal matrix V and a diagonal D such that A = VDVT. Here the 

columns of V are eigenvectors for A and form an orthonormal basis for  𝓡𝒏; the diagonal entries of D  are the 

eigenvalues of A. To emphasize the connection with the SVD, we will refer to VDVT as the eigenvalue decomposition, 

or EVD, for A. 

For the SVD we begin with an arbitrary real 𝑚 × 𝑛 matrix A. As we shall see, there are orthogonal matrices U and V 

and a diagonal matrix, this time denoted Σ, such that A = UΣV T. In this case, U is 𝑚 × 𝑚 and V is 𝑛 × 𝑛, so that Σ is 

rectangular with the same dimensions as A. The diagonal entries of Σ, that is the Σii = σi, can be arranged to be 

nonnegative and in order of decreasing magnitude. The positive ones are called the singular values of A. The columns 

of U and V are called left and right singular vectors, for A. 

The analogy between the EVD for a symmetric matrix and SVD for an arbitrary matrix can be extended a little by 

thinking of matrices as linear transformations. For a symmetric matrix A, the transformation takes 𝓡𝒏 to itself and the 

columns of V define an especially nice basis. When vectors are expressed relative to this basis, we see that the 

transformation simply dilates some components and contracts others, according to the magnitudes of the eigenvalues 

(with a reflection through the origin tossed in for negative eigenvalues). Moreover, the basis is orthonormal, which is 

the best kind of basis to have.  

Now let’s look at the SVD for an 𝑚 × 𝑛 matrix A. Here the transformation takes 𝓡𝒏 to a different space, 𝓡𝒎, so it is 

reasonable to ask for a natural basis for each of domain and range. The columns of V and U provide these bases. When 

they are used to represent vectors in the domain and range of the transformation, the nature of the transformation again 

becomes transparent: it simply dilates some components and contracts others, according to the magnitudes of the 

singular values, and possibly discards components or appends zeros as needed to account for a change in dimension. 

From this perspective, the SVD tells us how to choose orthonormal bases so that the transformation is represented by a 

matrix with the simplest possible form, that is, diagonal.  

2.3 The Derivation of PCA From SVD 

Consider the 𝑛 × 𝑚 matrix, A, where we have a singular decomposing value, A = UΣVT. There exists a theorem from 

linear algebra which stipulates that the non-zero singular values of A are the nonzero eigenvalues square roots of AAT 

or ATA. The first assertion for the ATA case is proven in the succeeding way:  

   =  𝑼𝚺  )  𝑼𝚺  ) =   𝚺   ) 𝑼𝚺  ) =   𝚺 𝚺)                                         ) 

We note that ATA is same as ΣTΣ, and hence it has similar eigenvalues. Since ΣTΣ is a (𝑚 × 𝑚) square, diagonal matrix, 

the eigenvalues are hence the entries done diagonally, which are the singular values squares. Note that the non-zero 

eigenvalues of individual covariance matrices, AAT and ATA are very identical. 

It is imperative to note that an eigenvalue matrix decomposition, ATA has been carried out. Certainly, since ATA is 

symmetric which is an orthogonal diagonalisation and hence the eigenvectors of ATA are the V columns. This is 

pertinent in making the practical linking between the PCA and SVD of the X matrix, which comes up next. 

Recalling the initial 𝑚 × 𝑛 data matrix, X, let us describe a new 𝑛 × 𝑚 matrix, Z:  
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                                        𝒁 =
𝟏

√𝒏  𝟏
𝑿                                                                              ) 

Recalling that since the rows of X on m contained the samples of n data, we removed the average of the row from 

individual entries to ensure no mean existed across the rows. Hence, the new Z matrix, has columns without mean. 

Consider establishing the 𝑚 × 𝑚 matrix, ZTZ:  

  𝒁 𝒁 = (
 

√𝑛   
𝑿 *

 

(
 

√𝑛   
𝑿 * 

=
 

𝑛   
                                                                                   ) 

 .  .  𝒁 𝒁 = 𝚺𝒙 

We observe that describing Z in this pattern ensures that ZTZ is similar to the X, 𝚺𝒙. covariance matrix. From the 

conversation in the last section, the main components of X (subject to be identified) are the 𝚺𝒙 eigenvectors. Thus, if 

we carry out an individual value matrix decomposition of ZTZ, the main components will be the orthogonal matrix, V 

columns. 

The final step is to link the SVD of ZTZ back to the change of basis signified by equation (1):  Y = PX 

We wish to project the original data onto the directions described by the principal components. Since we have the 

relation V = PT, this is simply: 

Y = V
T
X 

Having the relative V = PT, this is basically: 

Y = V
T
X 

If recovering the original data is what we wish to do, we basically compute (employing orthogonality of V): 

X = VY 

3. Analysis, Results and Discussion 

Principal Component Analysis 

Table 1.0. Data representing Domestic Debt of State Governments for the thirty-six (36) states of Nigeria and its capital 

(Abuja) as shown in appendix A. The table is analysed using the minitab computer package to obtain the eigen analysis 

as shown in Table 1.1 below. 

Table 1.1. An eigen analysis showing the eigenvalues and the proportion of variation explained by each component 

Eigen analysis of the Covariance Matrix 

Eigenvalue 16097419729 1565058147 540198305 301840604 134415535 88759329 

Proportion 0.860 0.084 0.029 0.016 0.007 0.005 

Cumulative 0.860 0.943 0.972 0.988 0.995 1.000 

The proportion of each eigenvalue is given in the second row and it shows how much information is being captured by 

the eigenvalues. For example, the first eigenvalue has a relatively high proportion of 0.860 which is about 86% of 

variability explained while the following eigenvalue contributes 8.4% and etc. These proportions are obtained by 

dividing each eigenvalue by the sum total of all eigen values. 

The cumulative proportion which occupies the third column is obtained by adding the successive proportions of 

variation explained to obtain the running total. The cumulative proportion provides an easy way of selecting principal 

components based on the percentage of variation explained by these components. It suffices to choose the first and the 

second components for this study since they both explain 94.3% of information in the dataset. 
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Table 1.2. A table of eigenvectors and corresponding variables 

Eigenvectors 

Variable PC1 PC2 PC3 PC4 PC5 PC6 

2011 0.268 0.421 0.374 -0.166 0.476 -0.597 

2012 0.371 0.622 0.308 0.141 -0.440 0.408 

2013 0.391 0.189 -0.749 -0.066 -0.309 -0.389 

2014 0.433 -0.073 -0.192 -0.558 0.432 0.522 

2015 0.459 -0.578 0.406 -0.244 -0.428 -0.220 

2016 0.490 -0.246 -0.051 0.760 0.339 0.072 

The principal components are the linear combinations of the original variables that account for the variance in the data. 

The maximum number of components extracted always equals the number of variables. In essence, the coefficients 

indicate the relative weight of each variable to each component.  

From Table 1.2, PC1 has relatively high values for 2014, 2015 and 2016 (0.433, 0.459 and 0.490 respectively). High 

correlation values are in bold numbers in the table above. These values imply presence of correlations between these 

variables and the first principal component. That is, an increase in the first principal component will result to an 

increase in these variables. On the other hand, the second principal component has negative values for 2015(-0.578) 

which would mean a negative relationship between that year and the second principal component.  

Finally, a high correlation between 2012 (0.622) and the second principal component indicating an increase in the 

second principal component will result to an increase in debt values in 2012 but a decrease in 2015. 

Table 1.3. A table of scores for each observation with respect to PC1 and PC2 

 

 

 

 
Scores are obtained for each observation by a linear combination of the coefficients of each principal component from 

the data. That is, eigenvectors, with coefficients corresponding to each variable, are used to calculate the principal 

component scores for each observation. For example, the score for the first observation (Abia state) on PC1 can be 

given as, 

PC1= 0.268(2011) + 0.371(2012) + 0.391 (2013) + 0.433(2014) + 0.459(2015) + 0.490(2016) 

= 0.268(24202.24) + 0.371(8663.79) + 0.391(31736.72) + 0.433(25126) + 0.459(33530.53) + 0.490(53525.31) 

= 74607.03 

From Table 1.3, the PC1 score value for Abia state can be approximately equated to the calculated score (i.e. 

74579.5~74607.03). The values are not exactly equal due to the aggregations of approximations made by the software, 

and large values associated with the data. Nonetheless, these disparities do not affect the interpretations. 
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Table 1.4. Summary of Scores from PC1 and PC2 

 
Scores can be loosely defined as a function of the performance of each state in a particular principal component. From 

Table 1.4, by examining the magnitude of these values, Lagos state had the highest score (605694). This is plausible 

considering its robust economic activities with the capacity to attract high debts just like United States of America. 

While on PC2, Bayelsa and Delta states had high magnitudes but opposite sign which means a negative relationship in 

their values.  

The minimum scores for PC1 and PC2 were associated with Niger and Yobe states. However, general high and low 

values are obtained from the first component since it accounts for the most variation in the data.  So even if the least 

score (in terms of magnitude and regardless of sign) is associated with Niger state (881), Yobe state, with a score of 

11613.4 on the first principal component, is the state with the least outstanding debt. 

 

Figure 1.0. A score plot for the individual observations 

To corroborate the understanding of the score table, the score plot pictorially buttresses the results of the scores by 

associating observations located at the extreme of both axes to high and low outstanding debt values of each state. 

That is, the outstanding debt of states located closer to these variables on the PC2 axis of the plot score will be very 

high. For example, Bayelsa and Delta states can be viewed at the second component axis extreme while Niger state is 

the nearest to its origin though not so apparent owing to the overlapping of points. 

Alternatively, the first component axis has Lagos state at its extreme, that is, Lagos state has the biggest outstanding 

debt value on this component. This can be generalized for the total dataset just same as the interpretation above. 

However, Yobe state being nearer to zero can be commonly attributed to the state with the least outstanding debt value.    

4. Conclusion  

One of the major conclusions that can be drawn from this work is that the PCA method is an offshoot of the SVD 

method. Both methods can be used to achieve the same purpose though the latter has a more robust application. PCA is 

applied by obtaining the eigenvectors and eigenvalues of the covariance matrix whereas SVD is applied on the matrix 

of observations by decomposing the data matrix into three factors that contain the eigenvectors and eigenvalues in the 

PCA method. The study demonstrated the power of the PCA tool by carrying out an exploratory data analysis on a 

financial data. Even when the correlation matrix is quite difficult to analyze for such a multidimensional dataset, the 

PCA method was able to decompose the data into simpler components that could be easily interpreted. More so, deep 

inherent structures were uncovered in terms of relationships that exist between and within data structure. 
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Appendix A  

DOMESTIC DEBT OF STATE GOVERNMENTS  

 

Source: Debt Management Office via Statistical Bulletin 
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State 2011 2012 2013 2014 2015 2016

 Abia 24,202.24 8,663.79 31,736.72 25,126.07 33,530.53 53,525.31

 Adamawa 25,954.20 24,284.06 15,976.52 26,443.26 47,201.62 62,157.54

 Akwa-Ibom**41,253.91 108,889.39 125,037.04 81,756.01 147,575.74 155,431.51

 Anambra 6,403.32 14,299.99 3,025.80 2,876.18 3,575.77 3,993.89

 Bauchi 18,345.73 18,807.27 16,825.51 27,999.81 57,652.77 69,988.36

 Bayelsa 162,822.65 222,401.77 69,513.13 91,681.86 103,374.23 140,177.08

 Benue 16,631.14 24,402.44 24,987.87 17,772.06 39,944.21 63,526.71

 Borno 1,684.56 24,423.20 23,943.15 22,302.79 22,338.73 30,929.43

 Cross-River90,750.05 90,872.91 116,061.63 107,342.90 115,522.25 128,142.09

 Delta 90,843.57 83,684.01 102,100.20 211,953.21 320,605.71 241,231.44

 Ebonyi 40,239.94 28,895.75 13,236.09 6,954.98 34,168.94 28,057.14

 Edo 39,044.30 62,274.74 48,190.15 40,050.00 46,289.08 45,091.95

 Ekiti 23,667.51 39,587.70 22,376.37 30,460.63 52,564.98 85,049.68

 Enugu 10,887.17 17,354.19 12,061.40 22,625.69 37,550.23 48,417.54

 Gombe 7,170.42 30,243.54 27,992.84 29,591.44 53,454.40 48,312.23

 Imo 25,419.40 16,700.73 12,633.53 28,946.45 71,743.51 93,267.76

 Jigawa* 1,590.54 2,081.43 1,612.29 1,569.94 22,194.83 19,005.55

 Kaduna 34,771.71 22,855.93 9,831.84 16,683.75 49,847.91 63,276.47

 Kano 5,867.29      5,867.29 32,207.01 31,423.63 65,007.33 93,715.18

 Katsina* 2,059.88      918.93 269.65 586.70 11,495.03 21,449.61

 Kebbi 7,291.05      2,716.01 853.68 17,271.45 63,793.34 20,650.99

 Kogi 34,122.12    14,979.19 7,109.87 10,304.74 42,034.63 71,381.26

 Kwara 25,254.47    29,776.56 22,416.65 22,147.54 31,966.82 38,136.72

 Lagos 157,536.16 230,432.88 278,867.07 268,065.02 218,538.87 311,755.80

 Nassarawa 5,336.06      7,096.14 28,848.54 34,525.70 40,557.05 59,033.75

 Niger 16,975.51    17,802.50 24,731.75 23,454.54 21,501.79 31,984.09

 Ogun*** 30,143.97    45,726.56 58,382.00 70,193.52 75,921.43 75,921.43

 Ondo 48,369.86    36,518.09 30,883.18 19,267.66 26,647.79 53,159.72

 Osun 5,463.64      38,600.00 41,400.00 37,820.83 144,699.56 147,069.97

 Oyo 4,808.39      11,726.21 19,106.05 12,912.64 47,437.01 115,886.55

 Plateau 20,908.12    24,117.32 52,416.33 78,415.07 96,204.85 110,340.67

 Rivers** 83,978.39    81,459.19 129,549.65 91,757.57 134,966.60 142,424.09

 Sokoto 4,902.05      2,997.31 5,739.57 7,650.12 11,658.21 22,450.25

 Taraba 17,974.66    16,701.02 13,883.98 14,395.30 27,646.23 38,868.70

 Yobe 2,088.40      3,991.22 1,122.64 1,638.44 3,867.46 13,581.30

 Zamfara 12,968.38    15,508.11 28,217.65 11,072.04 46,280.69 58,321.02

FCT 85,563.89    123,992.77 84,324.10 110,139.17 133,900.29 152,804.61
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