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Abstract

When dealing with multivariate survival data, featuring the association structure is a key difference from the univariate
survival analysis. In this paper, we explore to use the composite likelihood framework to handle multivariate survival data,
where only the lower dimensional survival distributions need to be specified. The development allows us to use available
modeling schemes for bivariate survival data to characterize association structures of correlated survival times. The in-
ference procedure is based on the pseudolikelihood which is the product of the lower dimensional bivariate distributions.
The proposed estimation procedure is assessed through simulation studies. As a genuine application, we apply the com-
posite likelihood inference procedure to analyze the data from the polybrominated diphenyl ethers (PBDEs) study, where
four types of PBDE congeners are available. The associations among the four PBDE congeners, and the relationships
between the covariates and the PBDE congeners are of interest. The result shows that there is strong association among
the concentrations of the four PBDE congeners, and statistically significant predictors on the concentrations of the four
PBDE congeners are identified.

Keywords: Clayton model, composite likelihood, Cox PH model, multivariate survival data, PBDE congeners, survival
analysis

1. Introduction

Multivariate survival data arise in many settings where the association among times to events is a key difference from
standard univariaete survival data. Analysis methods of multivariate survival data may be broadly based on three types
of model: marginal models, frailty models and copula models. In marginal analysis (e.g., Wei, Lin and Weissfeld, 1989),
the association among the survival times is ignored with the focus on deriving the point estimates of the marginal model
parameters, and the sandwich type variance estimator is invoked to incorporate the ignorance of modeling the association
structure. This method is usually applied for the regression models to estimate the covariate effects, but it is not useful
if association among survival times is of interest. The frailty models (e.g., Clayton 1978) assumes that the association
of the survival times is attributed to a random effect, and conditional on the random effect, the survival times are treated
independent. The joint survival function can be obtained by integrating out the random effect. Copula models, on the
other hand, directly assume the joint survival distribution structure to be a function of the marginal survival functions.

Both frailty models and copula models are useful tools, especially for analyzing bivariate survival data. For example,
bivariate frailty models such as gamma frailty model or Clayton model (Clayton 1978), and bivariate copula model such
as Clayton (Clayton 1978) or Frank models (Frank 1979) are popularly used in practice. When the dimension of survival
times is larger than two, the specification of the joint distribution, either through frailty models or copula models, as
well as inference based on it, is often challenging. It is desirable to have methods that retain the advantages of simple
specification of bivariate models and can also be used to handle general multivariate survival data. To this end, we explore
the composite likelihood approach (Lindsay 1988; Cox and Reid 2004) to handle multivariate survival data.

Composite likelihood inference has now become popular in various settings of multivariate data analysis. To name a few,
Parner (2001) utilized a composite likelihood approach in an adoption study, where the pairs of relationships between
children and their adopted or biological parents are postulated through pairwise survival distributions. Henderson and
Shimakura (2003) applied the composite likelihood to handle longitudinal count data. Renard et al. (2004) considered
the composite likelihood formulation under generalized linear mixed models. He and Yi (2011) explored a composite
likelihood method for the analysis of binary data with missing observation. Lindsay, Yi and Sun (2011) investigated a
weighted composite likelihood formulation to incorporate importance of lower dimension likelihoods. Varin et al. (2011)
provided a survey of recent developments in the theory and application of composite likelihood.
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Our research is motivated by the PolyBrominated Diphenyl Ethers (PBDEs) study. Polybrominated diphenyl ethers are
a class of brominated flame retardants that are widely used in building materials, electronic equipment, and household
products, to provide longer escape times and to reduce the damage of property. Environmental concerns of PBDEs have
been raised in past two decades because of their high lipophilicity and high resistance to degradation processes. PBDEs
have been recognized as persistent organic pollutants and have become ubiquitous in the environment and in people (Hites
2004; Loeber 2008; Frederiksen et al. 2009). Health hazards of PBDEs have attracted increasing scrutiny, and prenatal
exposure to PBDEs has been found to associate with adverse neurodevelopment (Costa and Giordano 2007; Herbstman et
al. 2010; Bellinger 2013). The association among the PBDEs and the identification of predictors of PBDE concentrations
in human body (e.g. breast milk and blood) are of great interest to health researchers.

A study was conducted to characterize predictors of exposure to PBDEs, where a multi-ethnic, low-income cohort of
healthy pregnant women at the age between 16 to 35 were enrolled from two New York City prenatal clinics between
September 2009 and December 2010. An extensive questionnaire including items on demographics, diet and lifestyle
were administered to these pregnant women, and their maternal serum samples were collected during the first half of
pregnancy (Horton et al. 2013). While 12 PBDE congeners were measured in blood samples, it is of interested to focus
on the most commonly detected PBDE congeners (PBDE-47, -99, -100, and -153) in the analysis, where the PBDE
concentrations below the limit of detection were treated as left censored observations.

A previous study examined how the predictors may be associated with each congener marginally using univariate paramet-
ric models with left-censoring accounted for (Horton et al., 2013). Such an analysis basically assumed that the predictors
have different effects on the outcomes of PBDE congeners. The feasibility of this assumption, however, has not been
rigorously justified, and furthermore, the association structure among the PBDE congeners has been overlooked. It is
our goal here to provide a more comprehensive analysis of the PBDE data. Our objectives specifically include the as-
sessment of the level of association among the PBDE congeners, identification of statistically significant predictors as
well as estimation of their effects on the level of concentrations of the four commonly detected PBDE congeners in blood
samples.

To this end, we propose to use the composite likelihood formulation to analyze the PBDE data. We develop an estimation
procedure that simultaneously estimate the association parameters and the covariate effects of response variables. The
proposed composite likelihood estimation procedure assumes that each survival “time” (defined to be the concentration
of the PBDE congeners in the blood) follows a Cox proportional hazards (PH) model, with a parametric Weibull baseline
distribution, and paired survival “times” follow a bivariate Clayton frailty model (He and Lawless, 2003). The parameter
estimation is achieved by maximizing the composite likelihood, and the covariance estimates are obtained through a sand-
wich type estimator. Although our method is motivated by the PBDE data, it applies to other multivariate survival data as
well. Our method has several appealing features. It not only allows association structures to be accommodated for analy-
sis of multivariate survival data, but also take advantages of existing modeling schemes. In addition, the implementation
is straightforward.

The remainder of the paper is organized as follows. Notation and model setup are introduced in Section 2, and the
proposed estimation procedure using the composite likelihood formulation is described in Section 3. In Section 4, we
conduct simulation studies to assess the performance of the estimation method. In Section 5, the proposed method is
applied to analyze the PBDE data. Concluding remarks and discussion are presented in Section 6.

2. Notation and Model Setup

Suppose there are n clustered survival data in the study. For i = 1, ..., n and j = 1, ...,mi, let Ti j and Ci j be the survival time
and censoring time for subject j in cluster i, δi j = I(Ti j ≤ Ci j) be the censoring indicator and Xi j be the covariate vector of
dimension p, where I(·) represents indicator function, and mi is the number of subject in cluster i. Write ti j = min(Ti j,Ci j)
for i = 1, ..., n and j = 1, ...,mi.

Suppose that the marginal regression model of Ti j is characterized by the Cox proportional hazards model as

S i j(ti j|Xi j) = exp{−Λ j0(ti j) exp(βT
j Xi j)} (1)

for i = 1, ..., n and j = 1, ...,mi, where S i j(·) is the marginal survival function of Ti j, Λ j0(·) is the cumulative baseline
hazard function and β j is the vector of regression parameter. In general, both Λ j0 and β j can be subject-dependent;
in some settings, Λ j0 and β j are common across the subjects within clusters. For ease of exposition, we consider that
Λ j0(·) = Λ0(·) and β j = β for some function Λ0(·) and parameter vector β, where j = 1, ...,mi. While the baseline
cumulative hazard function Λ0(t) can be delineated by various method, here we take a parametric approach with Λ0(t)
modeled by a Weibull distribution

Λ0(t) = (λt)γ,
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where λ and γ are positive parameters. Weibull distributions have been widely used in survival analysis due to their con-
venience and flexibility (Lawless 2003). Different values of γ enable us to describe various types of baseline cumulative
hazard functions.

Multivariate survival data may be handled with different strategies which can be distinguished by the way of treating
association structures of survival times within clusters. A simplest approach is to deliberately ignore the correlation among
survival times within clusters and focus on marginal features of individual survival times (e.g., Wei, Lin and Weissfeld,
1989). On the contrary, two other methods have been commonly adopted to describe association structures within clusters:
one approach is to use frailty models (e.g., Clayton, 1978, He and Lawless, 2003), and the other is to employ copula
models (e.g., He and Lawless, 2005) to incorporate association structures into modeling survival times within clusters.
While these two schemes allow us to account for potential correlation which is usually present for clustered survival data,
they impose implicitly strict assumptions on the association structures. For instance, all the survival times Ti j in cluster i
are basically treated equally; with frailty models, they are assumed to be independent by conditional on the frailties (and
possibly covariates) while under copula models a common parameter vector is used to facilitate the association.

To deal with more general practical problems, we propose to model pairwise correlation structures within clusters and
leave higher order association structures unspecified. Such an approach enable us to look into a broader range of problems
with complex association structures, and usually applied modeling strategies such as frailty models and copula models
are included as special cases.

To flesh out our ideas, we employ bivariate Clayton models (Clayton, 1978) to postulate pairwise survival times within
clusters but bearing in mind that other bivariate models can be used as well. Specifically, for i = 1, ..., n and j, k = 1, ...,mi

with j , k, the joint survivor function of Ti j and Tik is given by

S (ti j, tik |Xi j,Xik) =
[{

S i j(ti j|Xi j)
}−1/ϕ

+ {S ik(tik |Xik)}−1/ϕ − 1
]−ϕ

(2)

where S i j(ti j|Xi j) and S ik(tik |Xik) are determined by (1), and ϕ is a positive pairwise association parameter.

We note that as ϕ → ∞, model (2) corresponds to the scenario where Ti j and Tik are independent. Tacitly, model (2)
assumes that given the covariate {Xi j,Xik}, survival times Ti j and Ti j are not influenced by other covariate Xil with l , j
and l , k.

3. Inference Method

Given the marginal model (1) and the bivariate model (2), we are interested in developing estimation procedures for the
model parameters, denoted as θ = (βT , γ, λ, ϕ)T . Let L(i)

jk (θ) be the pairwise likelihood of θ contributed from the pair of

subjects j and k in cluster i. Then the logarithm of L(i)
jk (θ) is

l(i)jk = δi jδiklog
{
∂2

∂ti j∂tik
S (ti j, tik)

}
+ δi j(1 − δik)log

{
− ∂
∂ti j

S (ti j, tik)
}
+

(1 − δi j)δiklog
{
− ∂
∂tik

S (ti j, tik)
}
+ (1 − δi j)(1 − δik)logS (ti j, tik)

For ease of notation, let

Ai jk = exp
{

1
ϕ

(λti j)γeβ
T

Xi j

}
+ exp

{
1
ϕ

(λtik)γeβ
T

Xik

}
− 1;

Bi j = exp
{

1
ϕ

(λti j)γeβ
T

Xi j

}
;

Bik = exp
{

1
ϕ

(λtik)γeβ
T

Xik

}
.

Then

l(i)jk =δi jδ jk · log
(
ϕ + 1
ϕ

)
− (ϕ + δi j + δik)logA jk

+ δi j

{
logB j + log(γ) + γlog(λ) + βT Xi j + (γ − 1)log(ti j)

}
+ δik

{
logBk + log(γ) + γlog(λ) + βT Xik + (γ − 1)log(tik)

}
.

(3)
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Define

lp(θ) =
n∑

i=1

l(i)

to be the log pairwise likelihood function of θ, where l(i) =
∑

j<k l(i)jk . Then inference about θ may be carried out based on
lp(θ).

Under regularity conditions, maximizing ℓp(θ) with respect to θ, or equivalently, solving ∂ℓp(θ)/∂θ = 0 for θ yields a
consistent estimator of θ; let θ̂ denote such an estimator. As n → ∞,

√
n(θ̂ − θ) converges in distribution to a normal

distribution with mean zero and covariance matrix Σ(θ), i.e.,

√
n(θ̂ − θ) d→ N(0,Σ(θ)) as n→ ∞, (4)

where Σ(θ) = I−1(θ)J(θ)I−1(θ), I(θ) = E
{
∂2ℓ(i)/∂θ∂θT

}
, and J(θ) = E

{
(∂ℓ(i)/∂θ)(∂ℓ(i)/∂θT )

}
(White 1982, Yi 2017).

Conditions under which the composite likelihood estimator is asymptotically normal can be found in Heagerty and Lele
(1998).

To conduct inference about θ by using the asymptotic result (4), we must estimate the covariance matrix Σ(θ) using the
data. Typically, Σ(θ) can be estimated by the method of moments, given by

Σ̂(θ) = Î−1(θ̂)Ĵ(θ̂)Î−1(θ̂),

where

Î(θ̂) =
1
n

n∑
i=1

− ∂2

∂θ∂θT

∑
j<k

l(i)jk



∣∣∣∣∣∣θ=θ̂

and

Ĵ(θ̂) =
1
n

n∑
i=1

 ∂∂θ
∑

j<k

l(i)jk

 · ∂∂θT

∑
j<k

l(i)jk



∣∣∣∣∣∣θ=θ̂.

4. Simulation Study

Simulation studies are conducted to assess the performance of the pairwise likelihood method developed in Section 3 for
estimation of covariate effects β as well as parameters (λ, γ, ϕ).

Different parameter settings are considered where we set m = 3. The sample size n is chosen to be 100 and 200 to examine
the effect of the sample size on the proposed estimation method. 500 runs of samples are simulated for each parameter
setting. Two dimensional covariates (Xi1, Xi2) are generated, where Xi1 follows a binomial distribution with the success
probability being 0.5, and Xi2 follows a normal distribution with mean 1 and variance 1. The coefficients of covariates
are fixed at β1 = 0.5 and β2 = log2 for the marginal models. For the baseline cumulative hazard functions, we set the
scale parameter λ = 1, and let the shape parameter γ = 0.5 or 1.5, representing a monotone decreasing or a monotone
increasing hazard rate, respectively. Five values of the association parameter ϕ are assumed : ∞ (i.e., survival times are
independent), 3, 2, 1/2 and 1/3, ranging from weak to strong dependence among the survival times.

Specifically, we use the formulae to simulate three associated survival times:

Ti1 = λ−1 ·
{
−e−XT

i1β · log(Ui1)
} 1
γ

; (5)

Ti2 = λ−1
[
ϕ · e−XT

i2β · log
{
U
− 1
ϕ

i1 ·
(
U
− 1
ϕ+1

i2 − 1
)
+ 1

}] 1
γ

; (6)

Ti3 = λ−1
[
ϕ · e−XT

i3β · log
{
U
− 1
ϕ

i1 · U
− 1
ϕ+1

i2

(
U
− 1
ϕ+2

i3 − 1
)
+ 1

}] 1
γ

; (7)

where Ui1,Ui2,Ui3 are independently generated from the uniform distribution Uniform(0, 1).

The censoring percentage is achieved by selecting a censoring time C such that the percentage of simulated survival times
which are greater than C roughly equals the required percentage. Specifically, the value of C is set as C1 = 2.2 for 20%
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censoring and C2 = 0.5 for 40% censoring when γ = 0.5, and C1 = 1.3 for 20% censoring and C2 = 0.8 for 40% censoring
when γ = 1.5.

The simulation data are analyzed using the proposed method described in Section 3. The estimation bias (bias), the
empirical standard error (SE), the model based standard error (ME), as well as the coverage rate (CR) of 95% confidence
intervals are reported. The analysis results are displayed in Tables 1-5, corresponding to ϕ = 1/3, ϕ = 1/2, ϕ = 2, ϕ = 3,
and ϕ = ∞, respectively.

Finite sample biases of the estimators λ̂, γ̂, β̂1 and β̂2 for the marginal model parameters are very small in all settings.
Biases of the association parameter estimator ϕ̂ are small when the true value of ϕ is small (i.e., strong association), and
biases tends to increase with increasing values of ϕ. This phenomenon agrees with what were observed in other studies.
Model-based standard errors and empirical standard errors of λ̂, γ̂, β̂1, β̂2 and ϕ̂ are reasonably close, and coverage rates
of 95% confidence intervals are around 95% for all scenarios except the setting of ϕ = ∞ where 95% coverage rates can
not be constructed. As expected, a larger sample size (n = 200) gives better estimation results than a lower sample size
(n = 100). The 95% coverage rate for ϕ̂ is closer to 95% for n = 200 than for n = 100 when the true ϕ is large. Different
censoring proportions do not seem to make noticeable changes in estimating λ, γ, β1, β2, however, for parameter ϕ (except
for ϕ = ∞), an increasing percentage of censoring tends to increase the bias, as expected.

In conclusion, the performance of the proposed method is satisfactory; the theoretical results in Section 3 are confirmed
by the simulation studies.

5. PBDE Data Analysis

The proposed composite likelihood method is applied to analyze the data collected from the PBDEs study. The PBDE
data contain observations from 316 pregnant women. The outcome variables include the concentrations of the four
most commonly detected PBDE congeners, pb47, pb99, pb100, and pb153, in blood samples. Because the positivity,
the concentrations can be taken as “survival” outcomes, where the 0 value of the concentrations is treated as being left
censored, indicating the actual concentrations are unknown but below the detection limit of the equipment.

Most observed PBDE concentrations assume small values, while only a few observations take extremely large values.
Two extremely large observations of the four PBDE congeners are deleted from the analysis due to the possibly involved
error.

The majority observations of the congener pb47 are larger than the majority observations of other three PBDE congeners.
In order to make a suitable comparison among the four congeners, all the observations are standardized to assume similar
ranges with the original covariance structure retained. The standardization is implemented by first subtracting the cor-
responding median value of the congener and then divided by the corresponding inter-quantile range for each congener.
Table 1 presents the summary statistics of the four PBDE congeners after the standardization. The correlation matrix of
the four PBDE congeners remains the same after the standardization. Figure 1 displays the boxplot comparison of the val-
ues of the four PBDE congeners before and after the standardization. We further transform the standardized observations
by subtracting them from 38 to convert left censoring to right censoring which is more convenient to handle by survival
techniques, where 38 is a number greater than the all standardized observations.

Table 1. Summary of the standardized values of pb47, pb99, pb100, and pb153

pb47 pb99 pb100 pb153

Min. -0.60 -0.61 -0.64 -0.77
1st Quatile -0.27 -0.35 -0.36 -0.32
Median 0.00 0.00 0.00 0.00
Mean 0.42 0.56 0.50 0.71
3rd Quatile 0.73 0.65 0.64 0.68
Max. 9.42 30.08 16.92 37.68

Potential predictors include maternal education (MEDUC), race, body mass index categories (BMIC), the number of
household electronics (Electronics), current employment status (CurrentWork), servings of solid diary per week (Solid-
dairy), income categories (Income), and whether or not having any processed meat (ProcessedMeat). All the potential
predictors are categorical with each category being assigned an integer value. Table 2 displays the categories of each
predictor, the frequency, and the corresponding percentage. We employ (k − 1) dummy variables for each categorical
predictor to reflect the effects from the different categories, where k represents the number of categories for a predictor.
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Figure 1. The boxplot comparison for the values of pb47, pb99, pb100, and pb153. The left panel displays the boxplots
before standardization. The right panel displays the boxplots after standardization

Table 2. Summary of the predictors

Cumulative
Predictors Value Label Frequency Frequency Percentage

MEDUC Missing 3
1 Less than high school 50 50 15.97
2 High school 75 125 23.96
3 Any college 138 263 44.09
4 Graduate 50 313 15.97

Electronics 0 <10 electronic items 231 231 73.10
1 10 or more items 85 316 26.90

Race Missing 2
1 African-American 19 19 6.05
2 None Hispanic White 84 103 26.75
3 Hispanic 211 314 67.20

CurrentWork 0 No 149 149 47.15
1 Yes 167 316 52.85

Soliddairy Missing 1
0 0− 4 servings 91 91 28.89
1 5−10 servings 121 212 38.41
2 > 10 servings 103 315 32.70

BMIC Missing 8
0 Underweight 19 19 6.17
1 Normal 169 188 54.87
2 Overweight 78 266 25.32
3 Obese 42 308 13.64

Income 0 < 25K 198 198 62.66
1 25 − 50K 34 232 10.76
2 > 50K 84 316 26.58

ProcessedMeat 0 Missing 62 62 19.62
1 Reported none 133 195 42.09
2 Reported any 121 316 38.29
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Table 3. Analysis results of the final selected model for the standardized PBDE dara: predictor effects

Estimates sd p-value

MEDUC1 -0.181 0.090 0.045
MEDUC2 -0.067 0.062 0.275
Electronics1 0.148 0.074 0.044
Race2 -0.219 0.075 0.003
BMIC12 -0.163 0.095 0.084
BMIC3 -0.224 0.108 0.038

Table 4. Analysis results of the standardized and original PBDE data: baseline and association parameters

Standardized Original
Estimates sd Estimates sd

λ 0.026 <0.001 0.009 <0.001
γ 34.380 7.224 21.420 3.495
ϕ 0.275 0.049 0.706 0.154

The proposed composite likelihood method is applied to the standardized PBDE data. For comparison purposes, we also
apply the proposed method to the original data without standardization. We first build the full model which contains all
possible predictors, and consider the full model as a starting point. We backward eliminate insignificant predictors, where
the significance level α = 0.1 is applied for variable elimination. Table 3 and Table 4 report the estimated coefficients of
the predictors for the final model for the standardized and the original data. The estimates of the parameters α, γ, and ϕ
are presented in Table 5 for both the standardized and the original data. The large estimated positive values of γ show that
the risk at the baseline increases as the concentration in the PBDE congeners increases. The small estimated values of ϕ
demonstrates that the dependencies between the four PBDE congeners are high.

Table 5. Analysis results of the final selected model for the original PBDE data: predictor effects

Estimates sd p-value

Soliddairy1 0.083 0.042 0.047
ProcessedMeat2 0.116 0.052 0.026

From Table 3 of the results for the standardized data, lower education (under the college level) is significantly associated
with lower levels of the PBDE congeners. Higher usage of household electronics is significantly associated with higher
levels of the PBDE congeners. Non-Hispanic Whites have significantly lower levels of the PBDE congeners compared to
African American and Hispanics. Obese pregnant women have significantly lower levels of the PBDE congeners relative
to underweight pregnant women. Pregnant women whose body weight were normal or overweight tend to have lower
levels of the PBDE congeners in contrast to normal pregnant women, but this effect is only statistically significant at the
significance level 0.1 but not significant at level 0.05.

From Table 4 of the results for the original data, significant predictors are different from those obtained from the standard-
ized data. Pregnant women with 5− 10 servings of solid dairy per week have significant higher levels of PBDE congeners
than those having 5 less or 10 more servings. Processed meat consumption is significantly associated with higher levels
of the PBDE congeners.

6. Conclusion and Discussion

Usual analysis of multivariate survival data requires the specification of the joint survival function. When the dimension
of the responses is more than two, the specification of the joint distribution is often difficult and its plausibility is not
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easy to check. In this paper, we propose to implement the composite likelihood inference which can reduce the burden
of the joint distribution specification, and therefore is appealing for handling the case with a big number of responses. In
particular, we explore to use the pairwise likelihood formulation where only the pairwise survival distribution is specified.
Though other available bivariate survival models can also be used for our proposed estimation procedure, we use the
Clayton bivariate model to delineate paired survival times. One advantage of the Clayton model lies in its interpretability
from both the frailty and the copula model perspective (e.g., He 2014).

The reliable performance of the proposed composite likelihood method is confirmed through simulation studies. We apply
the proposed method to the PBDE data, and the analyses suggest the association among the four PBDE congeners and
identify statistical significant predictors for the PBDE congeners.

Although our development is motivated by the PBDE data, our method applies to any correlated survival data, including
sequential survival data, clustered survival data, and their mixes, where complex association structures can be facilitated
using available bivariate modeling schemes. In our discussion here, we take a common ϕ when characterizing the asso-
ciation for any two survival times. However, this treatment is not an essential requirement for our method, and it can be
readily relaxed to hand general correlated survival times which may have different levels of association between different
pairs. One may group the survival times into different subfamilies, with each subfamily sharing a common association
structure. In these cases the composite likelihood method is still valid with proper modification in the formulation.
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λ γ β1 β2 φ
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0.5 100 0 0.0509 0.2428 0.2620 93.9 0.0094 0.0285 0.0316 92.4 0.0086 0.1320 0.1373 95.0 0.0123 0.0750 0.0824 93.9 0.0145 0.0503 0.0522 95.6

20 0.0595 0.2775 0.2976 93.7 0.0098 0.0337 0.0358 94.5 0.0077 0.1541 0.1606 93.9 0.0138 0.0871 0.0945 93.3 0.0157 0.0566 0.0587 96.0

40 0.0683 0.3407 0.3614 93.2 0.0097 0.0392 0.0405 94.6 0.0070 0.1885 0.1996 93.8 0.0194 0.1015 0.1083 94.2 0.0192 0.0662 0.0680 95.3

200 0 0.0231 0.1692 0.1696 95.6 0.0020 0.0201 0.0204 94.5 -0.0001 0.0927 0.0941 95.1 -0.0020 0.0528 0.0557 93.6 0.0032 0.0345 0.0359 94.3

20 0.0221 0.1925 0.1930 94.0 0.0015 0.0236 0.0235 95.3 0.0003 0.1079 0.1101 94.0 -0.0013 0.0611 0.0645 93.8 0.0031 0.0384 0.0392 95.3

40 0.0243 0.2356 0.2389 94.5 0.0012 0.0274 0.0277 94.4 0.0003 0.1313 0.1312 94.3 -0.0003 0.0713 0.0743 93.5 0.0036 0.0442 0.0451 94.6

1.5 100 0 0.0088 0.0772 0.0791 94.1 0.0273 0.0855 0.0933 91.7 0.0046 0.1312 0.1304 94.4 0.0115 0.0746 0.0794 93.0 0.0121 0.0497 0.0530 95.3
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CP: Censoring Percentage; ME: Model-based Standard Error; SE: Empirical Standard Error; CR: 95% Coverage Rate; Sample size n = 100, 200 simulations.

Figure 2. Simulation Results by Composite Likelihood Method for ϕ = 1
3
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Figure 3. Simulation Results by Composite Likelihood Method for ϕ = 0.5
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CP: Censoring Percentage; ME: Model-based Standard Error; SE: Empirical Standard Error; CR: 95% Coverage Rate; Sample size n = 100, 200 simulations.

Figure 4. Simulation Results by Composite Likelihood Method for ϕ = 2.0
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CP: Censoring Percentage; ME: Model-based Standard Error; SE: Empirical Standard Error; CR: 95% Coverage Rate; Sample size n = 100, 200 simulations.

Figure 5. Simulation Results by Composite Likelihood Method for ϕ = 3.0
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1.5 100 0 0.0088 0.0772 0.0791 94.1 0.0273 0.0855 0.0933 91.7 0.0046 0.1312 0.1304 94.4 0.0115 0.0746 0.0794 93.0 0.0121 0.0497 0.0530 95.3
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20 0.0056 0.0629 0.0638 95.1 0.0147 0.0713 0.0713 94.4 0.0005 0.1082 0.1114 94.3 0.0083 0.0615 0.0621 95.4 0.0061 0.0388 0.0392 95.3

40 0.0063 0.0770 0.0775 94.7 0.0159 0.0830 0.0842 94.7 -0.0001 0.1311 0.1362 94.7 0.0068 0.0714 0.0723 95.2 0.0070 0.0446 0.0441 95.5

CP: Censoring Percentage; ME: Model-based Standard Error; SE: Empirical Standard Error; CR: 95% Coverage Rate; Sample size n = 100, 200 simulations.

Figure 6. Simulation Results by Composite Likelihood Method for ϕ = Infinity
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