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Abstract

We derive an explicit closed form of the stationary distribution of an M/M/1 queue with unreliable service and a working
vacation. We also show that the work in (Patterson & Korzeniowski, 2018) can be obtained as a special case of this model.
Future work remains to be done; specifically, it may be possible to use the explicit stationary distribution given here to
decompose the queue length into the sum of independent random variables. Consequently, it may then be possible to
utilize Little’s Law (Little, 1961) to decompose the customer waiting time as well.
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1. Introduction

Within the literature, a vacation queue is typically defined as a queue where the server is considered to be in a different
state, generally defined to be a ’vacation’ when the number of customers in the queue is below a certain threshold. For
an example of a vacation queue within the M/G/1 framework, see (Levy & Yechiali, 1975). Working vacation queues
typically refer to queues where the server utilizes its time on vacation for other purposes. For an example of a working
vacation queue where the server uses its vacation to service the main queue, but at a reduced rate, see (Xu & Tian, 2009).

A queue with unreliable service is a queue where service may be unsuccessful any number of times before it is successful.
This type of queue is important to study because it occurs naturally within a lot of systems. For example, imagine trying
to have a conversation with someone in a quiet environment, such as a library—words spoken are generally heard and
understood (i.e. service is rendered successfully every time). Now, imagine trying to have the same conversation in a
noisy environment, such as a busy restaurant—it can be done, but you may need to repeat yourself (i.e. service may fail).
Within the literature, this has been achieved two ways. First, using the M/G/1 framework, a M/PH/1 queue allows for a
random number of Poisson distributed ’stages’ within the service time. However, this method necessitates the restriction
that: © < 31 + 32, where p is the service rate, 3; is the success rate, and [3; is the failure rate (Latouche & Ramaswami,
1999). Second, one may use the framework of (Nuets, 1981) to construct a queue with identical stationary distribution
to the M/PH/1 but does not inherit any restrictions on , 3; or 3, besides those necessary for positive recurrence, as
seen in (Patterson & Korzeniowski, 2018). We extend the M/M/1 model with unreliable service defined in (Patterson &
Korzeniowski, 2018) by including two service rates. The use of multiple service rates is important since the customer
service time depends not only on the customer, as as it would be in the M/PH/1 queue, but on the state of the server at
the time of service as well. This not only has the benefit of generalizing the results of (Patterson & Korzeniowski, 2018)
by recovering this stationary distribution as a special case, but also cannot be recovered by previous results related to the
M/PH/1.

We adopt assumptions and terminology from (Patterson & Korzeniowski, 2018). Namely, service failure is not due to the
server as it would be in breakdown models, nor due to the customer as it would be in some interruption models. Customer’s
do not leave the queue—that is we preserve the FCFS (First Come First Served) service protocol. We consider service
failures to be due to external, random forces and repeat a customer’s service until it has been completed successfully.
Furthermore, neither the server nor customer know whether the service was successful until the service time has been
completed, at which time we envision a ’quality check’ to take place which determines if the service was a success or
failure.

2. Definitions
We define our process, state space, and parameters as follows:

Definition 2.1. Let {N(t) | t > 0} be the number of customers in the queue at time t,

0 the server is on working vacation
J(t) = .
1 the server is in a busy state
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and

S(t) = 1 immediately after service is rendered
10 otherwise

Then {(N(t), J(t), S(t)) | t > 0} is a Markov process on the state space:
Q ={(0,0,0)}U{(k,j,s) [ keN, s,t €{0, 1}

Define the following parameters:

e A : the rate of the Poisson arrivals process.

Uy : the rate of service when the server is “busy,” successful or not.

L, : the rate of service when the server is on ’vacation,” successful or not.
[31 : the rate of a successful service.

3> : the rate of a failed service.

0 : vacation duration is exponentially distributed with rate c.

Definition 2.2. We define the vacation policy:

e When the server becomes idle (i.e. N(t) = 0), the server goes on a working vacation; by this we mean that
customers arriving while the server is on vacation get served at a reduced rate |1, < Hy.

e When the server is not idle (i.e. N(t) # 0), a vacationing server begins a working vacation duration that is expo-
nentially distributed with rate 0, after which it begins a busy period and operates at rate |, until the server becomes
idle again, renewing the process.

o If a customer is served successfully while the server is on a working vacation and there are additional customers
waiting in the queue, the server then immediately ends its vacation and enters into a busy state until the queue is
emptied.

To help visualize this 3-dimensional Markovian process in 2-dimensions, we informally construct the state transition rate
diagram in 2D.

Figure 1. 3D Markovian state transition rate diagram in 2D

We define a ’successful service’ similarly to that done in (Patterson & Korzeniowski, 2018) to be a transition from
(n,j,1) — (n — 1,0]1,0), which is represented in the state transition diagram as having rate 3. Accordingly, we
will define a ’failed service’ to be a transition from (n,j, 1) — (n,j,0) with transition rate (3,. We will compute the
probabilities of a ’successful’ or ’failed’ service in an explicit manner by considering the transition probabilities of the
embedded Markov Chain and will note a similarity with the results from (Patterson & Korzeniowski, 2018).

Let Es = {a customer was served successfully}
S, = {the server is on a working vacation}
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= {the server is busy}

ps = P(Es N Sy) +P(Es N Sp) = P(E|Sy)P(Sy) + P(Es|Su)P(Sp)

A i A i
Ps = Bl+ﬁz+7\z<61+ﬁz+7\> P+ (51+Bz+?\z<61+f$z+7\) P(5e)

A
Ps = BI+BZ+AZ(BI+62+A

_ B1 1 _ i 1 _ i <f51 +f52+7\> _ B
Pe B Bt A T A | T Bt Pyt A\ Btk BitPatA\ PBi+Bo B + B

B1+pB2+A Bi+P2+A

) (P(Sy) + P(Sb))

We list the countable state space in lexicographical order; formally defined for triplets below.

Definition 2.3. Lexicographical Ordering

We say (kl,jl,sl) < (kg,jz,Sz) if and only ifk; ~ jl ~sp <k~ jg ~ S,

where —~ denotes concatenation (Quine, 1946). For example, 7 ~ 0 ~ 1 = 701.

It should be noted that this definition for lexicographical ordering can easily be extended to n-tuples and is equivalent to

that found on pg. 353 of (Ibe, 2013) when applied to the case of twoples. Using this re-ordering convention, we write:
Q ={(0,0,0),(1,0,0),(1,0,1),(1,1,0), (1,1,1),...} and define the corresponding infinitesimal matrix Q.

3. Infinitesimal Matrix Q

A C o0 0 0
B AC 0 0
Q=10 B A C 0 ()
where
0
A=[] B | P C=[ 0 0 0
Bi
—A 4wy, +0) iy 0 0 00 0 0
A— B2 —(A+Bi+B2) 0 0 g_ |0 0 B O
- 0 0 —(A+ o) o o0 0 o0
0 0 B2 —(A+B1+B2) 0 0 B O
A0 0 O
0 A 00
C=10 02 0
0 0 0 A

4. The Quadratic Matrix Equation

Thanks to Lemma 4.1 from (Patterson & Korzeniowski, 2018), which is based on the framework developed by (Neuts,
1981), we seek the minimal non-negative solution R to the quadratic matrix equation:

RB+RA+C=0 )

We will again employ the direct method whereby we solve the system of equations generated by equating the matrices
entry by entry.

Tiit Tiz T3 Ti4

Tar T T3 T4
LetR = 3

T31 T2 T3z T3y

T41 T4 T43 Ty

= (2) can be restated as the following system:
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T (0 + B1 (i +71a)) + Biriz (T2 +724) + 114 (B2 + Bi (a2 +744)) =713 (o + A — By (132 + 734))

T21 (0 + B1 (T2 +71a)) + Bimaz (T2 + T24) + 124 (B2 + B (a2 +744)) =123 (o + A — By (32 + T34))
A+131 (04 By (12 +114)) + Br (122 +724) 132 + 734 (B2 + Bi (Ta2 +7a4)) = 7133 (o + A — By (132 +734))
T41 (0 + B1 (Ti2 +714)) + Br (122 + 724) Ta2 + Tag (B2 + B (Taz +7a4)) = a3 (o + A — B (132 + 734))

T (@ +A+ ) =Btz —A=0

T2 (B + B2 +A) —Tip, =0

Tia A+ B+ B2) — T3 =0

Boty =121 (O +A+ 1) =0

€)]
™ (Br +PB2+A) —A =1, =0
T4 (A4 B1 + B2) —Tspp =0
Bora =731 (O +FA+,) =0
T A+ B+ B2) =131y =0
T34 (A4 B1 + B2) —Ta3pp =0
Porar —T4 (B+A+1,) =0
T (Br + P2 +A) =141y =0
Tag A+ Br+B2) —Tazup —A=0
The analytical minimal non-negative solution to (3) is given by:
AA+B+B2) Ay AB14+BrH+A)((A+B+B2) (04+A)+Apy) A(A+B1+B2) (0+A)+Apy)
(A B +B2) (0+M)+(B1+A) v (A+B+B2) (0+M)+(B1+A) v Bruy ((A+B1+B2) (O+A)+(B1+A)uv) B ((A+B1+PB2) (0+N)+(B1+A)uv)
BoA A(O+A+uy) A(B1+HB2+A)((B2+A)(04+A)+Auy) A((Ba+A)(0+A) +Apy)
R= (A+B 1 +B2) (0+A)+(B1+A )y (A+B+B2) (0+A)+(B1+A )y Biuy ((A+B1+B2) (0+A)+(B1+A)nv) Bi((A+B1+B2)(0+A)+(B+A)uv)
0 0 AA+B1+B2) A
Birp B
A(By+A)
0 0 612:;’ BL]
4)

5. The Spectral Radius of R

We compute the spectral radius of R explicitly and show that the sufficient condition under which our model will be
positive recurrent has not changed from the case in (Patterson & Korzeniowski, 2018).

Corollary. By Lemma 4.1 from (Patterson & Korzeniowski, 2018), the infinitesimal matrix Q given in equation (1) is
positive recurrent if and only if: B1(te —A) — A(np + B2) > 0.

Proof. The spectral radius of R is computed by solving the scalar quadratic equation generated by det(R — p;I) = 0,
yielding that {p;}i—o,12.3 satisfies the following quadratic equations:

woB1p; — AN+ po + B1 + B2)pi + A2 =0 )
A(A —Dity/(A 24
— = ( +uu+Bi+Bat( ]2L\L/b(ﬁl+ub+f51+[52) U—bﬁl)’ i=0.1
(A+B1+B2)(O+A) + 1y (Br+A))p; —A(B1+B2+0+2A+ 1) pi +A° =0 (6)
i MOrohtBrebrtin (1) VOB pori HiBamy) L 23

2((A+B1+B2) (04+A)+ 1y (B1+A)) ’

By inspection, the largest of these eigenvalues in (5) and (6) will contain the positive radicals. Next we show that py > p.

Assume pg < p», then:
= PopP3 < P2P3 A2
= PoP3 < RIETBI 0+ T (BTN
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A(8+2A+B 1Bty — /(0= B1—Bat ity ) +4B2kty ) A2
= Po <
2((A+B1+B2) (BN Tty (B1+A)) (AFB1+B2) (0+A)F 1y (B1+A)
po (84274 B1+ B+ 1y — /(0—B1—Bat iy ) +4B2ksy )

VAo +B1+B2)2 — 4B < (o — Bi+ B2 —A)
A+ 1o + B+ B2)” — 4pB1 < (1o — Br + B2 —A)
:>4()\[32+[31[32+)\|,Lb) <0 —¢—

— 3 < }\
. pom(9+27\+ﬁ1+f52+uv7\2/(9*(51*62+uv)2+4f52uv) <oy
A2 (0+2A+B1+Bat+ v — 1/ (0—B1—Bat 1y )2 +4PB21y
- ( 2pp By ) < Api
A(O+2A+B1+B2+Hy) A/ (0—B1—Botity )2 +4B2 1y
= 21 B P1 < 2up B s
_ ((AO2AEBIEBaty) MAtro+BiBa i BBk ) < N(O—Bi—Batpy PN Bop,
2py By 2py B 4p3 BT
2
(O BB e B\ T (0B Bat iy ) +4Bouy
21 B 43, B3
2
N (0-+A+py—pp )+ /(A 1o+ B1+B2)2—4pp By < (0=Bi=Boti 2 +4NBopy
21 B 413, B3
(0+A+1ty— 1 ) +2(0+ A+ 1ty — ) /(A 1p +B1+B2)2 4t Br+ (At +Bi+B2) 41y B (0—B1—Bat+1y)*+4B21y
- 7 p2 < 7 a2
4py B 4py, By
2(9+)\+uv*ubJ\/()\+ub+f51+ﬁz)2*4ubﬁl (0—B1—Pa+ity ) —(A+pp+B14+B2)>—(04+A+ 1y —1p ) +4B2 iy +41p B
- 2 n2 < 7 a2
4uy, By 4y, By
2(e+7\+uv*l¢b)\/(7\+Hb+f’l+|’52)2*4ubﬁl (0—PB1—PBat1y)>—(04+2A4+B 1+ B4 1y )2 +F2(A+ 1o +B14+B2) (O+FA+ 1y — b ) +4B2 1y 41y B
- LB < 4 BT
Ly 200 At iy —pe) VAo BB Ao B —4(A+ Bt Ba) (O A+ ) H2 (A by + B Bo) (O Aty — it ) +4Bowy 4y B
2 32 2 32
4y, By 41 B
(0+A+1ty— )/ (A+ o +B1+B2)2—4py B (Lo —Bi1+B2—A)(O+FAF 1y —1p)—2B2(0+A)—2Apy
— V) < 2 12
2y, By 2uy, By
(0-+A+py—pn) /Ao +B1+B2)2 4o Br (o —PB1+B2—A) (O+A+ 1y —Hp)
— 2B < 20, B
—
—

= Po = P2

Thus, by Lemma 4.1 from (Patterson & Korzeniowski, 2018), Q is positive recurrent if and only if:
Po <1 <= PBi(po —A) —Alup + B2) > 0. O

6. The Stationary Distribution
6.1 The Explicit Form of R*

To find an expression for R¥, we utilize the block upper-triangular structure of the matrix R given in (4). To that end, we
prove the following:

K k=1 1i@pk—i-l
Lemma 6.1. Given R = A€ , then R* = AS 2 iy ACB )
0 B 0 k

Proof.

. Al Y0 Ateplil A €

_ 1 _ —0 _
Note that if k = 1, then R _[0 i B =10 3
k k=1 giepk—i—1

Next, assume R¥ = [f([) i=0 ABS B } , and write R*"! as follows:

(AR Y ) AteBk-i-t
kR — i=0
R*R 0 Bk
_ Ak ZiEgAtes (A €
1 0 Bk 0 B
_ [ qk+1 ARC + (Z]f:_()] AieABk—i—l)B]
0 Bk+1
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Pzp}(h(p; of I)‘(MBHBZ)(‘)%( pk)) M P2p3 (A+B1+B2) Ly P2p3
AkA _ A3 —e2) Ap3—r2) A
Bgong(p‘fﬂ)?) pzp;((0+)\+uv)(P%‘*Pé‘)—)\(pf’]ﬂ’;")) Bap2ps P2P3(0+A+1y)
Ale3—e2) Ales—e2) A A
[ 0303((A+81+82) (A8 +82) ok —ok ) A (X " —oX 1)) +Bouv (o5 —0k)) 0303 (uv(A(oX ' —oX 1)+ (481 +82) (0F 0k )) +uv(0+r+uv) ok —0k))
— A2 (p3—02) A (p3—02)
T | paeded(ek—ek ) (A+B1+82)+B2e3ed (0 t+uv) [k —ok ) A (pk T —ok 1)) wvpaeded(ek—pk)+e3ed (0 A+ ) (0 +uv) [k —ok ) A (pk ok 1))
L A2(p3—p2) A2(p3—p2)
[ 03e3(A(a+81+82) (o ok 1)+ (a1 +82) +Bouv ) [0k —0k)) wveded(A(pk ok ) (B +82) (X —ok ) H(0 Aty (X —0k))
— A (p3—p2) AZ(p3—p2)
B 20303 (04278 +By+uv) (pk —ok ) —ABoe3ed(pk 1ok 1) wvB2030% (pF 0k ) +o203(0-A+uv) (203 (0 +A+uv) (pX 0k ) —Apaos(pX 10k 1))
L A2{p3—p2) A (p3—p2)
p%a%(h(mﬁwﬁz)(p; ey ')<(W)(P§ "H) wvedod(A(pk Tk ) (0 2a B +Byruy) (0F —0k))
= A2(p3—p2) A (p3—p2)
fizpsz(A(P}‘sz])(ﬂ%‘*ﬂé‘)*’\ﬁzp%p%(pyil*F%Cil) nvrigpgp%(p?*p§)+p2pz(0+/\+uv)(A(p;‘“ﬂ);*'] psz(?\+f3|+l52)(p_¥79§))
L AZ(p3—p2) A (p3—p2)
S’l"](ﬂzi’}()‘ B >Bz)(uzk*‘*s’zk7') H((A+B+B2) (ot r»g]fk)(vé‘fvé‘)) “"“%"%(A(”%A""iq) ! A(;;;;:pzj ("Jk"’zkn
= A3 —p2) A2(p3—p2)
B20203(p3+02) (X —ok ) —paoded(ok 1ok 1) v 820303 (0¥ —0X ) +(A(p3+02) =203 (A+81+82)) (A (X T —oX 1) —py03(A+1+82) (0X —0k))
L Alp3—p2) A2(p3—p2)
_9203("293(7\‘5\’ﬁz)("zki]*"xkf]) (A‘ﬁW'32)(‘-’2‘93)(9;7"5)‘)‘(“;7”%)) “\'9293(5’203(";{71*“57‘)’(93’92)[93“*95)]
— A3 —p2) A3 —p2)
Baoae3 (X =0k 1) +py0005( 020k —p3k ) —B203ed (o ok ) A2 (p3+02) (X =0kt ) —prp3 (A(A+81+82) (X1 —o k1) a2 0k —ok))
L A(p3—p2) A2(p3—02)
9203((7“51'f-‘z)(lr‘zkﬂsfpxkpz‘(m‘P?)(F‘,{‘*sz))M(“;*”%")) “VF‘IL’J(”ZF’R(“‘;717“'¥ I)‘("‘}“’:](P%‘*”zk))
_ A(p3—02) A3 —p2)
- P O e ) pzpz(pi‘“79?*‘)(%*(7\+5|+ﬁz)) —Apaes( ek —ok)
L Ales ,,,) Ales—e2)
p203(A(pk—pk)+ (A8 +82) (pX T —pk 1)) wvpoes (X T ok 1)
- Ap3—p2) Ap3—p2) 7‘Ak+l
- Baop3(pX I —pkH) p203((0+A+uv) (X —pkH 1) A (pk—ok)) | T
L Aes—e2) Aps—e2)
AR Ake 4 () AleBk)
0 3k+1
k+1 k ieqRk—i
I A st 1ci: S
0 RBk+1
[m}
. . A
Proposition 6.2. Using R = 0 B from (4),
AA+B1+B2) Apy
— | AB1+B2)(O0+A)+y (B1+A)  (A+B1+B2) (O+A)+ 1y (B1+A)
where A = BaA A(B+A+1y)
A+B1+BR2) (O+A)+1y (B1+A)  (A+R1+B2) (O+A)+ 1y (B1+A)
_ A A+ Br+ B2 Hy
(A+B1+B2) (O+A)+ 1y (B1+A) Ba 0+A+u,
__ P2pP3 A‘FB]<FB2 I"LV Weﬁnd
A 0+ A ’ ’
[32 + A+ Uy
p203(A(pF ' —pF )+ (A+B1+Ba) (0¥ —pF)) T )
Ak = Alp3—p2) Alp3—p2) e
B2p2p3(pk—pk) 203 ((0+A+1) (¥ —pk)—A(pf ' —p¥ "))
Ap3—p2) Alp3—p2)
Proof.
We use Mathematical Induction by noting that:
p203(A(P3—08)+(A+B1+B2) (5 —p3)) iy p2p3(pl—p})
Al = Alp3—p2) Alp3—p2)
B2p2p3(pi—p}) p203((0-+A+uy ) (pi—pd)—A(p3—p3))
Alp3—p2) Alp3—p2)
P2p3(A+Bi+B2) Ky P2P3
o A A
= B2p20s p203((0+A+1,) (pi—p}))
A Alp3—p2)
P2P3(A+PB1+B2) Ky P2p3
e A A :A
B2p2ps P2p3(0+A+1y)
A A

and assume the result for A¥, write Ak*!:

Remark. Three substitutions were needed in this derivation; namely:
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AN A
A+ Bi + B2)” + Bapy = 2 +Bl+f;zg)ipz+93] ) and

6+27\+BI+B2+M\;:M,and
A (p3 + p2) — p2p3 (A + By +f52) =203 (0 +A+1y).

These can readily be verified from (6).

Proposition 6.3. Using the block-matrix form of R = [‘ﬁ g} we find by Lemma 6.1:
Rk _ [AF ZiSgAtesit) _[AF e(k)
0 Bk 0 Bk
where: _
p203(A(pX ' —pX )+ (A+B1+B2) (pk—pk)) 1y p2p3(p¥—pk)
k _ Alp3—p2) Alp3—p2)
A" = B2p2p3 (P —pk) p203((0+A+uy) (X —pk ) —A(pk'—pk ")) (by 6.2)
L Alp3—p2) Alp3—p2)
(Bipo—A)pf+pl (A=B 1) A(ps—pt)
k _ Bi(po—p1) Bi(po—p1) £
B AA+Ba) (pF—pf) O Bron ol o (Bupon) | V14V
L Ko Bi1(po—p1) Bilpo—p1)
5 — p2(A2—p3(A(0+A)+B 11y p2)) 5, — p3(A2—p2(A(0+A)+B 11y 03)) e — 03(A2—p2(A2+B1p3(0+A+11,)))
1= Ao Bi(po—pi)(p2—p3) ° 2 Ao Bi(po—pi)(p2—p3) ° 3~ Alpo—p1) (—p2+p3) ’

p2(A2—p3(A2+B1p2(0-+A+1y)))

by = ACo—p1)(— P27 3]

then (1) = [ 1) <2011 |, where:

_ po(A—pvpi)(pf—pF)  pi(A—popo)(pF—pf) (A ubpo (pF—p¥) _ po(A—mven)(pf—pt)
cii(k) =8 ( p1(pPo—p2) o Po(pP1—p2) +5 (p1—p3) o p1(pPo—p3)

_ wopo(pk—pX)  wmuei(pf—pk) w1 (pk—p¥) HbPO(PU_Pz)
cia(k) =& ( Po—P2 - p1—p2 5 P1—P3 - Po—P3

. p3(A—pup)(pk—p¥)  p}(A—nbpo)(pf— p}(A—pupo) (Pk—pX)  PE(A—nbp1)(pE—pk)
cai (k) = & ( AZ(po—p3) - A(p1—p3) + 8 A(p1—p2) - AZ{(po—p2)

_ po(pk—pX)  pi(pk—pY¥) pi(pf—p¥)  po(pE—p
e (k) = 83 ( Bi(po—p3) ~ Bilpi—ps) + 04 131(01*92) " Bilpo— Pz)

(7

Proof. The above result is the consequence of previous works, specifically Lemma 6.1, Proposition 6.2, and the observa-
tion that B is entry-wise identical to the matrix R from (Patterson & Korzeniowski, 2018) after letting 1 = . The rest

is merely the computation of C(k Z Al @BX%—i~1 which is tedious but straightforward. O
6.2 The Initial Terms of T
. . . A ¢ .

Turning attention to the computation of B[R] = B A+RB| and a positive vector (xg, X1 ), such that (xg, x1)B[R] = 0,

we have:
—A A 0 0 0
0 —0—A—np, Hy 0+A 0

(x0, x1)B[R] = (x0,X1) | B B> —Bi—PB2—A A 0 =0 (8)
0 0 0 —Ub Hov
B 0 0 Ba+A —B1—P2—A
X0 = 1

X1 = AA+B1+B2)
10 = Bz(9+>\)+l31(9+)>\\+uv)+)\(e+)\+pv)

_ }'LV
= \ X1 T B 0T A B (0FA+iy ) FA(OFAF 1Y)
iy — MAEBIEB) (Bi(0+A)+B2(0+A)FA(OFA+py))
12 = By (B2(0FA)+Br (OFA+Hy ) FA(OF A1y ))
N AB1(O+A)+PB2(O+A)+A(O+A+1y,))
13 = Bi(B2(0FA) +B1 (0T A+ iy )+ A(OFA+1L,))

We normalize the solution in order to generate the first three terms of 7t:
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K(xo+x1(I—R)"le) =1

(B1 (o —A) — A (po + B2)) (OB2 +B1 (6 + 1y))
Bi((0+A)(B1+B2) o + ((Br (ko —A) = A (kb + B2)) + App) 1) ©)
oo = K
o = szp3(7\;rf5|+f52)
_ Kpyvpops
(7000, 7010, 7011, 02, T3) = K(xo, X1) == ¢ 711 = 7 X
_ K(A+B1+B2) (A—Binvp2ps)
T2 = ABipyp
. K(A2—Biuy pap3)
T3S TN

Remark. Observe that the condition given by Corollary 5 for positive recurrence: B1(tp — A) — Ay + B2) > 0is
equivalent to K > 0.

Proposition 6.4. The remaining elements {(7tvo, 71, T2, T3 ) | k = 2} of the stationary distribution satisfying
(7Tk0, Tk 1, T2, The3) = (7510,7111,7112,7T13)Rk71 nd

oo + 7o + 701 + T2 + T3 + Z Tk + Tkl + T + Ttks) = 1 are given by:

k=2
_ Kpaps((A+B1+B2) (p¥—p¥ ) —A(pf ' —pF "))
o = Alp3—p2)
— Kuy paps(pk—pk)
kl = Alp2—p3)
o, = K 1y (81—8) (B1(pf ' —pF ) —A(pk—pF)) + P2p3(A+B1+B2) 5 po(A—pup1)(pf '—pF ') _ pi(A—pupo)(pf '—pF ')
k2 = X A 1 1(Po—p2) P0(p1—p2)
+5 piA—pupo)(pf ' —p¥ ") po(A—pupe)(ps ' —pf )
2 polpP1—p3) p1(pPo—p3)
s (g piA—mopo)(pf ' o ")  p§(A—puei)(ps e ) 45, §A—wop)(ps =¥ ) pA—pepo)(pf T —pf ) (10)
» 4 P1—p2 Po—P2 00—P3 01—p3
_ K _ k) 4 Mo(A+Bi+Ba)paps po(ps ' —pr™")  ei(pf ok ")
M3 =K (Hb (81 —82) (90 - Pl) + A <51 Po—p2 o p1—p2
pi(pf'=p¥ ') polp ')
+52 PI—P3 - Po—P3

wypaps [ Bs((pi=p2)eg—(Po—p2)ek+(po—pi)e¥)  83((p1—ps)es —(Po—ps)pk—(pi—po)p})
AB1 (po—p2)(p1—p2) (po—p3)(P1—p3)

Proof. We begin by noting that:
(Tth0s k1, T2, T3) = (00, 701, T2, T3 ) RN T <= (700, 01, Tika, T3 ) = (710, 701, T2, 703)RE 2R
<> (7o, T, T2, Tk3) = (TTk—1,0, Th—1,1, TTk—12, Tk—13)R

Furthermore, we use an alternative form of R given below. This is entry-by-entry identical to that defined by (4), but is
merely expressed in terms of pg, p1, P2, P3, 01, 82, 83 and &, whenever possible.

w v 203 (A+B14+B2)(81—82)(Po—p1)  (81—82) Kb (Po—p1)
Bapaes A(patp3) —(A+B 1 +Br)erps (A+By+B2) (83— 04)90(90 pi)er  (83—84)(po—p1)
o A A A2 [h
R= Bilpote) -2 A (11
0 0 &) )
Bl Bl
0 0 >\[90+91)*()\f51+ub)%91 BL]

Next, define: (7rx_1 0, T—1,1, Tk—12, Tk—13)R = (a,b,c, d)

Then:

q = Kees((AHBiBa)(pf ' —px ) A (pF P ™)) (A+Bi+Ba)paps " Kivpaps (pF ' —pF ") Bypop;
- ?\(93—92) A A(p2—p3) A
Ko} ((A+B1+B2)*+Bawy ) (pF ' —pF ) —A(A+B1+B2) (pF 2 —pF?))

- A2(p2—p3)

po3 ((ALOE2B 2o A (k1 k) A+ B 1 Ba) (0 k)
= A2(p2—p3)
_ Kpaps((A((A+B1+B2) (p2+p3)—A)) (pX ' —pF ') —A(A+B1+B2) p2p3 Py 2—pk ?))
- A2(p2—p3)
_ Kpaps((AA+B1+B2) (2+03)—A2) (pF 1 —pk 1) =AM+ B1+B2)p203 (0F 20k ?))
- ?\Z(Pz—Pz)
_ Kpaps(AA+B1+B) (5 —pk) A2 (o} '—pk 1))
- A2(p2—p3)
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b = Ke2pa((A+B1+Ba) (p¥ ' —pr 1) —A(pf P03 ?)) I Kiyp203(P5 ' =05 ) A(patps)—(A+Bi+B2)p2ps
- A

Alp3—p2) 7\(02 p3)
K303 ((A+B1+B2) (pF ' —pF ) —A(pf ?—p) ))+K}lvpzp3(93 —p¥ ) (A(pa+p3)—(A+Bi+B2)p2p3)
- A2(p3—p2)
Ky p3p3 (<A (pf 2—pX 7))+ Ky paps(pX ' —pk ) (Alp2tps))
- A2(p3—p2)
_ Kuvpzps(?\ (p2+p3) (P¥ ' —pk ") —Ap2ps(pX 2—pk2))

A2(p3—p2)

_ Kuypaps(A(pk—pk))
- A2(p3—p2)
_ Kuypaps(pk—pf)
- Alp3—p2)

Since the verification of ¢ and d are similar in nature to a and b, but are too lengthy to provide the step-by-step de-
tails, they are omitted. Similarly, one verifies that (10) recovers (7, 7t19, 7011, 712, 013) When k = 1, and consequently:
o0

oo + D_ (Ttko + 7tk1 + Tk + 7tx3) = 1. These steps are omitted as well.
k=1

7. Special Cases

We can now recover, as a special case, the stationary distribution of the model studied in (Patterson & Korzeniowski,
2018).

Proposition 7.1. Let © — oo with W, = W, then (10) recovers the stationary distribution of the model studied in (Patterson
& Korzeniowski, 2018). Consequently, we also get the special cases of the previous model as follows:

o Let 0 — oo with wp = W, and

i. p1 — cowith0 < By < oo results in the classical M/M/1 queue.

ii 0< B <oowith 3B, =0and n = 3 results in an M/E;,/1 queue, where &, refers to an ’Erlang’ service
time distribution with shape 2 and rate ..

iii 0 < By < oowith By =0and > B results in an M/HE/1 queue, where HE refers to a hypoexponential

service time distribution ~ f(t) = ”ﬁ‘(euﬁ% (Ross, 2006).

Proof. We obtain the stationary distribution from the previous model by substituting p, = w, computing K, {pi}i—0.123
and {0;}j—1,,34, and letting 6 — co. Namely:

— lim K = Bi(k—A)—A(B2+1)
0—o00 Bi

: _ A
= lim {po, p1, p2. P3} = {Po. P1. 53,7 O}

— elgfgo{él,52,53,54}:{m 0,0,— Po— pl}

Care is needed when substituting these values into (10) due to indeterminate expression 0° arising from p3 and pk !

terms, leading to three different cases.

k=0
e = (K, 0,0,0)
= lim ™, = K(1,0,0,0)
0 —o00
k=1
. 4 Kpaps(A+B1+B82) Kity K(A+B1+B2) (A2 —Biuvp2ps) K(A2—Biuyp2p3)
= lim ™ = h_?;@( 2= A l : > u?\pzm’ ABinob ’ ARy
_ AA+B1+BY) A
_K(O’O’ Brroy ’ﬁl)
k>2

K+l k) nk_ ok
e lim nk—K(0,0 1o 81 (B (g i ) Ak —p! )),Hb51( —91))

0—oc0
=K (O o, Piled el ) A5 —el) A(Q&‘pﬁ))

Bilpo—p1) > Bilpo—p1)
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K (0 0. o5 et Ale—er) A(pok—mk))

Po—P1 Bilpo—p1)’ Bilpo—p1)

We recall that the first two entries in 7ty are from states where J(t) = 0, i.e., where the server is undergoing a work-
ing vacation (see Definition 2.1). By taking 6 — oo, we take the expected working vacation duration to 0. Thus for
k > 1, iy and 71y are 0. It is still possible, however, to visit the vacation state (0,0, 0) when the queue is empty. O
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