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Abstract

In medical, health, and sports sciences, researchers desire a device with high reliability and validity. This article focuses
on reliability and validity studies with n subjects and m ≥ 2 repeated measurements per subject. High statistical power can
be achieved by increasing n or m, and increasing m is often easier than increasing n in practice unless m is too high to result
in systematic bias. The sequential probability ratio test (SPRT) is a useful statistical method which can conclude a null
hypothesis H0 or an alternative hypothesis H1 with 50% of the required sample size of a non-sequential test on average.
The traditional SPRT requires the likelihood function for each observed random variable, and it can be a practical burden
for evaluating the likelihood ratio after each observation of a subject. Instead, m observed random variables per subject
can be transformed into a test statistic which has a known sampling distribution under H0 and under H1. This allows us
to formulate a SPRT based on a sequence of test statistics. In this article, three types of study are considered: reliability
of a device, reliability of a device relative to a criterion device, and validity of a device relative to a criterion device.
Using SPRT for testing the reliability of a device, for small m, results in an average sample size of about 50% of the fixed
sample size for a non-sequential test. For comparing a device to criterion, the average sample size approaches to 60%
approximately as m increases. The SPRT tolerates violation of normality assumption for validity study, but it does not for
reliability study.
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1. Introduction

In medical, health, and sports sciences, researchers and practitioners want to use a highly valid and reliable device to
conduct research or to make an important decision. Often there is a criterion devices (the standard), and researchers often
test the validity and reliability of a new device against the criterion. Some researchers suggest using a correlation as
a parameter of interest when two or more raters (devices) are compared (Prescott, 2018; Mokkink et al., 2010; Shrout
and Fleiss, 1979). However, a correlation is difficult to interpret in the context of a research problem, and it may be
controversial to set a threshold of satisfying correlation. In particular, a correlation depends on the heterogeneity of study
participants (Hopkins, 2000). In this article, we model measurement error by a normal distribution, and we focus on the
mean and the standard deviation (SD) of the normal model as our parameters of interest. From a statistical perspective, it
is reasonable to quantify the validity by using the mean of measurement error and the reliability by the SD.

We can increase precision of parameter estimation and statistical power of hypothesis testing by increasing the sample
size (i.e., the number of subjects) and/or the repetitions (i.e., the number of repeated measurements per subject). Hopkins
(2000) suggested approximately 50 study participants and at least 3 trials, but the desired sample size and the number
of repetitions depend on various factors. Sometimes, a too high number of repetitions may introduce systematic change
in measurement (e.g., learning effect, fatigue, etc.) For some researchers, it can be difficult to recruit a large number of
subjects, and most researchers would like to draw a valid conclusion in an efficient manner in terms of cost, time, and
effort. For those researchers, sequential analysis can be a useful statistical method. Wald (1945) introduced the sequential
probability ratio test (SPRT) which allows a researcher to terminate hypothesis testing with about 50% of the required
sample size on average while preserving the desired significance level and statistical power. In some practical cases, the
SPRT (which requires data monitoring after each new data point) can be a serious practical burden, and the SPRT has
advanced to various forms of group sequential tests in clinical trials (Pocock, 1977; O’Brien & Fleming, 1979; Wang &
Tsiatis, 1987; Jennison & Turnbull, 2000).

In some practical situations, it is more convenient to increase the number of repeated measurements per subject rather
than increasing the sample size. Let n denote the sample size (i.e., the number of subjects) and m denote the number of
repetitions per subject. Using these notations, there are n×m data points denoted by Yi j for i = 1, . . . , n and j = 1, . . . ,m. It
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may be challenging and exhausting to perform n×m sequential tests (after each observation for every subject), but it may
be more practical to perform n sequential tests after each subject. In this article, we demonstrate the effect of increasing m
for fixed n in a reliability and validity study, and we demonstrate the operating characteristics of the SPRT when it is done
after each subject with m repeated measurements taken per subject. When m random variables (Yi1, . . . , Yim) are observed
from the ith subject, we can apply the SPRT based on a known sampling distribution of g(Yi1, . . . , Yim), where g: Rm → R
(i.e., a single-value statistic which summarizes m data points). Thus, for reliability and validity studies which typically
involve m repeated measurements per subject, the novelty of this article is that we apply the SPRT based on the sampling
distribution of g(Yi1, . . . , Yim) rather than the SPRT based on the distribution of each Yi j (as typically done in a SPRT).
We provide simulation results that this SPRT, which is based on the likelihood function of the sampling distribution of
g(Yi1, . . . , Yim), still preserves significance level and statistical power while significantly reducing the average sample size.
To this end, researchers who study reliability and validity of measurement devices can terminate their studies early with a
substantially fewer number of subjects by taking m repeated measurements per subject.

This manuscript is structured as follows. Section 2 includes a normal error model, some terminology used throughout this
article, and a brief review of SPRT. In Section 3, we focus on hypothesis testing for the reliability of a single device. In
Section 4, we discuss hypothesis testing for comparing the reliability of a new device to a criterion (i.e., comparing SDs
of measurement error in two devices). In Section 5, we discuss hypothesis testing for comparing the validity of a new
device to a criterion (i.e., comparing means of measurement error in two devices).

2. Assumptions, Terminology and Review of SPRT

2.1 Normal Error Model

Suppose the value of a subject is measured by a device (e.g., body temperature, body mass index, force generated by a
body part, etc.). Let µ denote the true value of a subject (or simply the truth). Suppose the device measures the true value
m times (repeated measurements). Let Y j denote the observed value in the jth measurement which is not exactly equal to
µ. We define the jth measurement error by ϵ j = Y j − µ, the difference between the observed value Y j and the truth. A
typical probability model for measurement error is a normal distribution, denoted by ϵ j ∼ N(β, σ2). We further assume
ϵ1, . . . , ϵm are independent. There are two parameters of interest, the mean error β and the standard deviation (SD) σ. The
normal error model is graphically represented in Figure 1. In later sections, the jth measurement error from the ith subject
will be denoted by ϵi j, and we will assume ϵi j’s are independent from measurement to measurement and from subject to
subject.

Normal Error Model

β − 2σ β − σ β β + σ β + 2σ

Figure 1. Graphical representation of a normal error model denoted by N(β, σ2)

2.2 Terminology

We say a device is valid (or unbiased) when β = 0. When a device is invalid (i.e., β , 0), overestimation refers to β > 0,
and underestimation refers to β < 0. We say a device is more or less reliable (or more or less precise) when σ is smaller
or larger, respectively, where σ takes some positive value. For comparing two devices, device 1 relative to device 0, let β0
and β1 denote the mean error of device 0 and the mean error of device 1, respectively. Without loss of generality, assume
that device 1 is a new device being tested and device 0 serves as a criterion (known to be standard). We say device 1 is
valid relative to device 0 when β1 − β0 = 0. Let σ0 and σ1 denote the SDs of device 0 and device 1, respectively. We say
device 1 is as reliable as device 0 when σ1/σ0 = 1 and less reliable than device 0 when σ1/σ0 > 1. A study of β (or
β1 − β0) is referred to as a validity study, and a study of σ (or σ1/σ0) is referred to as a reliability study.
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2.3 Estimable Parameters

Consider a single device with the normal error assumption ϵ j ∼ N(β, σ2). If the truth is known, a sequence of independent
random variables (ϵ1, . . . , ϵm) is observable, and unbiased estimators of β and σ2 are ϵ̄ = 1

m
∑m

j=1 ϵ j and S 2
ϵ =

1
m−1

∑m
j=1(ϵ j−

ϵ̄)2, respectively (Hogg and Tanis, 1997). If the truth is unknown, (ϵ1, . . . , ϵm) is not observable, but (Y1, . . . , Ym) is
observable instead. With Y j = µ+ϵ j for j = 1, . . . ,m, we cannot estimate β, but we can estimate σ2 by S 2

Y =
1

m−1
∑m

j=1(Y j−
Ȳ)2, where Ȳ = 1

m
∑m

j=1 Y j is the sample mean which estimates µ + β. In most practical cases, the truth is unknown, so
only σ can be estimated. For comparing two devices with normal error models N(β0, σ

2
0) for device 0 and N(β1, σ

2
1) for

device 1, we can estimate β1 − β0 and σ1/σ0 even when the truth is unknown.

2.4 Practical Research Questions for Studying a Single Device

In most practical situations, the truth is unknown, so it is impossible to answer the research question “Is this device valid?”
without a criterion. In other words, in absence of knowing the true value of a subject, we cannot conduct a validity study of
a single device. Since there is no device with perfect reliability (i.e., σ > 0), it is challenging to address whether a device
is reliable or not without some threshold. Therefore, a practical research question is “Do we have statistical evidence to
reject σ = σ0 in favor of σ > σ0?” where σ0 is a maximal acceptable SD. For example, a 100-meter sprint world record
is rounded to two decimal places in seconds. In order to record the truth 9.58 seconds as 9.58 by a valid device with a
probability 0.9973 (within 3 SDs from the truth by the empirical rule of a normal model), we want to find σ0 such that
9.58 − 3σ0 = 9.575 or 9.58 + 3σ0 = 9.5849̄, so σ0 = 0.0016̄.

2.5 Review of SPRT

Wald (1945) introduced the sequential probability ratio test (SPRT) which allows interim hypothesis testing after each
observation. In the framework of SPRT, the sample size is a random variable, and we use an uppercase letter N to denote
the random sample size. The general procedure of SPRT is as follows. Let L0i and L1i denote the likelihood after the ith

subject under a simple null hypothesis H0 and a simple alternative hypothesis H1, respectively. Let α and 1− ζ denote the
fixed significance level and desired statistical power, respectively. Let Λi = L1i/L0i be the likelihood ratio which serves as
the test statistic for SPRT, and one of the following three decisions is made after observing each ith subject:

• Case 1: Terminate the study by concluding H0 if Λi ≤ ζ
1−α .

• Case 2: Terminate the study by concluding H1 if Λi ≥ 1−ζ
α

.

• Case 3: Do not make any conclusion and continue the study if ζ
1−α ≤ Λi ≤ 1−ζ

α
.

A SPRT is guaranteed to make a conclusion with a finite sample size (Wald, 1945). As compared with the fixed sample
size under the most powerful test introduced by Neyman (1933), the SPRT often results in a saving of about 50% in the
sample size on average (Wald, 1945).

3. Reliability Study of a Single Device With n Subjects and m Repetitions

3.1 Formulation of Hypothesis Testing

In a reliability study for a single device (no criterion device), suppose n subjects are recruited and m repeated measure-
ments are taken per subject. In most practical situations, the truth varies from subject to subject (e.g., body mass index).
Let µi denote the unknown fixed truth of the ith subject for i = 1, . . . , n. We do not make any assumption about the
distribution of µi because it is not needed in our discussion. Let Yi j denote the observed value of the jth measurement
from the ith subject, and the (i, j)th measurement error is denoted by ϵi j = Yi j − µi. As discussed in Section 2.1, we assume
ϵi j ∼ N(β, σ2) and independence among ϵi j’s for i = 1, . . . , n and j = 1, . . . ,m. The null hypothesis is H0: σ = σ0, and
the alternative hypothesis is H1: σ > σ0, where σ0 is a maximal SD under practical considerations.

3.2 Exact Sampling Distribution

Let (Yi1, . . . , Yim) be m random variables observed from the ith subject. Let Ȳi =
1
m

∑m
j=1 Yi j be the sample mean for the ith

subject, and let S 2
i =

1
m−1

∑m
j=1(Yi j − Ȳi)2 be the sample variance which is an unbiased estimator for σ2 based on the m

observations made from the ith subject. We have the exact sampling distribution

Wi =
(m − 1)S 2

i

σ2 ∼ χ2
m−1 ,

where χ2
m−1 denotes the chi-square distribution with m − 1 degrees of freedom (Hogg and Tanis, 1997). Since S 2

1, . . . , S
2
n
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are independent random variables,

W =
n(m − 1)S 2

·
σ2 ∼ χ2

n(m−1) ,

where S 2
· =

1
n
∑n

i=1 S 2
i is an unbiased estimator for σ2 when all data points from n subjects are accumulated. For the

purpose of hypothesis testing with H0: σ = σ0, we replace the unknown parameter σ by the null value σ0.

The effect of increasing m for fixed n is as follows. Given the true value of σ, at significance level α, the statistical power
shall depend on the product n(m − 1). If m = 2 j + 1 for j = 0, 1, 2, . . . , then for m∗ = 2 j+1 + 1

W =
n
2 (m∗ − 1)S 2

·
σ2 ∼ χ2

n
2 (m∗−1) .

This follows from the fact that
n(m − 1) = n(2 j)

=
n
2

(2)(2 j)

=
n
2

(2 j+1 + 1 − 1)

=
n
2

(m∗ − 1) .

In other words, if we increase the number of repeated measurements per subject from m to m∗ for any j (e.g., from 2 to 3,
from 3 to 5, from 5 to 9, and so on), we can maintain the statistical power with one half of n.

3.3 Power Analysis in Non-Sequential Test for σ

If a researcher specifies H0: σ = σ0 under practical considerations, it is reasonable to consider a one-sided alternative
hypothesis H1: σ > σ0. For illustration purposes, consider the significance level α = 0.05, the null value σ0 = 0.05, and
the alternative value σ1 = 0.06. Let 1− ζ denote the statistical power. Table 1 provides required n for given m and desired
1 − ζ for a non-sequential test. For α = 0.05 and 1 − ζ, there are various designs (m, n) such as (2, 164), (3, 82), and (5,
41) to list a few.

Table 1. Required sample size n for given 1 − ζ and m in a non-sequential test at level α = 0.05 with parameter values
σ0 = 0.05, and σ1 = 0.06

1 − ζ m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
0.70 68 34 23 17 14 12 10 9 8
0.80 91 46 31 23 19 16 13 12 11
0.90 128 64 43 32 26 22 19 16 15
0.95 164 82 55 41 33 28 24 21 19
0.99 244 122 82 61 49 41 35 31 28

3.4 SPRT for σ

Under the assumption of H0: σ = σ0, we have the exact sampling distribution

Ti =
(m − 1)S 2

i

σ2
0

∼ χ2
m−1 .

Since T1 = t1,T2 = t2, . . . , Ti = ti are independent observations, the likelihood under H0 is given by

L0i =

i∏
h=1

1

2
m−1

2 Γ
(

m−1
2

) t
m−1

2 −1
h e−

th
2 .

Under the assumption of H1: σ = σ1, the exact sampling distribution is Ti ∼ Gamma
(

m−1
2 ,

σ2
0

2σ2
1

)
, so the likelihood under

H1 is given by

L1i =

i∏
h=1

1

2
m−1

2 Γ
(

m−1
2

) (
σ0

σ1

)2(m−1)

t
m−1

2 −1
h e

− 1
2

(
σ0
σ1

)2
th
.
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The ith test statistic for SPRT is

Λi =
L1i

L0i
=

(
σ0

σ1

)2i(m−1)

e
1
2

[
1−

(
σ0
σ1

)2
]∑i

h=1 th

which is in terms of the sum
∑i

h=1 Th.

To demonstrate operating characteristics of SPRT, assume α = 0.05, σ0 = 0.05, σ1 = 0.06, and 1 − ζ = 0.95 (desired
power). Using a simulation of 10,000 replicates, Tables 2 and 3 are generated. Tables 2 represents the probability of
rejecting H0, and Table 3 represents the average sample size E(N). For m ≥ 2, the probability of rejecting H0 is slightly
under α = 0.05 when H0: σ = 0.05 is true, and it is slightly above 1 − ζ = 0.95 when H1: σ = 0.06 is true. When H0
is true, comparing to required n in a non-sequential test for given m, the average sample size is about 57–59% for m = 2
and m = 3, and it reaches up to about 65% as m increases. When H1 is true, the average sample size is about 49–50% for
m = 2 and m = 3, and it reaches up to about 60% as m increases. This tendency is graphically demonstrated in Figure
2. The average sample size E(N) is significant even when σ is slightly below σ0 = 0.05 and when σ is slightly above as
demonstrated in Table 3. The R code for the simulation study is given in Appendix 1.

We can see that E(N) is nearly halved when m is increased in certain ways. If the number of repeated measurements has
the form m = 2 j+1 for j = 0, 1, 2, . . . , the average sample size E(N) seems to be halved if m is increased to m∗ = 2 j+1+1.
A researcher who plans a non-sequential test which requires n = 164 with m = 2 to detect a practical significant difference
between σ0 = 0.05 and σ1 = 0.06 with α = 0.05 and 1 − β = 0.95; however, the SPRT with m = 3 would result in an
expected sample size which is about one quarter of n.

Table 2. Probability of rejecting H0 in SPRT designed for σ0 = 0.05, σ1 = 0.06, α = 0.05 and 1 − ζ = 0.95

σ m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
0.03 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.04 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.05 0.036 0.034 0.031 0.031 0.031 0.029 0.031 0.030 0.028
0.06 0.951 0.956 0.955 0.959 0.960 0.962 0.963 0.962 0.963
0.07 1.000 0.999 1.000 1.000 0.999 1.000 1.000 1.000 1.000
0.08 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 3. Average sample size E(N) in SPRT designed for σ0 = 0.05, σ1 = 0.06, α = 0.05 and 1 − ζ = 0.95

σ m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
0.03 23.8 12.1 8.3 6.3 5.2 4.4 3.8 3.4 3.1
0.04 35.6 18.2 12.4 9.4 7.7 6.5 5.6 5.0 4.5
0.05 93.9 48.2 32.8 25.0 20.4 17.0 14.8 13.2 11.8
0.06 80.5 41.4 28.0 21.3 17.4 14.7 12.8 11.3 10.2
0.07 29.5 15.0 10.3 7.9 6.5 5.5 4.8 4.3 3.9
0.08 17.1 8.9 6.2 4.8 3.9 3.4 3.0 2.7 2.4

4. Testing Reliability of One Device Relative to Criterion Device

4.1 Formulation of Hypothesis Testing

Suppose reliability of a new device (called device 1) is tested against a criterion device (called device 0) based on n
subjects with m repeated measurements taken per subject. Let µi denote the truth of the ith subject for i = 1, . . . , n.
Assume µi varies from subject to subject, and the value of µi is fixed and unknown. Let ϵi jk denote the measurement
error in the (i, j)th observation by device k for i = 1, . . . , n, j = 1, . . . ,m, and k = 0, 1. Assume ϵi jk ∼ N(βk, σ

2
k) and

independence among all ϵi jk’s. A researcher observes the value of Yi jk = µi + ϵi jk. It is impossible to observe µi and ϵi jk

separately, but we can estimate σ2
k for k = 0, 1. In this section, the parameter of interest is τ = σ1/σ0 which quantifies the

reliability of device 1 relative to device 0. We say device 1 is as reliable as device 0 if τ = 1, and we say device 1 is less
reliable than device 0 if τ > 1. In terms of percentage, the SD of device 1 is (τ − 1)100% greater than the SD of device 0.
The null hypothesis is H0: τ = τ0, and the alternative hypothesis is H1: τ = τ1.

4.2 Exact Sampling Distribution

Let (Yi10, . . . , Yim0) be m random variables generated by device 0 and (Yi11, . . . , Yim1) be m random variables generated by
device 1 when the two devices measured the ith subject for i = 1, . . . , n. Let Ȳik =

1
m

∑m
j=1 Yi jk be the sample mean for
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Figure 2. Average sample size of SPRT (%) with respect to m (repetitions per subject)

the ith subject measured by device k. From the ith subject, an unbiased estimator for σ2
k is S 2

ik =
1

m−1
∑m

j=1(Yi jk − Ȳik)2 for
k = 0, 1, and we have the exact sampling distribution

Wi =

S 2
i1

S 2
i0

 σ2
0

σ2
1

 = S 2
i1

S 2
i0

 ( 1
τ2

)
∼ Fm−1,m−1 ,

where Fm−1,m−1 denotes the F distribution with m − 1 numerator degrees of freedom and m − 1 denominator degrees of
freedom. Further note that

W =
S 2
·1

S 2
·0

 ( 1
τ2

)
∼ Fn(m−1),n(m−1) ,

where S 2
·1 =

1
n
∑n

i=1 S 2
ik is an unbiased estimator for σ2

k for k = 0, 1 when all data points from n subjects are combined.

4.3 Power Analysis in Non-Sequential Test for τ

For illustration purposes, consider the significance level α = 0.05, the null value τ0 = 1, and the alternative value τ1 = 1.2.
Let 1 − ζ denote statistical power. Table 4 presents required n for given 1 − ζ for n ≥ 5 and m = 2, 3, . . . , 10. There are
various designs (m, n) for achieving 1 − ζ = 0.95 such as (2, 327), (3, 164), and (5, 82). As seen in Section 3.3, a similar
pattern of halving n is observed.

Table 4. Required sample size n for given 1 − ζ and m in a non-sequential test at level α = 0.05 with parameter values
τ0 = 1, and τ1 = 1.2

1 − ζ m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
0.70 143 72 48 36 29 24 21 18 16
0.80 187 94 63 47 38 32 27 24 21
0.90 259 130 87 65 52 44 37 33 29
0.95 327 164 109 82 66 55 47 41 37
0.99 476 238 159 119 96 80 68 60 53
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4.4 SPRT for τ

Let

Ti =

S 2
i1

S 2
i0

  1
τ2

0

 = S 2
i1

S 2
i0

be the test statistic based on m observations made on the ith subject, where a researcher often sets τ0 = 1 for H0. Under the
assumption of H0: τ = τ0, we have the exact sampling distribution Ti ∼ Fm−1,m−1. Since n test statistics are independent,
the likelihood under H0 is given by

L0i =

i∏
h=1

Γ(m − 1)(
Γ
(

m−1
2

))2 t
m−1

2 −1
h (1 + th)−(m−1) .

Under the assumption of H1: τ = τ1,

T ∗i =
S 2

i1

S 2
i0

  1
τ2

1

 ∼ Fm−1,m−1 .

By letting c = (τ1/τ0)2, and using the Jacobian transformation, the PDF of Ti = cT ∗i is written as

f (ti) =
Γ(m − 1)(
Γ
(

m−1
2

))2 t
m−1

2 −1
i

(
1 +

ti
c

)−(m−1)
(

1
c

) m−1
2

which is known as the generalized F distribution, denoted by G3F(α, β, λ) with α = β = (m−1)/2 and λ = 1/c (Pham-Gia
and Duong, 1989). Therefore, the likelihood under H1 is given by

L1i =

i∏
h=1

Γ(m − 1)(
Γ
(

m−1
2

))2 t
m−1

2 −1
h

(
1 +

th
c

)−(m−1)
(

1
c

) m−1
2

,

and the ith test statistic for SPRT is

Λi =
L1i

L0i
= c−

i(m−1)
2

 i∏
h=1

zh

m−1

,

where zi =
1+ti

1+ti/c
. Assuming τ0 = 1, an alternative form of the ith test statistic is

Λi =

(
1
τ1

)i(m−1) i∏
h=1

 s2
h0 + s2

h1

s2
h0 + (sh1/τ1)2

m−1

.

The operating characteristics of the SPRT for τwere studied using a simulation of 10,000 replicates with α = 0.05, τ0 = 1,
τ1 = 1.2, and 1 − ζ = 0.95. Tables 5 and 6 represent the probability of rejecting H0 and E(N), respectively. For small
m, particularly m = 2, the SPRT based on the exact sampling distribution of Ti did not follow the usual characteristics of
Wald’s SPRT (which often results in about 50% average sample size while preserving α and 1 − ζ). When m = 2 and H0:
τ = 0.1 is true, H0 is rejected with a probability 0.073 which is slightly greater than the fixed α = 0.05. When m = 2
and τ = 1.2 is true, the resulting statistical power is 0.915 which is lower than the fixed 1 − ζ = 0.95. Furthermore, when
m = 2 and τ is near 1 and 1.2, E(N) is greater than n = 327 (the sample size required for a non-sequential test) which
defeats the purpose of SPRT. On the other hand, for m ≥ 3, the Type I error probability is at most α = 0.05, and statistical
power is at least 1 − ζ = 0.95. For large m, as shown in Figure 3, the average sample size is close to 60% when τ = 1
and τ = 1.2, but it does not seem to go below 60% as m increases. (We simulated up to m = 19.) The R code for the
simulation study is given in Appendix 2.

5. Testing Validity of One Device Relative to Criterion Device

5.1 Formulation of Hypothesis Testing

Suppose the validity of a new device (device 1) is tested against a criterion device (device 0) with n subjects and m repeated
measurements per subject. Let µi j denote the truth of the ith subject in the jth measurement. In other words, the truth may
vary from subject to subject and from trial to trial within subject. Let ϵi jk denote the measurement error in the (i, j)th

measurement by device k. Assume ϵi jk ∼ N(βk, σ
2
k) and independence among all ϵi jk’s. A researcher observes the value of

Yi jk = µi j + ϵi jk. Even though it is impossible to observe µi j and ϵi jk separately, we can still estimate β1 − β0. (We cannot
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Table 5. Probability of rejecting H0 in SPRT designed for τ0 = 1, τ1 = 1.2, α = 0.05 and 1 − ζ = 0.95

τ m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.9 0.003 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.001
1.0 0.073 0.048 0.044 0.040 0.041 0.042 0.040 0.038 0.038
1.1 0.502 0.515 0.527 0.536 0.527 0.533 0.533 0.533 0.538
1.2 0.915 0.953 0.955 0.958 0.962 0.960 0.960 0.963 0.961
1.3 0.991 0.997 0.997 0.997 0.997 0.997 0.998 0.997 0.997
1.4 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 6. Average sample size E(N) in SPRT designed for τ0 = 1, τ1 = 1.2, α = 0.05 and 1 − ζ = 0.95

τ m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
0.8 110.1 40.8 24.4 17.5 13.6 11.2 9.6 8.3 7.4
0.9 315.6 64.3 38.9 27.6 21.4 17.6 15.0 12.9 11.5
1.0 1110.8 141.6 76.7 54.6 42.1 34.6 29.0 25.8 22.4
1.1 1674.0 295.4 133.9 91.0 72.1 59.2 50.3 44.0 38.6
1.2 1277.3 144.0 77.5 53.9 41.9 34.4 29.7 25.5 22.7
1.3 589.6 73.8 44.3 31.3 24.5 19.9 17.1 15.0 13.1
1.4 242.5 51.8 31.6 22.2 17.4 14.2 12.0 10.4 9.3
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Figure 3. Average sample size of SPRT (%) with respect to m (repetitions per subject)

estimate β1 and β0 separately unless the mean error β0 is known for device 0 or β0 is assumed to be zero or a specific
value.) In this section, the parameter of interest is θ = β1 − β0 which quantifies the average deviation of measurement by
device 1 from measurement by device 0. We say device 1 is valid relative to device 0 if θ = 0, and we say device 1 is not
valid relative to device 0 if θ , 0. In particular, θ > 0 (θ < 0) means overestimation (underestimation) by device 1 when
compared to device 0 on average. The null hypothesis is H0: θ = 0, and the alternative hypothesis is H1: θ > 0 or θ < 0
depending on researcher’s knowledge and/or purpose.

5.2 Exact Sampling Distribution

Let Di j = Yi j1 − Yi j0 be the difference in the observed values when device 1 is compared to device 0. Since both Yi j0
and Yi j1 have the same target µi j, the difference is Di j = ϵi j1 − ϵi j0 ∼ N(θ, δ2), where θ = β1 − β0 and δ2 = σ2

0 + σ
2
1.

Let D̄i =
1
m

∑m
j=1 Di j which is an unbiased estimator for θ based on m data points obtained from the ith subject. Let

127



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 8, No. 1; 2019

S 2
i =

1
m−1

∑m
j=1(Di j − D̄i)2, which is an unbiased estimator for δ2 based on m data points obtained from the ith subject. We

have the exact sampling distribution

Ti =
D̄i − θ
S i/
√

m
∼ Tm−1 ,

where Tm−1 denotes the T distribution with m − 1 degrees of freedom. Further note that

T =
D̄· − θ
S ·/
√

m
∼ Tn−1 ,

where D̄· = 1
n
∑n

i=1 D̄i and S 2
· =

1
n−1

∑n
i=1(D̄i − D̄·)2.

5.3 Power Analysis in Non-Sequential Test for θ

For illustration purposes, consider the significance level α = 0.05, the null value θ0 = 0, the alternative value θ1 = 0.1, and
the SDs σ0 = 0.16 and σ1 = 0.20 for devices 0 and 1, respectively, so that δ2 = 0.162 + 0.22. Let 1 − ζ denote statistical
power. Table 7 provides required sample size n for given 1 − ζ and m for a non-sequential test (for a one-sided test and a
two-sided test).

Table 7. Required sample size n for given 1 − ζ and m in a non-sequential test at level α = 0.05 with parameter values
θ0 = 0, θ1 = 0.1, σ0 = 0.16, and σ1 = 0.2

1 − ζ m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
0.70 17 12 10 8 7 6 6 6 5
0.80 22 15 12 10 9 8 7 7 6
0.90 30 21 16 13 11 10 9 8 8
0.95 37 26 20 16 14 12 11 10 9
0.99 54 36 28 23 19 17 15 14 12

5.4 SPRT for θ

Let

Ti =
D̄i − θ0
S i/
√

m

be the test statistic based on m random variables (Di1, . . . ,Dim) observed from the ith subject. Under the assumption of
H0: θ = θ0, we have the exact sampling distribution Ti ∼ Tm−1. Since T1,T2, . . . , Ti are independent random variables,
the likelihood under H0 is given by

L0i =

i∏
h=1

Γ
(

m
2

)
√

(m − 1)πΓ
(

m−1
2

) 1 + t2
h

m − 1

− m
2

.

Under the assumption of H1: θ = θ1, the exact sampling distribution is Ti ∼ Tm−1,c, the non-central T distribution with
m − 1 degrees of freedom and non-centrality parameter

c =
√

m(θ1 − θ0)√
σ2

0 + σ
2
1

.

The likelihood under H1 is given by L1i =
∏i

h=1 f (th), where f is the PDF of Tm−1,c (Lenth, 1989; Johnson et al., 1995).
Then the ith test statistic for SPRT is Λi = L1i/L0i.

For a simulation study of 10,000 replicates, we let α = 0.05, θ0 = 0, θ1 = 0.1, σ0 = 0.16 for device 0, σ1 = 0.2 for
device 1, and 1 − ζ = 0.95. Tables 8 and 9 represent the probability of rejecting H0 and E(N), respectively. For m ≥ 2,
the probability of Type I error is at most α = 0.05 when θ = θ0 = 0 and statistical power is at least 1 − ζ = 0.95 when
θ = θ1 = 0.1. When H0: θ = θ0 = 0 is true, the average sample size is about 66% for m = 2, and it approaches to 55% as
m increases. When H1: θ = θ1 = 0.1 is true, it is about 69% for m = 2 and approaches to 58% as m increases. When the
true value of θ is at the exact midpoint of the null value 0 and the alternative value 0.1, the average sample size is greater
than the fixed sample size n for a non-sequential test. When the true value of θ is greater than 0.1, the average sample size
is significantly lower than 50% of n (e.g., as low as 25 – 28% when θ = 0.2)as shown in Figure 4. The R code for this
simulation study is given in Appendix 3.
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Table 8. Probability of rejecting H0 in SPRT designed for θ0 = 0, θ1 = 0.1, σ0 = 0.16, σ1 = 0.20, α = 0.05 and
1 − ζ = 0.95

θ m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
0.00 0.044 0.038 0.035 0.033 0.036 0.029 0.030 0.024 0.028
0.05 0.516 0.498 0.507 0.503 0.501 0.495 0.505 0.504 0.508
0.10 0.962 0.964 0.966 0.968 0.968 0.970 0.973 0.973 0.974
0.15 0.998 0.998 0.998 0.999 1.000 0.999 0.999 0.999 1.000
0.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 9. Average sample size E(N) in SPRT designed for θ0 = 0, θ1 = 0.1, σ0 = 0.16, σ1 = 0.20, α = 0.05 and
1 − ζ = 0.95

θ m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
0.00 24.4 15.8 11.8 9.5 7.9 6.9 6.1 5.5 5.0
0.05 42.9 27.7 21.0 17.1 14.6 12.5 11.1 10.2 9.3
0.10 25.4 16.1 12.2 9.8 8.2 7.1 6.3 5.7 5.2
0.15 14.5 9.4 7.0 5.6 4.7 4.1 3.7 3.3 3.1
0.20 10.4 6.8 5.1 4.2 3.5 3.1 2.7 2.5 2.3
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Figure 4. Average sample size SPRT (%) with respect to m (repetitions per subject)

6. Impact of Violating Normality Assumption

In practice, the true distribution of measurement error may deviate from a normal distribution. To investigate the impact
of violating the normality assumption on the probability of rejecting H0 and the average sample size E(N), measurement
error is simulated from a Gumbel distribution and mixed exponential distributions with a gradual increase of skewness
(see Appendix 4 for more detail). When studying relative validity (Section 5.4), values of model parameters are chosen to
satisfy σ0 = 0.16, σ1 = 0.20, and zero mean for the null case, θ = 0, for the Gumbel and mixed exponential distributions.
In a mixed exponential distribution, the parameter values are gradually altered to generate different skewness. For the
alternative case θ = 0.1, a distribution with zero mean is shifted by 0.1 for device 1. As shown in Tables 10 and 11 of
Appendix 4, the Type I error probability is below the fixed α = 0.05, the statistical power is above the fixed 1 − ζ = 0.95,
and the average sample size E(N) is close or slightly lower than the case of normality. However, when studying reliability
(Section 3.4) and relative reliability (Section 4.4), the Type I error probability is about 2 – 3 times α = 0.05, and the
statistical power is below 1 − ζ. Researchers conducting reliability studies should be aware of the impact of violating the
normality assumption, and reasons and potential remedies remain in our future study.

7. Discussion

As devices for medical and sports science are being more accurate and precise, detecting superiority or inferiority of a
new device requires a large number of subjects. When it is appropriate under practical considerations, it would be cost
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effective to increase m, the number of repetitions, and to implement SPRT based on the exact sampling distribution of
a test statistic calculated after each subject. The SPRT for σ does not require any assumption about β, and the average
sample size is about 57–58% for small m under H0 and about 49–50% for small m under H1. However, the SPRT for σ
cannot be recommended with m = 2 because it results in Type I error rate greater than α and statistical power lower than
1 − ζ with an average sample size being greater than the sample size required for a non-sequential test. The SPRT for τ
does not require any assumption about β0 and β1, and the average sample size approaches to about 60% under H0 or H1 as
m increases. The SPRT for θ does not require any assumption about σ0 and σ1, and the average sample size approaches
to 55–60% under H0 or H1 as m increases. For any SPRT considered in this article, the average sample size becomes
significantly lower with a slight deviation from the null value or the alternative value.

For the SPRT for θ, under the model assumptions, the truth µi j may vary from subject to subject and from trial to trial. If it
is the case for testing σ or τ, the variation of µi j within subject (between trials) becomes a part of the reliability measure.
For example, if a device measures walking speed of a subject m times and the variance of µi j is ν2 within subject, the

SPRT for τ would test for
√

(σ2
1 + ν

2)/(σ2
0 + ν

2) which is always smaller than σ1/σ0. Therefore, the reliability of truth
within subject becomes critical when we compare reliability of two devices using the SPRT.

Wald (1945) approximated the average savings of SPRT would be about 50% in the case when the random variable is
normally distributed. In particular, he analytically approximated the expected value of the sample size under both the null
and alternative hypothesis in order to approximate average savings. We are especially interested in why the SPRT based
on the exact sampling distribution results in the varying savings of sample size in the reliability and validity studies with
m repeated measurements. In the future, we would also like to extend Wald’s calculation to the sampling distributions
considered in this article (e.g., χ2, non-central T, or F distribution).

There are other parameters of interest when two or more devices are compared such as intraclass correlation and Cron-
bach’s alpha (Cronbach, 1951; Shrout, 1979). Kistner and Muller (2004) provided the exact sampling distributions under
normality assumption and general covariance structure. Therefore, we may be able to use the sampling distributions of
their estimators to study the operating characteristics of SPRT. Jin et al. (2013) derived group sequential testing with
two groups (referred to as two-stage design) for interclass reliability, and they showed the average sample size is about
64–86% depending on study design parameters. A potential direction of future studies is to compare the SPRT for these
parameters to the two-stage design.
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Appendix 1

The R code for the simulation study in Section 3.4 is provided below.

m = 3

n = 1000

alpha = 0.05

power = 0.95

beta = 1 - power

mu = 100

sigma.true = 0.06

sigma0 = 0.05

sigma1 = 0.06

n.sim = 10000

N = D = rep( NA, n.sim )

c = ( sigma1 / sigma0 ) ˆ 2

a = ( m - 1 ) / 2

b = 1 / ( 2 * c )

bound.lower = beta / ( 1 - alpha )

bound.upper = ( 1 - beta ) / alpha

for ( k in 1:n.sim ) {

full = matrix( rnorm( n * m, mu, sigma.true ), nrow=n, ncol=m )

samp.var = apply( full, 1, var )

test.stat = ( m - 1 ) * samp.var / sigma0 ˆ 2

f0 = cumprod( dchisq( test.stat, m - 1 ) )

f1 = cumprod( dgamma( test.stat, a, b ) )

sprt.stat = f1 / f0

index = which( sprt.stat <= bound.lower | sprt.stat >= bound.upper )

index = c( index, n )

N[k] = temp = min( index, na.rm=TRUE )

D[k] = ifelse( sprt.stat[temp] > 1, 1, 0 )

}

mean(N)

mean(D)
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Appendix 2

The R code for the simulation study in Section 4.4 is provided below.

m = 5

n = 1000

alpha = 0.05

power = 0.95

beta = 1 - power

sigma0.true = 1

sigma1.true = 1.2

tau0 = 1

tau1 = 1.2

n.sim = 10000

N = D = rep( NA, n.sim )

c = ( tau1 / tau0 ) ˆ 2

bound.lower = beta / ( 1 - alpha )

bound.upper = ( 1 - beta ) / alpha

for ( k in 1:n.sim ) {

y0 = matrix( rnorm( n * m, 0, sigma0.true ), nrow=n, ncol=m )

y1 = matrix( rnorm( n * m, 0, sigma1.true ), nrow=n, ncol=m )

samp0.var = apply( y0, 1, var )

samp1.var = apply( y1, 1, var )

test.stat = samp1.var / samp0.var * ( 1 / tau0 ) ˆ 2

f0 = cumprod( df( test.stat, m - 1, m - 1 ) )

f1 = cumprod( df( test.stat / c, m - 1, m - 1 ) / c )

sprt.stat = f1 / f0

index = which( sprt.stat <= bound.lower | sprt.stat >= bound.upper )

index = c( index, n )

N[k] = temp = min( index, na.rm=TRUE )

D[k] = ifelse( sprt.stat[temp] > 1, 1, 0 )

}

mean(N)

mean(D)
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Appendix 3

The R code for the simulation study in Section 5.4 is provided below.

m = 5

n = 1000

alpha = 0.05

power = 0.95

beta = 1 - power

sigma0 = 0.16

sigma1 = 0.2

theta0 = 0

theta1 = 0.1

theta.true = 0.1

n.sim = 10000

N = D = rep( NA, n.sim )

delta = sqrt(m) * ( theta1 - theta0 ) / sqrt( sigma1 ˆ 2 + sigma0 ˆ 2 )

bound.lower = beta / ( 1 - alpha )

bound.upper = ( 1 - beta ) / alpha

for ( k in 1:n.sim ) {

full = matrix( rnorm( n * m, theta.true, sqrt( sigma1 ˆ 2 + sigma0 ˆ 2 ) ),

nrow=n, ncol=m )

samp.var = apply( full, 1, var )

samp.mean = apply( full, 1, mean )

test.stat = ( samp.mean - theta0 ) / sqrt( samp.var / m )

f0 = cumprod( dt( test.stat, m - 1 ) )

f1 = cumprod( dt( test.stat, m - 1, delta ) )

sprt.stat = f1 / f0

index = which( sprt.stat <= bound.lower | sprt.stat >= bound.upper )

index = c( index, n )

N[k] = temp = min( index, na.rm=TRUE )

D[k] = ifelse( sprt.stat[temp] > 1, 1, 0 )

}

mean(N)

mean(D)

Appendix 4

To consider the case when the normality assumption is invalid, measurement error ϵ is generated from a Gumbel distribu-
tion with the PDF

f (ϵ) =
1
γ2

exp
{
−

(
e−ϵ +

ϵ − γ1

γ2

)}

for −∞ < γ1 < ∞ and γ2 > 0 and a mixed exponential (ME) distribution with the PDF

f (ϵ) = w
1
γ1

e−ϵ/γ1 Iϵ ≥ 0 + (1 − w)
1
γ2

eϵ/γ2 Iϵ < 0

for γ1 > 0, γ2 > 0, and 0 < w < 1. The parameter values are chosen to match with the simulation scenarios in Section
5.4. For the ME distribution, the parameter values are gradually changed to test different skewness (while preserving the
effect size in each simulation scenario).
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Table 10. Probability of rejecting H0 in SPRT designed for θ0 = 0, θ1 = 0.1, σ0 = 0.16, σ1 = 0.20, α = 0.05 and
1 − ζ = 0.95 when errors are generated from normal and other distributions

Error Model Skewness θ m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

Normal 0.00 0.00 0.044 0.038 0.035 0.033 0.036 0.029 0.030 0.024 0.028
0.10 0.962 0.964 0.966 0.968 0.968 0.970 0.973 0.973 0.974

Gumbel 1.14 0.00 0.024 0.023 0.023 0.024 0.026 0.020 0.021 0.020 0.019
0.10 0.967 0.971 0.971 0.973 0.972 0.976 0.976 0.976 0.977

ME 0.00 0.00 0.040 0.036 0.031 0.036 0.033 0.027 0.029 0.027 0.025
0.10 0.987 0.983 0.981 0.982 0.978 0.978 0.980 0.982 0.982

ME 1.85 0.00 0.021 0.020 0.020 0.022 0.020 0.018 0.018 0.014 0.017
0.10 0.993 0.991 0.987 0.988 0.987 0.987 0.984 0.985 0.985

ME 5.66 0.00 0.007 0.008 0.006 0.006 0.007 0.006 0.008 0.007 0.006
0.10 1.000 1.000 1.000 0.999 0.999 0.998 0.998 0.997 0.995

Table 11. Average sample size E(N) in SPRT designed for θ0 = 0, θ1 = 0.1, σ0 = 0.16, σ1 = 0.20, α = 0.05 and
1 − ζ = 0.95 when errors are generated from normal and other distributions

Error Model Skewness θ m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

Normal 0.00 0.00 24.4 15.8 11.8 9.5 7.9 6.9 6.1 5.5 5.0
0.10 25.4 16.1 12.2 9.8 8.2 7.1 6.3 5.7 5.2

Gumbel 1.14 0.00 22.2 14.4 11.0 9.0 7.5 6.6 5.9 5.3 4.9
0.10 24.5 15.7 11.9 9.5 8.0 7.0 6.1 5.5 5.1

ME 0.00 0.00 24.9 15.9 11.7 9.3 8.0 6.8 6.1 5.5 5.0
0.10 21.0 14.1 10.8 8.8 7.5 6.6 5.8 5.4 4.9

ME 1.85 0.00 21.4 13.8 10.6 8.5 7.3 6.4 5.7 5.2 4.8
0.10 17.4 12.4 9.7 8.1 6.9 6.2 5.5 5.1 4.6

ME 5.66 0.00 17.4 11.6 8.8 7.3 6.2 5.5 5.0 4.6 4.3
0.10 8.7 6.2 5.1 4.4 3.9 3.6 3.4 3.2 3.0
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