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Abstract 

The estimation of the error rates is of vital importance in classification problems as this is used as a basis to choose the 

best discriminant function; that is, the one with a minimum misclassification error. The quadratic discriminant function 

(QDF), Euclidean Distance Classifier (EDC), and Fisher’s Linear Discriminant Function (FLDC) have been in use for a 

long time for the purpose of classification. In this paper, we compare the misclassification error rate of the QDF, EDC, 

and FLDC with the Vine Copulas based on Gaussian and Clayton models. The results were obtained for the general case 

where the means are unequal and the covariance matrices are unequal.  

Keywords: multivariate normal distributions, quadratic discriminant function, misclassification error, Vine Copula 

1. Introduction 

In discriminant analysis, the selection of the discriminant function is solely decided by the associated error rates and 

hence the estimation of error rates is of importance in classification problems. During the past fifty years, several 

discriminant functions have been proposed for the purpose of classification since the advent of the “Separation Theorem” 

and the “Supporting hyper-plane Theorem” in Mathematics. Foremost among these discriminants is the quadratic 

discriminant function (QDF). In addition to this QDF, one can use the other discriminants such as the linear 

discriminant (LDF), Fisher’s Linear Discriminant Function (FLDC), Euclidean Distance Classifier (EDC) and the 

Absolute Euclidean Distance Classifier (AEDC) (see Ganesalingam et al 2006), and many others. QDF is seen to 

outperform the other existing methods when the covariance matrices are non-singular. However, QDF is not applicable 

for discrimination when the covariance matrices are singular. Note that AEDC is not applicable when the population 

means are unequal. Similarly, LDC is not applicable when the population variance-covariance matrices are unequal.  

On the other hand, the pairwise Vine Copulas enable higher dimensional multivariate distributions to be expressed in a 

simple two dimensional format. The Vine Copulas are used increasingly in financial and engineering modelling as these 

are useful in reducing the dimension. In this paper, we compare the performance of the Vine Copulas with the QDF, 

EDC and FLDC. The Vine based Copulas are seen to perform reasonably well when compared to QDF, EDC and FLDC. 

The Vine based Copulas are very useful for discrimination when the covariance matrix in the full dimension is singular 

while the covariance matrix in the two dimensional (pairwise) analysis is non-singular. In this paper, we consider a three 

dimensional (full dimension) problem for discrimination. 

1.1 Classical Discriminant Methods 

Consider the problem of statistical discrimination involving two multivariate normal populations 1  and 2  with 

mean vectors 1  and 2  and covariance matrices 1  and 2  respectively. Here, we assume that 
1 2 and 

.21   The discriminant function which would normally be used in such a situation is the quadratic discriminant 

function (QDF), which allocates an object with observation vector x  to 1 , if 
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Otherwise it is allocated to 2  (see for example Morrison (1990)). In the above allocation rule and throughout this 

paper, we assume that the prior probabilities of both populations are equal. 

However, if 1 2    then the object with observation vector x is allocated to population 1  if 
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Otherwise, it is allocated to 2 . Note that (1.2) is the linear discriminant (LDF) rule. 

It is clear that when the data is normal and 1 2   in expression (1.2), the linear discriminant function cannot be 

applied. In this case, one could resort to using either the Fisher Linear Discriminant Function (FLDF) or the quadratic 

discriminant function (QDF) if the covariance matrices are unequal; see Section 3.2.4 of McLachlan (1992). In the case 

of Fisher Linear Discriminant Function (FLDF), the observation vector x  is allocated to Population 1 if 

     0
1
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xnn
T
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Otherwise, it is allocated to Population 
2 . Here 

1n  and 
2n are the sample sizes for the training data from 

Populations 
1 and 

2 respectively. 

The Euclidean Distance Classifier (EDC) will allocate an individual observation vector to population 1  if 
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Otherwise, it is allocated to Population 2 . 

In this paper, we compare the performance of QDF, FLDF and EDC empirically with the Vine based Gaussian and 

Clayton Copula models, and focus on the error rate. Here, we use computer simulations to compare the performance. 

In the next section, we will use Vine Copulas to compute the misclassification error rate. 

2. Vine Copulas 

2.1 Vine Copulas 

Joe (1996, 2014), Bedford and Cooke (2001, 2002), Kurowicka and Cooke (2006) pioneered in introducing the concept 

of Vine Copulas in modelling high dimensional joint distributions by using sufficient number of pairwise copulas. This 

aspect of Copula modelling is known as Vine Copulas. There are two types of Vine Copulas; C-Vine copula and D-Vine 

copula. In D-Vine copula, no node in any tree is connected to more than two edges whereas in C-Vine copula every 

node in tree jT has exactly jn  edges. The D-Vine and the C-Vine copulas coincide when the dimension 3p .  

More recently, Acar et al (2012) and Stoeber and Czado (2013) looked at the limitations, extensions and applications of 

the Vine Copulas. This motivated us to consider the applicability of the Vine Copulas in the context of discriminant 

analysis. Here, we compare the performance of the Vine based Clayton and Gaussian Copulas against the existing 

discriminant methods such as Quadratic Discriminant Function (QDF), Fisher’s Linear Discriminant Function (FLDC), 

and Euclidean Distance Classifier (EDC). 

Let 
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x

be a three variable vector and  zyxf ,, be the density function. Then, by using the properties of the Vine 

copulas, one can write 

        2\132312321 .....,, ccczfyfxfzyxf                         (2.1) 

where  xf1
is the marginal density of X  

      yf2
is the marginal density of Y  

      zf3  is the marginal density of Z   

     
12c is the pairwise copula density of X and Y      

     23c is the pairwise copula density of Y and Z  

     2\13c is the pairwise copula density of X and Z given Y    

Vine based on the Gaussian Copula: 

Here we investigate the construction of the vine based on the Gaussian Copula. The Gaussian Copula densities are 
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given as follows. 
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For an arbitrary trivariate normal population, the conditional density 
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where ija is the  thji, entry of the inverse covariance matrix of  , and ij is the  thji, entry of the  covariance 

matrix  . 
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For the Vine Copula based approach, the likelihood ratio which depends on the Gaussian model is 
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The log-likelihood ratio is given by 
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where the superscripts (1) and (2) represent populations (1) and (2) respectively. 

Vine based on the Clayton Copula: 

Next, we investigate the Vine based on the Clayton Copula. The Clayton Copula based densities are given as follows. 
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So, the likelihood ratio based on the Clayton Copula is 

CL =
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where the superscripts (1) and (2) represent populations (1) and (2) respectively. 

3. Numerical Results 

In this section, we report the results for some covariance matrices based on 1000 simulation runs each containing 

simulated samples of size = 1000. Note that the mean vectors and the covariance matrices for the two populations are 

unequal. We generate these random samples from a multivariate normal population by using the mean vector listed 

below and the covariance matrices that are listed in the table. In other words, the mean vector and the covariance matrix 

are assumed to be known in our simulation. We decompose the covariance structure by using the well-known Cholesky 

decomposition. Next, we generate the vector components according to a normal distribution by using the statistical 

software SAS. The error rate P12 (classifying Population 1  as Population 2 ) was calculated empirically by 

averaging the error rate when we apply the rule given by (1.1). Similarly, the error rate P12 (classifying Population 1  

as Population 2 ) was calculated empirically by averaging the error rate when we apply the rule given by (2.14) for 

the vine Copula based on the Clayton model and the Gaussian model.  

In a similar fashion, we calculate the error rate P21 (classifying Population 2  as Population 1 ) empirically by 

interchanging the corresponding terms. We present the numerical results for p = 3. The mean vectors and the covariance 

matrices are assumed to be known. The mean vectors are as follows for all the covariance matrices studied for the case 
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p=3. 
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Table 1. Misclassification Error Rate 

 

4. Discussion and Conclusion 

As can be seen from Table1, the Vine based Gaussian Copula seem to outperform the existing discriminant methods 

such as the Quadratic Discriminant Function (QDF), Euclidean Distance Classifier (EDC), Fisher’s Linear Discriminant 

Function (FLDC) on the error rate P12 (classifying Population 1  as Population 2 ) and also on the error rate P21 

(classifying Population 2  as Population 1 ). We did not consider the Absolute Euclidean Distance Classifier 

(AEDC) for the reason that it requires the population means to be equal. Similarly, we did not consider the Linear 

Discriminant Function (LDF) as it requires the covariance matrices to be equal. The reason is that in this study, the 

populations have unequal means and unequal covariance matrices. So, in place of LDF, we considered Fisher’s Linear 

Discriminant Function (FLDF) as it does not require the covariance matrices to be equal. Although, the use of QDF is 

acceptable as long as the covariance matrices are non-singular, in real life problems with high dimensions, the variables 

are often correlated and hence the covariance matrix exhibits singularity. This may render the QDF method unsuitable 

for discriminant analysis. In such cases, the alternative is to use the two dimensional pairwise Vine Copulas for the 

discriminant analysis. In fact, the two dimensional Vine based Gaussian Copula is a better choice as according to our 

study, the Vine based Gaussian Copula seemed to perform better than QDF, EDC, and FLDC as a discriminant. 
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