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Abstract

In this paper, a flexible lifetime distribution called Cubic rank transmuted modified Burr Ill-Pareto (CRTMBIII-P) is
developed on the basis of the cubic ranking transmutation map. The density function of CRTMBIII-P is arc, exponential,
left-skewed, right-skewed and symmetrical shaped. Descriptive measures such as moments, incomplete moments,
inequality measures, residual life function and reliability measures are theoretically established. The CRTMBIII-P
distribution is characterized via ratio of truncated moments. Parameters of the CRTMBIII-P distribution are estimated
using maximum likelihood method. The simulation study for the performance of the maximum likelihood estimates
(MLEs) of the parameters of the CRTMBIII-P distribution is carried out. The potentiality of CRTMBIII-P distribution is
demonstrated via its application to the real data sets: tensile strength of carbon fibers and strengths of glass fibers.
Goodness of fit of this distribution through different methods is studied.

Keywords: moments, reliability, characterizations, maximum likelihood estimation
1. Introduction

In recent decades, many continuous univariate distributions have been developed but various data sets from reliability,
insurance, finance, climatology, biomedical sciences and other areas do not follow these distributions. Therefore,
modified, extended and generalized distributions and their applications to the problems in these areas is a clear need of
day.

The modified, extended and generalized distributions are obtained by the introduction of some transformation or addition
of one or more parameters to the well-known baseline distributions. These new developed distributions provide better fit
to the data than the sub and competing models.

Shaw and Buckley (2009) proposed ranking quadratic transmutation map to solve financial problems.
1.1 Quadratic Ranking Transmutation Map

Theorem 1.1: Let Z,and Z, be independent and identically distributed (i.i.d.) random variables with the common
cumulative distribution functionG(z). Then, the ranking quadratic transmutation map is

F(x)=(1+/1)G(x)—/1G2(x), Ae[-11]. 1)
Proof

Let Z,and Z, be iid. random variables with the common cumulative distribution function G(z) of the parent
distribution. Now, consider the following order:
Z,=min(Z,,Z,) and Z,, =max(Z,,Z,),

d

let vy=z.,, withprobability 7,
Y < z,.,, with probability1 - 7,
where 0 < 7 <1. The cumulative distribution function of Y is
R (z)=7Pr(min(Z,,Z,)<z)+(1-7)Pr(max(Z,,Z,)<z).

Arnold et al. (1992) showed that
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Pr(min(z,,2,)<2)=1-[1-G(z)] ,

and
Pr(max(z,,2,)<z)= [G(z)]2 .

Now, the cumulative distribution function of Y becomes
F

 (2)=7[1-[1-6(2)] |+@-=)6(2)]
F,(z)=226G(z)+(1-27)[G(2) . )

If we take A =27 —1,the distribution in equation (2) is known as ranking quadratic transmutation map or transmuted
distribution.
2. Cubic Ranking Transmutation Map

Theorem 2.1: Let Z,, Z,and Z, be i.i.d. random variables with the common cumulative distribution functionG(z). Then,
the cubic ranking transmutation map is

F(2)=48(2)+ (%~ 4)6*(2)+(1-2)G*(2), 4<[od], 4 <[1a] ©)
Proof
Consider the following order:

Z,=min(Z,2,,Z;) and Z,, =max(Z,,Z,,Z,).

Let v i Z,., With probability 7z, ,
Y i Z,.,
v 2 z,.,, with probability 77,
where 0< 7, <1, 7, =1- 7, — 7, and ), =1, The cumulative distribution function of Y is

i=1

131

with probability 7,

R (2)=mPr(min(Z,,2,,2,) < 2)+ m,Pr(Z,, < 7)+(1-m - ,)Pr(max(2,, Z,,2,) < 7).
Arnold et al. (1992) showed that Pr(min(Z,,2,,2,)<z)=1-[1-G(z)[,

Pr(Z,,<2)=3G*(2)-2G*(2) andPr(max(,2,.2,)<2)=[G(z)]"
Now, the cumulative distribution function of Y becomes

2 3
R (2)=37G(2)+3(z,-m)[G(2)| +(1-7,)[G(2)] . (4)
If we take 4 =37, -2x and 4, =x,the distribution in equation (4) is known as Cubic ranking transmutation map or
transmuted distribution of order 2.
Definition 2.1

The cumulative distribution function (cdf) and probability density function (pdf) for the cubic rank transmuted
distribution are given, respectively, by

F(X)=AG () +(4 = 4)G* (X)+(1-4)G’(x), Ac[-L1, 4e[01] xeR, 6)

and

f(x)= g(x)[ﬂl+2(lz —ﬂl)G(x)+3(1—ﬂ,Z)Gz(x)], x eR. ©)

Afify et al. (2017) proposed the beta transmuted-H family of distributions. Al-Kadim and Mohammed (2017) presented
the cubic transmuted Weibull distribution in terms of basic mathematical properties. Nofal et al. (2017) studied a
generalized transmuted-G family of distributions. Alizadeh et al. (2017) developed generalized transmuted family of
distributions. Bakouch et al. (2017) introduced a new family of transmuted distributions. Granzotto et al. (2017) proposed
a cubic ranking transmutation map and studied different properties. They studied properties of Cubic rank transmuted
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Weibull distribution and Cubic rank transmuted log logistic distribution. Yilmaz (2018) proposed a new family of
distributions developed with polynomial rank transmutation.

In this paper, a flexible lifetime distribution with arc, exponential, left-skewed, right-skewed and symmetrical shaped
density function called CRTMBIII-P is developed on the basis of the cubic ranking transmutation map.

The basic motivations for proposing the CRTMBIII-P distribution are: (i) to generate distributions with arc, exponential,
left-skewed, right-skewed and symmetrical shaped; (ii) to serve as the best alternative model against the current models to
explore and modeling real data in economics, life testing, reliability, survival analysis manufacturing and other areas of
research and (iii) to provide better fits than other sub-models.

Our interest is to study CRTMBIII-P distribution in terms of its mathematical properties, applications and comparison to
the other sub-models.

This paper is sketched into the following sections. In Section 2, CRTMBIII-P distribution is introduced. In Section 3,
CRTMBIII-P distribution is studied in terms of the basic structural properties, sub-models and some plots. In Section 4,
moments, incomplete moments, inequality measures, residual and reverse residual life function and some other properties
are theoretically derived. In Section 5, stress-strength reliability and multicomponent stress-strength reliability of the
model are studied. In Section 6, CRTMBIII-P distribution is characterized via truncated moments. In Section 7, the
parameters of CRTMBIII-P are estimated using maximum likelihood method. In Section 8, the simulation study for the
performance of the maximum likelihood estimates (MLEs) of the parameters of CRTMBIII-P distribution is carried out.
In Section 9, the potentiality of CRTMBIII-P distribution is demonstrated via its application to the real data sets: failure
times and strength of glass fiber. Goodness of fit of the probability distribution through different methods is studied. The
concluding remarks are given in Section 10.

3. CRTMBIII-P Distribution and Its Structural Properties

Bhatti et al. (2018) studied Burr I11-Pareto distribution and some of its properties. The cdf and pdf of the modified Burr
I11-Pareto (MBIII-Pareto) distribution are given, respectively, by

F<x>={1+y[(;jk- He ®)

and

oo o] el oo g

Here, the CRTBMIII-P distribution is introduced with the help of (6) and (7). The cdf and pdf of CRTMBIII-P distribution
are given, respectively, by

F(x)= w [X20 (10)
and

f(x)= 2%

A0NBEN

x>0, (11)

where a>0,8>0,y >0, 4 e[-11], 4, €[0,1] are parameters.
3.1 Structural Properties of CRTMBIII-P Distribution

The survival, hazard, cumulative hazard and reverse hazard functions and the Mills ratio of a random variable X with
CRTMBIII-P distribution are given, respectively, by
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| X2 (12)

(13)

+3(1—]7){l+7{(zy —1r}2:1 (14)

H(X)=—In|1- || (15)

and

(16)

:dMHn

The elasticity e(x) i

=xr(x) for CRTMBIII-P distribution is

d %{Hy{[;jk_lr} (- M{h{(;]‘_ r}z

e(x)=——1n w | a7

dinx +(1_%){1+{(2jx —1}?7

The elasticity of CRTMBIII-P distribution shows the behavior of the accumulation of probability in the domain of the
random variable.

3.2 Shapes of the CRTMBIII-P Density
The following graphs show that shapes of CRTMBIII-P density are arc, exponential, positively skewed, negatively
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skewed and symmetrical (Fig. 1). The plots of hrf (Fig.2) are also given.

CRTMBIII-P Distribution for 8=1

-------- 3.50, 0.95 235 475, ; 025, , 0.10
1.25, 8.00, 245, 0.75 ; 0.50, ; 0.10
2,95 0.70, 220, 3.95, ; 0.40, ; 0.10
— 0.55, 0.80, 0.45, 0.5, ; 0.50, ; 0.50
—— 8.00, 10.0, 12.0, 0.70, ; 0.80, ; 0.10

Figure 1. Plots of pdf of CRTMBIII-P distribution

CRTMBIII-P Distribution for 6=0.01

a=0.01,8=0.30,y=2.35,k=3.75,A,=0.25,4,=0.90
@=0.40,4=5.00,y=2.45,k=0.75,A;=0.50,4,=0.10
a=0.05,8=0.70,y=2.20,k=1.95,A;=0.40,A,=0.10
----- - a=0.55,8=0.80,y=0.45,k=0.65,A;=-0.50,A,=0.50
a=0.30,8=1.00,y=2.00,k=0.70,A,=0.80,4,=0.10

3.3 Sub-Models

AFEERY’ " wi oy

0.15 0.20 0.25 0.30 0.35 0.40

Figure 2. Plots of hrf of CRTMBIII-P distribution

The CRTMBIII-P distribution has the following sub models.
Table 1. Sub-Models of CRTMBIII-P Distribution

SrNo. | a Jij 14 K 0 A A, | Name of Distribution

1 o Jij Y K I A A, | CRTMBIII-P distribution
2 a Jij 1 K 0 A A, | CRTBIII-P distribution
3 1 Jij 1 K 9 A A, | CRTLL-P distribution

4 a Jij V K 0 A 1 TMBIII-P distribution

5 a Jij 1 K 2] A 1 TBIII-P distribution

6 1 Jij 1 K 0 A 1 TLL-P distribution

7 a Jij y—0 K 2} A A, | CRTGIW-P distribution
8 a Jij y—0 K ) A 1 TGIW-P distribution

9 a Jij y—0 K 12 1 1 GIW-P distribution

10 a b Y K 0 1 1 MBIII-P distribution

11 a Jij 1 K 0 1 1 BIII-P distribution

12 1 Jij 1 K 0 1 1 LL-P distribution

13 a 1 7 K 0 X A, | CRTMIL-P

14 a 1 1 K 0 A A, | CRTIL-P

15 a 1 /4 K 0 A 1 TMIL-P

16 a 1 1 K 0 A 1 TIL-P

17 a 1 /4 K 0 1 1 MIL-P

18 a 1 1 K 0 1 1 IL-P
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3.4 Descriptive Measures Based Quantiles
The quantile function of CRTMBIII-P distribution is the solution of the following equation

[

s
X, =041+

s
1 B 2°(-B°+3AC) M )« 1
7L 3A 3AM 32" A

where  A=(1-4,), B=(4-4), C=4 and

1/3
M = [—253 +9ABC + 27 A%q +\[4(—B? +3AC)® + (~2B° + 9ABC + 27Azq)2]

Median of CRTMBIII-P distribution is the solution of the following

Al

r

U3¢ R2 YER Y
v —gl1.| 1B _2"(B+3AC) 1};13 1
7\ 3A 3AM 32°A) y

s

~ 1/3
where M = [—253 +9ABC +13.5A% + JA(—B? +3AC)’ + (—2B° + 9ABC +13.5A%)? }

The random number generator of CRTMBIII-P distribution is the solution of the following

Al

/4
U3, R2 “a
X=ol1| [ B 2CB+3AC) M, jo 11 |
7\ 3a 3AM, 327 A

1/3
where M, = [—253 +9ABC +27A%Z +[4(~B? +3AC)" + (—2B° + 9ABC + 27AZZ)2J and the random variable Z has

uniform distribution on (0,1).Some measures based on quartiles for location, dispersion, skewness and kurtosis for the

CRTMBIII-P distribution respectively are: Median M=Q (0.5); Quartile deviation Q.D.= i i ; Bowley’s skewness
2

Q,-2Q,+Q, Q-Q+Q-Q
measure S, =——=——=—=and Moors kurtosis measure based on Octiles K =——"—2—=% The quantile based
QE 7Ql Qe _Qz
4 4 g g

measures exist even for distributions that have no moments. The quantile based measures are less sensitive to the

outliers.
4, Moments

Moments, incomplete moments, inequality measures, residual and reverse residual life function and some other properties
are theoretically derived in this section.

4.1 Moments About the Origin
The ™ ordinary moment of CRTMBIII-P distribution is,

E(Xr):Ix'f(x)dx,
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3(1-2)B[1-5,2% £
+3( 12)[ ﬂ7+ﬂj

-sx)-oy g1 RSN

, r=1234,.. (18)
+(1-L)A(Ga, B.y) } '

gl
where A (G e, B,y) = BI\7 _BJi 123,

Mean and Variance of CRTMBIII-P distribution are

e (A AA (G Br) (A —A) A (G Buy)
E(X)=06yr CZ;,[(J[ +(1—/12)A3(e;a,,3,7):|’ (19)

and

LNy

¢

+(1-%)A(Ga,By)

~

=0

(i FlAl(c;a.ﬂ.YH(/lz—%)Az(fi“-ﬂ'V)}_

var(X)=6%" . 2 (20)
7 *[ij[ﬂﬁ(f:a,ﬂwﬁ(ﬂz—%)Az(f?aﬁ#)}
=1 +(1-A)A(Ga B.y)
The factorial moments for CRTMBIII-P distribution are given by
E[X], = %;maxr),
L
nx oo fo ‘/\Pa(f:a-BfV)+(kz—M)Az(f:aiﬁvv)}
E[X] = T L I , (21)
Xh =2 20 {‘ J{ (1) Aa i)

where [X],=X(X+1)(X +2)...(X+i-1) and o, is Stirling number of the first kind.

The Mellin transform helps to determine moments for a probability distribution. The Mellin transform of X with
CRTMBIII-P distribution is

M{f(x);s}="f"(s)=E(X*™),
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-1

M{ f (X);S} — e(s—l)yé i [SlllixlAi(ﬂ;a'B’y) +(7“2 _xl)AZ (ﬂ;(x,B,y):|' (22)

‘ +(1=2y) A (G0 By)
The k™ moment about mean of X is determined from the relationship

=[x -E00T = 3 (5)0 Winii

j=1
The Pearson’s measure of skewness 4 , Kurtosis 35 , moment generating function and cumulants can be calculated from
[e'e] tr

=M gy =M My ()= 3 L E(x) and ke = E(x")- 3 (B (x").
- (].12 r=1 1 c=1

The numerical measures of the median, mean, variance, skewness and kurtosis of the CRTMBIII-P distribution for
selected values of the parameters to illustrate their effect on these measures.

Table 2. Median, mean, standard deviation, skewness and Kurtosis of the CRTMBIII-P Distribution

Parameters Median | Mean Standard Deviation | Skewness Kurtosis
a, By kA0

1,1,1,1,0.8,0.5,0.5 1.61036 | 65.7235 | 35476.7 748.019 582122.0667
1,1,1,1,08,1,1 1.81711 | 67.7487 | 36758 750.832 586974.385
1.5,1.5,0.5,0.5,0.8,0.5,0.5 2.2263 | 3.49459 | 5.95006 116.649 42022.3
1.5,1.5,1.5,1.5,0.8,0.5,1 1.33952 | 1.658 1.57969 74.607 15727.1
1.5,1.5,1.5,1.5,0.8,0.8,1 1.37936 | 1.68996 | 1.57127 65.3279 11774.8
2.5,2.5,2.5,5,0.8,0.5,1 1.09436 | 1.11177 | 0.0739985 2.4123 15.4914
2.5,25,25,3,0.8,3.5,0.25 1.22764 | 1.25534 | 0.11829 3.54321 36.2057
2.95,0.7,2.20,3.95,0.4,0.1,1 | 1.01107 | 1.06867 | 0.235427 15.8608 727.687
3,3,2,05-09,1,1 2.10523 | 2.14782 | 0.492799 0.379771 2.67321
3,3,4,2.5,0.5,0.9,1 1.20566 | 1.24052 | 0.161448 4.52189 62.1364
3,3,3,3,-0.5,0.5,6 1.13119 | 1.13261 | 0.0468075 0.14014 2.6245
5,5,0.5,3,0.3,0.3,3 1.16313 | 1.16287 | 0.0369379 0.000334117 | 3.13759
5,3.5,0.5,3.5,0.5,0.5,5 1.11904 | 1.12075 | 0.390521 0.237948 0.237948
5,5,0.1,3,0.3,0.3,3 1.16278 | 1.16214 | 0.0360593 -0.0769682 3.05655
5,5,0.3,3,0.3,0.3,3 3.48886 | 3.48752 | 0.109464 -0.0382699 3.09349
5,5,0.3,3,-0.8,5 5.88415 | 5.86576 | 0.138629 -0.789373 3.77744
45,45,45,45,0.9,0.5,1 1.11873 | 1.12575 | 0.0453069 1.36909 7.78144
5,5,0.5,0.5,0.5,0.5,1 2.56042 | 2.60084 | 0.516872 0.443135 3.23449
5,5,5,5,0.5,0.5,1 1.10151 | 1.10552 | 0.0321254 1.33553 8.67252

4.2 Incomplete Moments

Incomplete moments are used to study mean inactivity life, mean residual life function and other inequality measures. The
lower incomplete moments of a random variable X with CRTMBIII-P distribution are

4 -2

A=

K -p L r r ¢ 4
. B K - - -
Letting 7{(5) - } =y X =0" (l] +1 =0 (ijﬁy 7, then
0 4 =0
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( a ( ( a (
1-—,—+— |—B 1-—, =+ —=
ﬂl[ [ s y%j W“)[ s y%ﬂ
1L Q+£J,BW(Z>£1,£‘2&+£H+
B B v B

Ex-. (X")=a0y” 1ZD[~] 2(4, - ,11)[ [ 2=
el g h ]

< D, (¢, +2 D, (¢,
Evo. (X")= by Z( J[ﬂi (e Br)+2(2~2)Du “ﬂy)} (23)
+3(l ﬂz)D (U o, p }/)
Cia ( (i (L
where D, ((,a,B,7)=B|1-—,—+ B,y|1-——+—1,1=123,
(t..8.7) [ﬁy ﬂj ”[ 5y ﬂj
-5
W(Z):;{(gj—} and B, (-.-)is the incomplete beta function
The upper incomplete moments for the random variable X with CRTMBIII-P distribution are
. 17 ’f’l . et
1 ﬂq{lﬂ{(;j —1:] } +2(12—Aj){1+y{(;j —1} }
(x)=fr 22211 (2] o
i . o \e) |\o o |
+3(1 @)‘h;{( ) 1} }
X P -5 y 5 ~ % r ¢ ¢
Lettin 20 —yx =012 - x |,#y £ ,then
o (3] o3 g o5l )
) 1 ,,£+,)+2(,12,%)BW(Z)(LL,L%LJ
- 7 By B , (24)
( 3a+6j

+3(1-4)B . |1-— L4+ °

( ﬂ?) w(z)( ﬁ y ﬂ

The mean deviation about mean is MDy = E|X — 2] = 224 F (1) = 244M!(44) and the mean deviation about median is
MD,, =E|X —M|=2MF (M )—-2MM/(M), where # =E(X) andM =Q(0.5). Bonferroni and Lorenz curves for a

specified probability P are computed from B(p) =M, (q)/ps and

L(p) =M/ (q)/4 whereq=Q(p).
4.3 Residual Life Functions
The residual life, saym ( ) of X with CRTMBIII-P distribution has the n™" moment

mn(z):E[(X z)"X>z}— (Z)I(x ) f (x)dx
m(2)=5 25 () B (X7),
N . | 4B, jLet +2(2,—4)B,, L2t
ol B SR 553) o r f]
+3(1—12)BW(Z) (1_ﬁ ;/+ﬂj

The average remaining lifetime of a component at time z, say m, (z) or life expectancy known as mean residual
life (MRL) function is given by
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B L (S

L s NE . Yij B B
@)= 0o o . @)
s=0 (=0 3(1— -t
st 15247
The reverse residual life, say, M, (z) of X with CRTMBIII-P distribution having n™ moment is
Mn(z):E[(z—X)"/X SZJ:F(lz)J;(z—x)nf(x)dx,
1) (2B (X7),
L" x [E ns€s i:/ﬁD([aﬂ}’)-"z(iz j'1) (Caﬂ}’):| 27)
” (Z ;;( )[ ) +3(l ﬁ.z) ([aﬂ;/)

The waiting time z for failure of a component has passed with condition that this failure had happened in the interval [0,
z] is called mean waiting time (MWT) or mean inactivity time. The waiting time z for failure of a component of X
having CRTMBIII-P distribution is defined by

w(2)= %33 (1)(;]( ey FD R (f’“’ﬂ’”}. 8)
+3(1-4) D, (L, B7)

5. Reliability Measures

In this section, reliability measures are studied.

5.1 Stress-Strength Reliability for CRTMBIII-P Distribution

Let X, ~CRTMBII —P (e, 3,7,0,4,24,),X, ~CRTMBII —P(a,, 3,7,0,4,4,) such that X, represents

strength and X, represents stress, then R=Pr(X, < X1)=Ifx1(X)sz(X)dX is the characteristic of the distribution of
0

X,and X,. Then reliability of the component for CRTMBIII-P distribution is computed as
%{wm | _1}”}?’1+2% —m{lwm 1”

sl

AT el 1]

sfofi ]

dx,

SCICR]

_3a
14
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By @

_a 3

+(ﬂl_%&){l+7[(gjk_lr}’ ' +2(/1¢—%)(1—12){1+7K§]K‘1
w11

ey 20 (WA —A) 3oy (h—A)

}
s AT 1T
e S

1

(o +eaxy) (2o, + ) (B, +x,)

R_la(B-n) 20(A%L-A) Bo(1-A)(A—-4) |

—+

(e, +2a,) (2, +2ex;,) (B, +2a,)
al(ﬂli/llﬂ?)_'_2a1(22721.)(1722)+3a1(1722)2

(o, +3a,) (2, +3e;,) (B, +3e,)

(29)

Therefore (i) Ris independent of B,7,4 and A, (ii) foroy =a,, R=0.5, itmeansthat X, and X, arei.i.d.and there is

equal chance that X, is bigger thanX,.
6. Characterizations

In order to develop a stochastic function in a certain problem, it is necessary to know whether the selected function fulfills
the requirements of the specific underlying probability distribution. To this end, it is required to study characterizations of
the specific probability distribution. Certain characterizations of CRTMBIII-P distribution are presented in this section.

6.1 Characterization Through Ratio of Truncated Moments

The CRTMBIII-P distribution is characterized using Theorem 1 (Gl&nzel; 1987) on the basis of a simple relationship

between two truncated moments of functions of X. Theorem 1 is given in Appendix A.
Proportion 6.1.1. Let X :Q—(0,%0)be a continuous random variable. Let

AT el

s

el ]|

x B
The pdf of X is (11), if and only if q(x) (in Theorem 1) has the form q(x)= KEJ - } , Xx>0.

Proof. If X has pdf (11), then
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-B

(1-F (x))E(h, (x)| X zx):[[gjk —1} . x>0,

and (1-F (x))E(h, (x)|X = x)= [(gj —1}# L X>0.

After simplification, we have m:} a(x)= Kxj l} and q'(x):&(ljﬂ[{ljx _l}ﬂll

The differential equation s'(x)= q(x(;,rg X()xh)zf)l(g(x) - 25’( [%jkl H%jk —1}_1 has SOIUtiOﬂs(x):InK;jK —1} .

Therefore according to theorem 1, X has pdf (11).
Corollary 6.1.1. Let X:Q— (0, oo) be a continuous random variable and let

. ZKX]X _qﬂ Allw[[zjx _1]5171 +2(4, —ﬂi)[uy[[zjk _l]ﬁ 1 B
{5 |

The pdf of X is (11) if and only if functions q(x) and h (x) satisfy the equation

q)h () 28 (x| (x) h
a0 ()-h(x) 0 5) [(9] 1} '
Remark 6.1.1. The general solution of the above differential equation is
) 2y -‘
T © TP
. Al T 4{“{[2) _1} } +2(17—/11)[1+7M;J _1} }
q(x) {(X) 1} [ ,%{ij HX] 1} hy(x) |dx+D,
0 0 \a) |\o o

bl 4]

where D is a constant.

6.2 Characterization via Doubly Truncated Moment

Here CRTMBIII-P distribution is characterized via doubly truncated moment.

Proposition 6.2.1. Let X:Q —>(O, +oo) be a continuous random variable. Then, X has pdf (11) if and only if

: 1H:
+3(1z?){1+y[[%jx 1}1 ;

-1

SY P

m%—a){lw((

X<X<y

,x>0,y>0.(30)
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Proof.
For random variable X with pdf (11), we have

EWMWMWL%M
+3(1-4 ){u y [(%) flr }7
j mz(z?—zl){lw[(gjk—lﬂ V+3(1—z?)[1+7((;jk—1]ﬁr1 f(u)du’

[FCI-F(y)]

mz(azﬂl){lw[(;jxl]ﬂr

du
2a

sl |

A+2(&ﬂi){l+7[(;)xl]ﬂ}jl o o
2T )
_ +3(l—2,2)|:1+;/[{;) —1] ] |

[FO-F(y)]

TG A A )] -

[FO)-F(y)]

Conversely, if (30) holds, then

frobwra TN,
y +3(1ﬂz{1+7[(; KlJﬁ} ’ |:1+7[(;)K—1 e {hy[(zy_lj? 7 ’

[F()-F(y)] [FO)-F(y)]

_ﬂl+2(/12_/11)|i1+7[[;)’(—1]ﬂ‘| e s
| e G )
‘ +3(1—/12){1+7&;) _IJ 1 4 { } { ]

Differentiating with respect to y, we have
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or

which is pdf of CRTMBIII-P distribution.

Av2(is-4) 1+y[[;jx—1j

+3(1-4,) 1+}/[(;)K —1jﬁ ’

7. Maximum Likelihood Estimation

-1

In this section. parameter estimates are derived usina maximum likelihood method. The log- likelihood function for
CRTMBIII-P distribution with the vector of parameters ¢ =(a, B,y 5,0, 4, gz) is

InL(x;®@)=nlna+nInB+nink—nkIn® + (x—1)> Inx; —(B+1)Z|n[[>gj“_1}

+>"In

el
wesessfer{ ()]
sacnfes((3 )"

-1

L. b (31)

In order to estimate the parameters of CRTMBIII-P distribution, the following nonlinear equations must be solved

simultaneously:

%(InL(xi;db)):

n 1

o

2y

yZln(1+ yxfﬁ)—

(1+ v )7 % In (1+ yXiB)|:(7”2 —R)+3(1-2; )(1+ X P )7 ::|

=0, (32)

Y

[xl +2(rp =) (1 P) Y 3(1-2x)(1+ v )
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_a

%—Zlnxi +[$+1JZM+ZZXi_BInXi (1+yxi‘B) v x
0

- i = - =0,
6[3( nL(X| (D)) ()(.(7»2 —kl)+3a(1—k2)(1+yxi_ﬁ) v o (33)

e 200 () 3 a0

S e O

(1+ yx P )77

@
¥

- x° Ay o - %P
(2 }Ll)a[iln(1+yxiﬁ)—( i ]+ 3(1-2 )2a[2|n(1+yxi B)—(i

9 -P)) = ¢ +yx P +yx P =
£ (L (x) = 2o T Ly ) Ly ") 0,(34)

200

M +2(y —7”1)(1+ YXifﬁ)_ + 3(1—%2)(1+ yxi’ﬁ)_T

o
1— 2(1+ yx;, P )7 ¥

aiM(lnL(xi;cD))zz - — =0, (35)
X1+2(k2—kl)(l+yxi B) Y+3(1—7L2)(1+yxi B) Y
a 2a
2(1+vyP) v =3(1+vyxP) v
%(InL(Xi:cb)):Z (e vi?) () 7o |70 (36)

A+2(hp — 7”1)(1"‘ YXifﬁ)_ T +3(1- 7”2)(1+ yx; P )_
8. Simulation Study

In this section, we perform the simulation study to illustrate the performance of MLE. We consider the CRTMBIII-P
distribution with « = 2,95, 8 = 0.7,y = 2.20,k = 3.95, 1, = 04,1, = 0.1,0 = 1. We generate 1000 samples of
sizes 20, 50, 200. The simulation results are reported in Table 3. In the table, it reports the average estimated «, B,v, k,
A1, A, and the standard deviation of the estimates within the parenthesis. From this Table, we observe that the MLE
estimates approach true values as the sample size increases whereas the standard deviations of the estimates decrease, as
expected.

Table 3. MLE simulation

Sample a B y k A Ay 0

size

20 4.1394 0.6876 2.2206 3.5892 0.3740 0.0759 1.0076
(0.7279) (0.0373) (0.4541) (0.0875) (0.0418) (0.0502) (0.0026)

50 3.2909 0.7475 2.3937 3.8474 0.3854 0.0872 1.0075
(0.6665) (0.0610) (0.8290) (0.1169) (0.0420) (0.0428) (0.0023)

200 3.0703 0.7340 1.9048 3.9018 0.3887 0.0914 1.0073
(0.5578) (0.0668) (0.8527) (0.0887) (0.0340) (0.0398) (0.0021)

9. Applications

In this section, the CRTMBIII-P distribution is compared with TMBIII-P, MBIII-P, BIlI-P, IL-P, LL-P distributions.
Different goodness fit measures like Cramer-von Mises (W), Anderson Darling (A), Kolmogorov- Smirnov (K-S)
statistics with p-values, and likelihood ratio statistics are computed using R-package for tensile strength of carbon fibers
and strengths of glass fibers.

The better fit corresponds to smaller W, A, K-S (p-value), AIC, CAIC, BIC, HQIC and —¢ value. The maximum
likelihood estimates (MLEs) of unknown parameters and values of goodness of fit measures are computed for
CRTMBIII-P distribution and its sub-models. The MLEs, their standard errors (in parentheses) and goodness-of-fit
statistics like W, A, K-S (p-values) are given in table 4 and 6. Table 5 and 7 displays goodness-of-fit values.
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9.1 Application I: Strengths of Carbon Fibers

The data of 100 observations about tensile strength of carbon fibers (Nicholas and Padgett (2006) are : 3.7, 3.11, 4.42,
3.28,3.75, 2.96, 3.39, 3.31, 3.15, 2.81, 1.41, 2.76, 3.19, 1.59, 2.17, 3.51, 1.84, 1.61, 1.57, 1.89, 2.74, 3.27, 2.41, 3.09, 2.43,
2.53,2.81,3.31,2.35,2.77,2.68, 4.91, 1.57, 2.00, 1.17, 2.17, 0.39, 2.79, 1.08, 2.88, 2.73, 2.87, 3.19, 1.87, 2.95, 2.67, 4.20,
2.85,2.55,2.17,2.97, 3.68,0.81, 1.22, 5.08, 1.69, 3.68, 4.70, 2.03, 2.82, 2.50, 1.47, 3.22, 3.15, 2.97, 2.93, 3.33, 2.56, 2.59,
2.83,1.36,1.84,5.56, 1.12, 2.48, 1.25, 2.48, 2.03, 1.61, 2.05, 3.60, 3.11, 1.69, 4.90, 3.39, 3.22, 2.55, 3.56, 2.38, 1.92, 0.98,
1.59,1.73,1.71, 1.18, 4.38, 0.85, 1.80, 2.12, 3.65.

Table 4. MLEs and their standard errors (in parentheses) and Goodness-of-fit statistics for data set |

Model 2] a p 4 K A A,
CRTMBIII-P 0.39 719.9295 0.9732829 500.1105 4.117140 0.7742347 1.0000e-10
(523.3879620) | (1.8953695) (408.361968) | (8.0763895) (0.389845) | (0.8599415)
TMBIII-P 0.39 719.8619233 0.7427825 500.1927347 5.0462072 0.7473355 | -------mm-----
(509.782044) | (1.072550) (379.177167) | (7.304020 ) | (0.388087)
MBIII-P 0.39 236.99999990( 0.05177609 108.00000016 60.00000145
107.36391667) | (0.04879421) | (68.36992397) | (56.68837095)
BIII-P 0.39 43.4307596 0.1518039 | ---------mm-- 15.2231468
(10.2832402) | (0.4298325) (43.1097656)
IL-P 0.39 37.276213 | | s 2.248313
(9.6291355) (0.1666808)
LL-P 0.39 | ---—--mme- 5.4603307 | ------m-me-- 0.3758895
(0.466840215) (0.008629736)
Table 5. Goodness-of-fit statistics for data set |
Model K-S BIC
W A (p-value) AlC CAIC HQIC —y
CRTMBIII-P 0.1944189 1.016396 ?605357) 290.5319 291.445 306.1027 296.8319 139.266
TMBIII-P 0.2952717 1.553695 ?005516) 293.9015 294.5467 306.8771 299.1515 141.9508
MBlil-P 0.3747326 2.013152 0.1179 297.706 298.1315 308.0865 301.9059 144.853
(0.1275)
BIII-P 0.5889363 3.291431 0.1447 311.9804 312.233 319.7657 315.1304 152.9902
(0.03163)
IL-P 0.6321082 3.546179 ?61()52206) 313.0601 313.1851 318.2504 315.1601 154.5301
LL-P 0.3579362 1.915628 ?61205248) 291.962 292.087 297.1523 294.062 143.981

The CRTMBIII-P distribution is best fitted model than the other sub-models because the values of all criteria of goodness
of fit are significantly smaller for CRTMBIII-P distribution.
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We can also perceive that the CRTMBIII-P distribution is best fitted model than other sub-models because the
CRTMBIII-P distribution offers the closer fit to empirical data (Fig. 3).

9.2 Application I1: Strengths of Glass Fibers

The data of strengths of 1.5cm glass fibers (Smith and Naylor; 1987) are :0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61,
1.64,1.68,1.73,1.81,2.0,0.74,1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42,
1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24,0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84,
1.24,1.30,1.48,1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89.

Table 6. MLEs and their standard errors (in parentheses) and Goodness-of-fit statistics for data set 11

Model | @ a S /4 K A A,
CRTMBIII-P | 0.55 | 73.87911 14.71889 497.0174 0.8096296 0.5221054 1.000000e-10
(3.364499e+03) | (6.209595) (23061.72) (1.689077) (0.5534387) | (1.182675)
TMBIII-P 0.55 74.3642653 497.8138888 0.7697337
(601.5807783) 16.0453413 (3991.182102) | (0.2948280) 0.4117638
' (4.9856028) (0.2694987)
MBIII-P 0.55 773.7621945 0.7651168
(174;2'0618786275: 1) 16.6280692 | (4002.818096) | (0.1911755)
' (4.9243447)
BIlI-P 0.55 1 38.76318442
?:fg’:g;ﬂ 6 ) 0.09262152 (107.7000457)
' (0.2572815)
IL-P 0.55 | 17.079603 1 1 3.351204
(4.5058600) (0.3126531)
LL-P 055 |1 5.5523815 1 0.6811163
(0.63158387) (0.01865733)
Table 7. Goodness-of-fit statistics for data set |1
Model K-S BIC
w A AlC CAIC HQIC —r
(p-value)
CRTMBIII-P 0.087 36.78173
0.04680253 | 0.2783179 24.01893 25.5462 29.02992 6.009463
(0.7361)
TMBIII-P 0.1226 36.79742
0.1080799 0.6156135 26.16174 27.23317 30.33758 8.080872
(0.3089)
MBIII-P 0.1580743 0.1514 35.51112
0.8983662 27.00258 27.70434 30.34325 9.501291
(0.1167)
BIII-P 0.2404 83.59024
1.005342 5.58068 77.20884 77.62263 79.71434 35.60442
(0.001548)
IL-P 0.258 85.69131
1.128209 6.209134 81.43704 81.64043 83.10738 38.71852
(0.005188)
LL-P 0.173 57.14677
0.6565834 3.688252 52.8925 53.09589 54.56283 24.44625
(0.04898)

The CRTMBIII-P distribution is best fitted model than the other sub-models because the values of all criteria of goodness
of fit are significantly smaller for CRTMBIII-P distribution.
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Figure 4. Fitted pdf, cdf, survival and pp plots of the CRTMBIII-P distribution

We can also perceive that the CRTMBIII-P distribution is best fitted model than other sub-models because the
CRTMBIII-P distribution offers the closer fit to empirical data (Fig. 4).

10. Concluding Remarks

We have developed a more flexible distribution on the basis of the cubic transmuted mapping that is suitable for
applications in survival analysis, reliability and actuarial science. The important properties of the proposed CRTMBIII-P
distribution such as survival function, hazard function, reverse hazard function, cumulative hazard function, mills ratio,
elasticity, quantile function, moments about the origin, incomplete moments, inequality measures and stress-strength
reliability measures are presented. The proposed distribution is characterized via ratio of truncated moments and doubly
truncated moment. Maximum likelihood estimates are computed. The simulation study for the performance of the MLEs
of parameters for the new distribution is carried out. Applications of the proposed model to tensile strength of carbon
fibers and strengths of glass fibers are presented to show its significance and flexibility. Goodness of fit shows that the
new distribution is a better fit. We have demonstrated that proposed distribution is empirically better for tensile strength of
carbon fibers and strengths of glass fibers data.
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Appendix A

Theorem 1: Let (Q,F.P) be a probability space for given interval [d;,d,] with —o<d, <d,<d,+o. Let

X:Q—[d;,d,] be a continuous random variable with distribution function F. Let real functions h, and h, be

E[h, (X)[X > X ) o
continuous on [d,,d, ] such that E[[h((x;x>x}_q(x) is real function in simple form. Assume thath;, h,e C([d,,d,]),

q(x)ec?([d,.d,1) and F is two times continuously differentiable and strictly monotone function on [d,.d,]([d,.d,1).
Finally, —assume that the equation hqg(x)=h ~ has no real solution in [d,d,] . Then

X r t
F(x)=[K 7 exp(-s(t))dt is obtained from the functionsh;, h,,q(t) and S(t), where s(t) is obtained

a(t)h. ()-h(t)

from equation S,(t):%

d,
and K is a constant, adopted such that IdF =1
d;
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