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Abstract

Characterizations of certain recently introduced discrete distributions are presented to complete, in some way, the works
cited in the References.
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1. Introduction

The problem of characterizing a distribution is an important problem in applied sciences, where an investigator is vitally
interested to know if their model follows the right distribution. To this end, the investigator relies on conditions under
which their model would in fact follow specically the chosen distribution. Para and Jan (2018) introduced a new discrete
probability model via compounding two-parameter discrete inverse Weibull distribution with the beta distribution of the
rst kind, called Discrete Inverse Weibull Beta (DIWB) distribution. They argue that “such a distribution is needed in
medical science and other related fields to fit various discrete data sets". Bhati and Bakouch (2018) proposed a discrete
distribution called New Geometric Discrete Pareto (NGDP) distribution whose hazard function, among other things, is
infinitely divisible. Hussain et al.introduced a discrete distribution called Two Parameter Discrete Lindley (TPDL), which
they believe " has the least loss of information when applied to a number of data sets ( in an over and under dispersed
structure)”. Grine and Zeghdoudi (2017) proposed “a recent version of the compound Poisson distribution” called Poisson
Quasi Lindley (PQL) distribution by "compounding Poisson and quasi Lindley distributions”. Kumar and Sreejakumari
(2016) developed "an extended version of the modified geometric distribution™ called Extended Inverted Geometric (EIG)
distribution and investigated some of its properties. Jayakumar and Sankaran (2018) proposed a generalization of Weibull
distribution based on an arbitrary baseline cumulative distribution function G(x) , called (DG) distribution and
investigated some of its properties. Prasanth and Sandhya (2016) introduced a generalization of discrete uniform
distribution called Harris Discrete Uniform (HDU) distribution. Prasanth and Sandhya (2016) proposed a generalization
of discrete uniform distribution called Harris Discrete Uniform (HDU) distribution. Supanekar and Shirke (2015)
introduced a new discrete family of distributions called Discrete Family (DF). In this paper, we present three
characterizations of these distributions based on: (i) conditional expectation of certain function of the random variable; (ii)
the hazard rate function and (iii) the reverse hazard rate function. It should be added that the content of this work
theoretical and we leave its applications to the applied scientists. The cumulative distribution function (cdf), F(x),
corresponding probability mass function (pmf), f(x), hazard rate function, hg (x) and reverse hazard rate function,
I (X) of DIWB are given, respectively, by

F(X):F(X;a,ﬁw):B(i,ﬁ)B(ﬁ’(“l)ﬁ*a)' K =
a1 x=0
t(x)=f(xa.f7)= B((X;(ii)ﬂa)fB(ﬂ,(xf*“) veN X
B(a,f)
atl x=0
he (X) =1, (X B.7) = BE{/;(ﬂxill)"’+a)—B(,6'v(X)y+”‘)y xeN. ¥

B(c.f)-B(A.(x+1) " +a)
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1 x=0
R p)=l BB +e)
B(4.(x+1)” +a)
where @, 3, are all positive parameters, N" ={0} UN (N is the set of all positive integers) and
r(B)r((x+1)”
B(ﬁ,(X‘Fl)ﬁ/‘FQ):M.
F(ﬂ+(x+l) ‘V+a)

The cdf , pmf, hazard rate function and reverse hazard rate function of NGPD are given, respectively, by

F(x)=F(xa,q)=1- a_ xeN,

_QX Ax
+
o)

xeN’,

F(X)=F(xa,q)=

(x+2)" _(x+2)“ ’

1(x+2
by (%) =h, (., ) l_E(ﬁj xeN
-
| (1)’
e (X)=1 (% a.q) gl xeN
(x+2)"

where a >0, q<(0,1] are parameters.
The cdf, pmf and hazard rate function and reverse hazard function of TPDL are given, respectively, by

_[a-p)a+px)+ P

F(x)=F(x/.p)=1 T p(p) xeN,
((9=10omp)=ERLBPIP ey,
R R T ey v
) I e,

where £>0, pe(0,1] are parameters.
The cdf, pmf, hazard rate function and reverse hazard function of PQL are given, respectively, by

a+20+a0+6x+1

F(x)=F(xa,0)=1- """ 1= xeN’,
(= Fla0)=- 22
f(x)- f(x;ayg):ﬁ(a+6+a9+xix)’ YN,
(1+a)(1+9)
hF (X):hF(X;a’g):w, XEN*,
a+20+al+60x+1
b (X) =1, (x:00) = O(a+0+ab+0x) YeN,

(1+a)(1+0)"" ~(a+20+af+0x+1)’
where a>-1and &> 0 are parameters.
The cdf, pmf and hazard rate function and reverse hazard function of EIG are given, respectively, by

o [(1-po)-(1-0)p" ]

1I-p

F(x)=F(xp.0)=1- xeN',
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(L-0)(1- po)(1- i)

f(x)="f(xp.0)= —ry xeN’,

e g L0 RO)(1-p) .

hF (X)_hF(X' pl"g)_g[(l_ pﬂ)—(l—a) p1x+1:|’ xeN,
()=, (5 5 0) - (1-0)(1-po)(1-pi)o* N

(1-p)-0'[(1- po)-(1-0) |

where 6 e(0,1)and 0< p, #1are parameters such that p,0 <1.
The cdf, pmf, hazard rate function and reverse hazard function of DG are given, respectively, by

G*(x+1)

— = N,
0+0G" (x) X<

F(x)=F(xa,0)=

o[ 1 1 .
f(x)=f(xa,0)=—|—= — , N,
(=1 05ed)= 15 57767 92067 () X<

G”(x+1)-G*(x)

he (X) = (X;2,0)= (146" (x+1))(0+0G° (x))’

xeN,

- (X)=r(xa,6)= xeN,

6| G (x+1)-G x)}
G (x+1)(0+0G" (x))’
where @ and @ are positive parameters, 9 =1—¢ and G(X) is a baseline cdf with G(O) =0.
The cdf, pmf and hazard rate function of HDU are given, respectively, by

6"" (a—x) ’
[ -(-6)(a—x]"

F(X)=F(xa.6,p)=1-

a—-x+1 a—X
xel,

f(x)=f(xa,0p)=6" ,
—(1-0)a—x+1’]* [a*-(1-0)(ax]"

(a-x+1)a’ -(1-9)(a-x)"}%’

he (x)=he (X, 0, p) =6 }/—1, xel,
(a-x)[a" ~(1-0)(a-x+1)" |
wherea eN, >0and peN are parameters.
The cdf, pmf and hazard rate function of DF are given, respectively, by
F(x):F(x;a,o—):M, xeN',
1-aG(x+L0)

. _a 1 B 1 x
fx)="1(xa0)= a{l—aG(x;a) 1—aG(x+];a)}’ xeN,
he (X)=he (X a,0)== G(X;U)_G(Xj}'a) , xeN’,

G(x+1;a)—(1—aG(x;a))
2| G(x,0)-G(x+1;
a[ (x0)-G(x+ 0')} el

rF(x):rF(x;a,a):(

1-G(x+L0))-(1-aG(x0))’

wherea >0, >0 are parameters and G(X)is a continuous baseline cdf.
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Remarks 1. (a) In defining the pmf of DIWB, Para and Jan did not make the distinction we have made here in (2) for x =
0 and x € N. (b) Bahti and Bakouch, Hussain et al. and Supanekar and Shirke, have defined their survival functions as
F(X) =1-F (X—l) (c) Without loss of generality, we assume = 0 for the PQL distribution. (d) Although Jayakumar and
Sankaran defined the survival function as P(X >X), but they actually use P(X > X)as their survival function when they
obtain the hazard and reverse hazard functions. We also believe that they assume G(O) =0. (e) The hazard rate function
given on page 85 of Supanekar and Shirke is incorrect; the correct formula is (30) given above.

2. Characterization Results

We present our characterizations (i) (iii) via three subsections 2.1, 2.2 and 2.3.

2.1 Characterizations in Terms of the Conditional Expectation of Certain Function of the Random Variable
Proposition 2.1.1. Let X : Q — N"be a random variable. The pmf of X is (2) if and only if

E{B(A.(X+1)” +a)+B(A(X)” +a) X >k|=B(a.f)+B( (k1) +a). (32)
Proof. If X has pmf (2), then the left-hand side of (32) will be

(l_F(k))il N 2 -7 2 =4 (1_F(k))71 2 2 -7
5ap) x:ZM[B (B.0c+1) 7 +a) +B7(5,(x) +a”:78(a,ﬁ) (8 (@) +B(B.(k+1) +a)]

} 1 (0 BB 8.k 1) v
_B(a,ﬂ)—B(ﬁ,(ku)’*’m)[B( B)+BE(B(+1) +a) |

~B(a,8)-B(B.(k+)) " +a).
Conversely, if (32) holds, then

o

> [{B(ﬂ,(xﬂ)”/ +a)+B°(B(x) +a)} f (x)} =(1- F(k))[B(a,ﬂ)+ B(8,(k+1)” +,1)}

x=k+1

~{(1-F (k) f (k+D} B(@) +B(A(k+D) " +a) (33)
From (32), we also have

(1-F (k)"
B(a.f)

X;Z[{B(ﬂ,(xﬂ)" +a)+B(p.(x) +a)} f (x)]

=(1-F(k +1))7l[B(,B,(k+1)” +a)+ B(ﬂ,(k+2)”v +a)] (34)
Now, subtracting (34) from (33), we arrive at
(L-F (k+0)){B(A.(k+1)” +a)-B(B(k+2) +a)| ={B(A.(k+2)” +a)-B(a A} f (k+1).

From the last equality, we have

e (k)= D) B[B.(k+1)" +a)-B(p(k+2)" +a]
T -FKD) B(p(k+2) +a)-B(a.p)

which, in view of (3), implies that X has pmf (2).
Proposition 2.1.2. Let X : Q) — N"be a random variable. The pmf of X is (6) if and only if

qX qX+l qk+l
E= - X >k|= .
H(x ) (X +2)“}' - } (ks2) (35)
Proof. The proof is similar to that of Proposition 2.1.1. We, however, give the proof for the sake of completeness. If X has
pmf (6), then the left-hand side of (35) will be

O o VR N (2 A
(1-F (k) %H[(m)"} [(M)(,]}w k} e ((k+2)”] TR
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Conversely, if (35) holds, then

£ qX : qx~1 : B qk+l B _ . . . qKAI
ZH[(l)] '[(nz)“]}f(X)}“'F(k))[wwr]'[“ et

From (35), we also have

Now, subtracting (37) from (36), we arrive at

(1F(k+1))={ A }{ T }f(kﬂ)-

(k+2)" (k+2)" (k+2)"

which, in view of (7), implies that X has pmf (6).
Proposition 2.1.3. Let X :Q — N"be a random variable. The pmf of X is (10) if and only if

1 (1-p)
E X>k|=——oFo
H(W)]' ’ } (T p)(+ )+
Proof. If X has pmf (10), then the left-hand side of (38) will be

(LF(k))li{ (-p) v }z Lp(s-Y) [(1—p)p“]: (L-p)

Sa|l+p(B-1)+pB [(1_ p)(l+ﬂk)+ﬂ] pt 1+ p(B-1)) (1-p)(1+BK)+B
Conversely, if (38) holds, then

SO S SRR AR ol .) NN I PO SR ol ) BN |
x%{wx)]f( )} t F(k))(a—p)(wkw] [a-Flesm)+ 1 1)][(1-9)(1+ﬁk)+/5j

From (38), we also have

S | T S P e SR el ) B |
sz;z{((h,/}x)}f( )} (1-F(k 1))[(l—p)(l+ﬂ(k+l))+ﬂ]

Now, subtracting (40) from (39), we arrive at

1 (1-p) D (1o F (ks t-p (-p)
[1+ﬁ(k+1)_(l—p)(1+ﬂk)+ﬁ]f(k D=(-F(k 1>)[(1—p)(1+ﬂk)+ﬁ (1p)(1+ﬁ(k+1))+ﬂj‘

Bp ) (L F (ks B(L-p)
[(1+/’(k+1))[(1—P)(1+ﬂk)+ﬂ]]f(k D=l 1))[[(1—p)(1+ﬁk)+ﬁ][(l—p)(1+ﬂ(k+1))+ﬁ]}

or

f(k+1) (1-p) (1+ A(k+1))
(1—F(k+1))[p((1— p)(l+ﬁ’(k+1))+ﬂ)}

which, in view of (11), implies that X has pmf (10).

Proposition 2.1.4. Let X :Q — N"be a random variable. The pmf of X is (14) if and only if

1 0
EH(M)]' X k}e(Zk)l
Proof. If X has pmf (14), then the left-hand side of (41) will be

F) - (1+9)M{ 0 J 0

Sa(1r0) 0(2+K)+ 1| (Lro) 7 | 0(2+K) 4L

Conversely, if (41) holds, then
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x%{[(lix)j f (X)}: (1-F (k))[e(sz)uj =[@-F D)t (k+1ﬂ[e(sz)+1]'

From (41), we also have

xgz{[(lix)j f (X)} SR +1))[9(3+9k)+1j'

Now, subtracting (43) from (42), we arrive at

1 [ 17 [
[1+(k +1) - 6(2+k)+1] fk +1):[(1_ F(k+1))}[(9(2+ k)+1_ 03+ k)+1]'

or

1 6?
[(k +2)(9(2+k)+1)] Fk+1)= [(1_ F(k +1))]((9(2+ k)+1)(0(3+ k)+1)j’

or

f(k+1) _ 6% (2+k)

1-F(k+1) 6(3+k)+1’

which, in view of (15), implies that X has pmf (14)
Proposition 2.1.5. Let X : Q) — N"be a random variable. The pmf of X is (18) if and only if

1 lixsk|e Lm0
E[[(mf)]* k} ERTEIrE
Proof. If X has pmf (18), then the left-hand side of (44) will be

gy e 0E-R0) 1-p, (1-0)1-p6) | 1-po
R = == =g
Conversely, if (44) holds, then

Z{[(nlp)] f (X)} =(1-F (k))[mﬂl):f{:w] ~[(a-F (k1) (k+1)}[(1_p1€1):gfim

From (44), we also have

- 1 Z(1-F(k+ 1-po
xgz{(n pf)]f(x)}(l FlK 1))[(1—p19)—(1_9)pf*2]'

Now, subtracting (46) from (45), we arrive at

[ 1 1-pd ]f(k+1):(1—F(k+1))[( 1-po 1-po ]

1-p (1-po)-(1-0)p” 1-p0)-(1-0)p™" (1-p0)-(1-6)p}"

or

9(1_ pl) p1k+1

[(1‘ o) (1- po)-(1-0) pi*

(1-p)(-po)(1-0)p™

(1-p0)-(1-0) " ][ (1- p)-(1-0) pf”]]y

ﬂf(k+1>=(1—F<k+l>)[[

or
f(k+1)  (1-p0)(1-0)p*

(1-F(k+1)) o[(1-po)-(1-0)pt ]’
which, in view of (19), implies that X has pmf (18).

Proposition 2.1.6. Let X : Q) — N"be a random variable. The pmf of X is (22) if and only if

E ,1 +— ! [ X >k :1—,;.
0+0G*(X) 6+6G"(X +1) 0+6G” (k+1)
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Proof. If X has pmf (22), then the left-hand side of (47) will be

(liF(k))Aii 1 1 _ 0 [0+0G" (k+1) 1 5
Ceal-0 9+§G“(x)2 9+§G"(x+l)2 1-6 t9—t‘7G"(k+1)2 6’+t‘7G"(k+1)2
1
— .
0+0G (k+1)

Conversely, if (47) holds, then

" 1 1 _ 1
(1-F (k) Hewe"(x)z _9+0G“(x+1)2]f(X)}(l_F(k))[1+9+oe"(k+1)z] )
1
:[(1—F(k))f(k+1)}[l+w(k+1)2]
From (47), we also have
1 1 1
{méou(m) a+§ea(k+z)’[“a+§e“(k+1)ﬂf(k*l)
1 1
:(LF(k*l))HHméG“(k+1)j7[1+9+§e"(k+2)ﬂ’
or
1 _ 0{G" (k+2)-G* (k+1)}
[9+9G“(k+2)1]f(k+l)_(1F(kJrl)){QﬂQG“(k+l)—9+9(3“(k+2)}'
or
f(k+1) _ G (k+2)-G (k+1)
(1-F(k+1)) 0+0G"(k+1)-0+0G"(k+2)'
which, in view of (23), implies that X has pmf (22).
Proposition 2.1.7. Let X:Q—1 \{0} be a random variable. The pmf of X is (26) if and only if
£ a-X+1 N a-X IX >k |= a-k . (50)
M(a”(l@)(aXﬂ)p)}/p (a”(l&)(ax)p)%’} (a7 ~(1-6)(a-kp)*
Proof. If X has pmf (26), then the left-hand side of (50) will be
(1-F()* Y o (a—x+)) o (a=x) .
T (@ --0)(@-x+1) ) (af-(1-0)(a-x)")"
R A I S
(a=k) (a7 -(-0)a—x)*| (a*~(1-0)(a-x)')"
Conversely, if (50) holds, then
a-xil - a=x t(x)p =(1-F (k) ak =[(1-F(k+1))f (k+1) ok . (51
¥kl (ap—(l—ﬁ)(a—x-%—l)p)}/p (a"—(l—&)(a—x)”)}/"J ] ( ) (aP_(l_g)(a_k)p)% |:( ) :I(ap_(l_g)(a_k)p)}/p ( )
From (50), we also have
i a-x+1 N a-x t(x) :[1—F(k+1):| a-k-1 . (52)
”*Z[(a"(lﬂ)(axﬂ)p)% (a”(l@)(ax)p)}/ﬂ} } {(a"(lﬂ)(akJrl)p)%

Now, subtracting (52) from (51), we arrive at
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ek f(k+1)=[1-F (k+1)] a-k . a-k+1 ’
{(ap —(1—6)(a—k)")/V°J («” ‘(1“9)(0‘—k)p)}/p (e? —(1—6)(a—k—1)")%’

or

f (k+1) :(w-k)((%”—(1—19)(0f—'<—1)p)%)7l

1-F(k+1) (a—k+1)(a"—(l—9)(a—k)p)/%

which, in view of (27), implies that X has pmf (26).
Proposition 2.1.8. Let X : Q) — N"be a random variable. The pmf of X is (29) if and only if

1 1 1
E{[(l—aG(X;U))+(1—aG(X +1;0'))]| X >k}l(1—ae(k+xa))' (53)
Proof. If X has pmf (29), then the left-hand side of (53) will be
CEH)T Y & ! . !
1-F(x) x;ull[(laG(k;U))z (1aG(k+l‘0))z]
7(1—&67(k+1;a'))( 1 . 1
"~ aG(k+Lo) L(l_aé(lul;a))z 7 (1-aG(k+Lo))
Conversely, if (53) holds, then
1 1
*%{[(1-“6 (50)) (-6 x +1?<’))] f (X)} (54)
=(1-F(k)) SRR S =[(1-F (k+1))+ f (k+1)] (NN S—
(1-aG(k+L0)) (1-aG(k+L0))
From (53), we also have
xiz{(l—aé(x;a))+(1—aG(1k+];o-))]f(x)}_(lF(k))[l(l—aG(t+2;a))] (55)

Now, subtracting (55) from (54), we arrive at

1 1 1
[(1—aG(k+2;a))_l] f (k+l)=(l_F(k+1))[(1-ae(k+xa))_(1-ae(k+z;a))]‘
or

(L-F(k+1) G(k+20)(1-aG(k+Lo))
which, in view of (30), implies that X has pmf (29).
2.2 Characterizations Based on the Hazard Function

Proposition 2.2.1. Let X : Q) — N be arandom variable. The pmf of X is (2) if and only if its hazard rate function satisfies
the difference equation

f(k+1) G(k+Lo)-G(k+20)

_B(ﬁ,(k+2)”+a)—B(/f,(k+1)”V+a) B(ﬁ,(k+1)’y+a)—3(ﬁ,(k)”+a)
e (k) he ()= B(c.f)-B(B.(k+2)" +a) ) B(a.8)-B(f.(k+1) " +a) et (56)

with the boundary condition
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B(4.(2)" +a)-B (ﬁ'l+a)l
B(a.f)-B(A.(2) +a)

Proof. If X has pmf (2), then clearly (56) holds. Now, if (56) holds, then for every X e N, we have

()=

k=1 k=1

i 1 B( (k+2)’7+a)—B(ﬂ,(x)’7+a) B(ﬂ’(kﬂ)?y+0t)—B(ﬂ,(k)”+a)
he (k+ - |
: N z[ B(e.f)-B(4.(x+) " +a B(a. 8)-B(f,(k+1)" +a)

"2 B(a, ) -B(f.(x+1) " +a) B(c.f)-B(5.(2)" +a) '

k=1

1{B(ﬁ,(xﬂ)’ +a)-B(A.(k+1)" +a) B(A.(2) +a)- B(ﬁ,l+a)]

or

B(af)-B(A(x+)) " +a)  B(ap)-B[A(2) +a)

e (x)-h (1) =3,

k=1 k=1

_1[B(ﬂ,(x+1)"v +a)-B(p,(k+1)" +a) B(A(2) +a)—B(ﬁ,l+a)}

B(4.(2)" +a)-B(p1+a)
B(a,ﬂ)—B(ﬂ,(z)”m)

In view of the fact thath: (1)= , from the last equation we have

which, in view of (3), implies that X has pmf (2).
Proposition 2.2.2. Let X : Q) — N be a random variable. The pmf of X is (6) if and only if its hazard rate function satisfies

the difference equation
k+2 k+3
by (k1) =ty (k)= q{[Mj [mj} KeN, (57)

with the boundary condition h(0)= 17%

Proof. The proof is similar to that of Proposition 2.2.1. We, however, give the proof for the sake of completeness. If X has
pmf (6), then clearly (57) holds. Now, if (57) holds, then for every x e N, we have

x-1 x-1 a @ a a

Y he (k+1)- :Zl (E) _(@) :i_l[izj

k0 g |\k+1 k+2 g gqlx+1
or

he (x)-h, (0) :ﬁ_l(iz)a.

g g\x+1

. 2 .
In view of the fact that he (0)=1—?, from the last equation we have

hF(x):l_l(izja.

gl x+1
which, in view of (7), implies that X has pmf (6).

Proposition 2.2.3. Let X : Q) — N be a random variable. The pmf of X is (10) if and only if its hazard rate function
satisfies the difference equation
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D) 1 (1- p)2(1+[n’(k+1)) B (1- p)2(1+[3k) Cel
e (ke )=he (k)= p{(l—p)(1+,8(k+l))+ﬁ (l—p)(l+ﬁk)+ﬂ}' N (58)
with the boundary condition h (0)= ((fppfﬂ)

Ch (1) z“{ (1+B(k+1)) (1+ BK) }

& a = (l+ﬂ(k+l))+ﬂ (1-p)(1+Bk)+ 5|’

or

1 YRS (1+x) 1
e (X) =P Z;{ p)(L+BX)+f 1- p+ﬁ}

(1-p)

In view of the fact that he (0)=———,
£ (0) 2P+ f)

from the last equation we have

(L-p)' (1+ %)
he (X) = ——2 L

0= Slp)e )+ 47
which, in view of (11), implies that X has pmf (10).

Proposition 2.2.4. Let X :Q—» N"be a random variable. The pmf of X is (14) fora =1, if and only if its hazard rate
function satisfies the difference equation

1+(k+1) 1+k .
he (k+1)-h. (k)= 6 - , keN,
- (ke3)=he (k) {9(2+(k+1))+1 9(2+k)+1} © (®9)
with the boundary conditionh. (0)= 2Z+1'

Proof. If X has pmf (14), for = 0, then clearly (59) holds. Now, if (59) holds, then for every X e N, we have

g S 1+(k+1) 1+k
he (k+1)-h (k) =6 - ,
= - (ke Z‘{H(%(kﬂ))ﬂ 6(2+k)+1}

1+x 1
he (X)=he (0) =67 ————~—
(- (0) {0(2+x)+1 29+1}‘
92

In view of the fact that h_ (0) =51’ from the last equation we have
+

which, in view of (15), implies that X has pmf (14) fora =1.

Proposition 2.2.5. Let X : Q) — N be a random variable. The pmf of X is (18) if and only if its hazard rate function
satisfies the difference equation

1-6)(1-po) 1-pit ~ 1-pf
0 [(1-po)-(1-0)p" (1-po)-(L-0)pi" |

he (k+1)—he (k) _{ (60)

1

k e N, with the boundary conditionh: ()= m*&

Proof. If X has pmf (18), then clearly (60) holds. Now, if (60) holds, then for every X e N, we have
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= (1-6)(1- po) 1-pi+ 1-pt
he (k+1)—h: (k 1 - 1
5 (1) ()= ;L Y Ear el

_(1-0)1-po Zl 1-p ) 1-p,
(1-p, 3

GL(l-po)-(1-0)p"  (1-p0)-(1-6)p]

or

he (x)-he (1)= (1-6)(1- pﬂ){(l : 1-pf ~ 1-p :‘

0 -pf)-(1-0)p*"t (1-pf)-(1-6)p!

In view of the fact that  (1)= ~0.from the last equation we have

_
1+(1-0)p,

. (1-0)(1- po)(1- ;)
o[- po)-(1-0)pt ]

which, in view of (19), implies that X has pmf (18).

Proposition 2.2.6. Let X :Q)— N be a random variable. The pmf of X is (22) if and only if its hazard rate function

satisfies the difference equation

G (k+2)-G* (k +1) G (k+1)-G* (K)
(0+66° (k+1))(1-G" (k+2)) (0+8G° (k))(L-G (k+1))’

e (k+1)~h. (k)= (61)

G°(1)
0(1-G(1))
Proof. If X has pmf (22), then clearly (61) holds. Now, if (61) holds, then for every X € N, we have

k e N", with the boundary conditionh (0)=

o 6 (k+2)-G" (k+1) G* (k+1)-6° (k)
"= (0+06° (k+D)(1-G" (k+2)) (0+06" (K))(1-G* (k+1))

XihF k+1)-
k=1

G*(x+1)-G"(x) G“(1)

=(0+§G“(x))(1—G“(x+1)) 0(1-G* (1))’

or
?“(x+1)—G“(x) Gy ’
0+0G* (x))(1-G" (x+1)) 0(1-G*(1))

hy (x)-h, (o):(

¢
0(1-G* (1))’

In view of the fact that h(0)= from the last equation we have

?”(x+1)—G“(x) ,
9+06“(x))(1—6“(x+1))

hF(x):(

which, in view of (23), implies that X has pmf (22).

Proposition 2.2.7. Let X:Q— 1 \{0} be a random variable. The pmf of X is (26) if and only if its hazard rate function
satifies the difference equation

otV (ot (il VE
(koo (0 O ek (aketfa-1-0)e-i))

, (62)
(a—k-1)a~(1-0)(a-k)')* (a=k)(a”~(1-0)(a—k+1)')*

[a"-(1-0)(a" —1'])]%1

-1
(a-1)0/°

X e 1\{0}, with the boundary condition h, (1)=

Proof. If X has pmf (26), then clearly (62) holds. Now, if (62) holds, then for every X el \{O} , we have

66



http://ijsp.ccsenet.org International Journal of Statistics and Probability \ol. 8, No. 1; 2019

Sh, (k+1)- o k)(““(lﬂ)(a*k*l)p)%7(a—k+1)(a”7(170)(a7k)p)%
= k:1(0! k—l)(a"_(l—é?)(a—k)p)/]/p (a—k)(ap—(l—ﬁ)(a—k+1)p)}/"

(oc—k)(oc”—(1—(9)(0:—><+1)'])/Vp (a—l)é’}/"

(a-xs1)a~(1-0)(a-x )" (a"-(1-0)(a-1)"

or

(a-xet)(a -0 (a*-1-0)(a-1) )"
he (X)th (0)_ EA - % '
(a-k)(a" -(1-6)(a-x+1)")” (a-1)07

(e® —(1—6')(05—1)’))yp
(a-1)0’"

In view of the fact that h, (1)= -1, from the last equation we have

(a—x+l)(ap—(l—¢9)(a—x)p)%I
(a—k)(ap—(l—ﬁ)(a—x+1)p)%’
which, in view of (27), implies that X has pmf (26).

he (X) =

Proposition 2.1.8. Let X : Q) — N be a random variable. The pmf of X is (29) if and only if its hazard rate function
satisfies the difference equation

h (k+1)~h, (k)=

+L0)(1-aG(k+Lo)) G(k+Lo)(l-aG (ko))
G(Lo)

(1 aG 0; 0 )

Proof. If X has pmf (29), then clearly (63) holds. Now, if (63) holds, then for every xeN", we have

1 X1 G (k+Lo)- (k+2‘a) G(k;a)—é(kJrl;a)
he (k 1 -
2 (kt)-he (k) =23

GG (k+20)(1-aG(k+Lo)) G(k+Lo)(1-aG(ko))

é(k+1,0) G(k+2 0') é(k;o)—é(kﬂ;a}
G(k
( )-

k e N", with the boundary condition h (0)=

Slxo)-Clx+Lo) __G0o)-Cllo) (1 1 (o)

_ + G(x0)-G(x+Lo)  G(0)-G(Lo)
G(x+Lo)(1-aG(kio)) G(Lo)(1-aG(ko))

G(k+20)(1-aG(k+Lo)) G(Lo)(1-aG(kio))

: G(0)-G(Lo) .
In view of the fact thath: (0)= =————=——=.from the last equation we have

G(Lo)(1-aG(00))

7é(X;O')—é(Xt1;O') ,
G(x+Lo)(1-aG(x o))

he (X):

which, in view of (30), implies that X has pmf (29).
2.3 Characterizations Based on the Reverse Hazard Function

Proposition 2.3.1. Let X :QQ— N" be a random variable. The pmf of X is (2) if and only if its reverse hazard rate function
satisfies the difference equation

- - , keN, (64)

with the boundary condition = (1)=1-
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Proof. If X has pmf (2), then clearly (64) holds. Now, if (64) holds, then for every x €N, we have

$r (ot (03 B(A.(k)” +a) _B(ﬂ,(k+1)‘7+a)
o 18(p(k+1)" +a) B(p(k+2)" +a)

k=

N

or

r-(x)-r-(1)= -
()% 0) TB(4.(2) +a) B(A(x+1)" +a)
B(B1l+a)
i re (1) =1- = i
In view of the fact that B(ﬂ,(z) , +a) from the last equation we have
T (x) B(f 0 +a]
F B(4.(x+1) " +a)

which, in view of (4), implies that X has pmf (2).

Proposition 2.3.2. Let X : () — N"be a random variable. The pmf of X is (4) if and only if its reverse hazard rate function
satisfies the difference equation

k k+1

o, a
o 0-— 5L ey (65)

(k+2)" (k+3)"
with the boundary condition r; (0)=1.

Proof. The proof is similar to that of Proposition 2.3.1. We, however, give the proof for the sake of completeness. If X has
pmf (6), then clearly (65) holds. Now, if (65) holds, then for every X e N, we have

k k+1

g
ot o (k+1)” k+2)
rF k+1 ): ( k+1) - ( k+2)’
k0 o4 14
(k+2)° (k+3)°
or
-9
Xx+1
rF(X)_rF( )_ ( x+1)
L
(x+2)"
In view of the fact that h; (0) =1, from the last equation we have
_q
(x+1)
=1
)=
(x+2)

which, in view of (8), implies that X has pmf (6).

Proposition 2.3.3. Let X : ! N be a random variable. The pmf of X is (10) if and only if its reverse hazard rate function
satisfies the difference equation

(L-p) (1+ B (k+1)) p* (1 p)’ (L+ k) p"
1+ p(ﬁ—l)—p[(l— p)(1+ﬁ(k+1))+,8]pk*2 1+ p(p-1)-p[(1-p)(1+ k) + B p**
k e N, with the boundary condition . (0)=1.
Proof. If X has pmf (10), then clearly (66) holds. Now, if (66) holds, then for every X e N, we have

re(k+1)-r. (k)= (66)

68



http://ijsp.ccsenet.org International Journal of Statistics and Probability \ol. 8, No. 1; 2019

S'r (k+1)- :xi (1-p)’ (14 (k+1)) p (1 p)’ (1+ ) p'
2 S\ 1 p(p-1)-p[(t-p)(1+ A(k+1)+ ]p"% 1+ p(B-1)-p[(1-p)(1+ )+ 5P |

or

(L=p) (1 px)p’

F (%)= (0)= P
(=1 (0) 1+ p(B-1)-p[(1-p)(1+ Bx)+ B]p

In view of the fact that T (0)=1, from the last equation we have

(L-p) (1+x)
pl(1-p)(L+Ax)+ 4]

he (x) =

which, in view of (12), implies that X has pmf (10).

Proposition 2.3.4. Let X :()— N"be a random variable. The pmf of X is (14) if and only if its reverse hazard rate
function satisfies the difference equation

1+(2+k) 6" (1+k)
(140 ~(0(3+k)+1) (1+6)"~(0(2+k)+1)’

e (k+1)-r (k)= (67)

k e N"with the boundary condition r; (0) =1.
Proof. If X has pmf (14), for = 0, then clearly (67) holds. Now, if (67) holds, then for every x e N, we have

1 =) 6°(2+k) 0° (1+k)
k:lrF (k+)- 21: 0)" (0(3+k)+1)_(1+0)k+2—(0(2+k)+1) '
or
E(x)r (0)= 6" (1+x) ~
()% (0) (1+0)"* ~(0(2+x)+1)

In view of the fact that T (0)=1, from the last equation we have

6” (1+x)
(1+6)7* -0(2+x)+1

e (X)=

which, in view of (16), implies that X has pmf (14).

Proposition 2.3.5. Let X : () — N be a random variable. The pmf of X is (18) if and only if its reverse hazard rate function
satisfies the difference equation

o po-p")d  (-0)a-po)i-p)o } )

1-p,)-0'[(1- p0)-(1-0) p* ] (1-p)-0"[(1- p0)-(1-0) pi™ ||

re(k+1)-r. (k)= L

k e N, with the boundary condition ' (1) = - p(§ 6)[((11: F:Z))(_l(_f;) o]

Proof. If X has pmf (18), then clearly (68) holds. Now, if (68) holds, then for every X e N, we have

3 i r1- z{ a-0)-po)a-pi*)e  -0)1-po)i-pi)o ]
! 1-p)-0"[(1-p0)-(1-0)pi* | (1-p)-0"[(1-p0)-(1-0)pi"* |

k=1 k=1

or

(1-0)(-po)(1-p)o (1-0)(1-po)(1-p)

(1-p)-0"[(1-p0)-(1-0) "] (1—pl)—ﬂ[(l—pﬂ)—(l—e)pfﬂ'

e (X)-r, (1){

69



http://ijsp.ccsenet.org International Journal of Statistics and Probability \ol. 8, No. 1; 2019

(1-0)1-po)(1-p)
1-p)-6[(1- po)-(1-6)p ] »from the last equation we have

In view of the fact that % ()= (

(1-0)(1- po)(1-pi)o"
e (X): 17’
(1-p)-0"[(1-pO)-(1-0) B ]
which, in view of (20), implies that X has pmf (18).

Proposition 2.3.6. Let X : () — N be a random variable. The pmf of X is (22) if and only if its reverse hazard rate function
satisfies the difference equation

0(G“ (k+2)-G" (k+1))  0(G"(k+1)-G"(k))
G“ (k+2)(6+8G" (k+1)) G (k+1)(6+8G" (k)

re(k+1)-r. (k)=

(69)

k e N", with the boundary condition - (0)=1.
Proof. If X has pmf (22), then clearly (69) holds. Now, if (69) holds, then for every X € N, we have

N

X

o (k+1)- w1 0(G (k+2)-G* (k+1)) ) 0(G* (k+1)-G* (k))
= o G (k+2)(0+0G" (k+1)) G*(k+1)(0+0G" (k))"

=~

or

£ (X)-1. (0) 0(G* (x+1)-G*(x))
G (x+1)(6+86G" (x))

In view of the fact that I (0)=1, from the last equation we have

0(G* (x+1)-G"(x))
G” (x+1)(¢‘)+67G‘Z (x)) ’

e (x)=

which, in view of (24), implies that X has pmf (22).

Proposition 2.3.7. Let X :Q—N" be a random variable. The pmf of X is (29) if and only if its reverse hazard rate
function satifies the difference equation

o (k+1)-1; (k) = A (70)

G(k+Lo)-G(k+20) G(k ) G(k+L0)
~G(k+20))-(1-aG(k+Lo)) (1-G(k+Lo))-(1-aG(kio))’
G(O;J)—G(La)
G(LJ)—(l—&G(O:o))'
Proof. If X has pmf (22), then clearly (70) holds. Now, if (70) holds, then for every X e N, we have

k e N, with the boundary condition ' (0)=

G(k+20))-(1-aG(k+Lo)) (1-G

F
k=1 k=1

S (k+1)- “a{ G(k+10)-G(k+20) G(ko)-G(k+Lo) }
(-6 (k+Lo))-(1-aG(kio))|

or

. G(0,0)-G(Lo)
In view of the fact that T (O)ZW .from the last equation we have

i)
F (1-aG(x+1L0))-(1-aG(x0))

which, in view of (31), implies that X has pmf (29).
Remark 2. Para and Jan presented five sub-models of DIWB distribution resulted from taking selected parameter values.
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We list below these sub-models. We believe that the pmf formulas for three of them are not complete as was the case with
that of DIWB mentioned in Remarks 1 (a).

(A) For y =1, the DIWB reduces to, what the authors called, a compound of Inverse Geometric (IG) with Beta (B), which
has the following pmf

a+l

f(Xa,B1)= a+f+l’ .
B(4.(x+1) " +a)-B(A,(x)"+a). xeN

(B) For a= =1, the DIWB reduces to, what the authors called, a compound of Discrete Inverse Weibull (DIW) with
Uniform (U), which has the following pmf

x=0,

E x=0,

f(x1Ly)= 3 .
B(L(x+1)" +1)-B(L(x) " +1), xeN
(C) For a=p=y=1, the DIWB reduces to, what the authors called, a compound of Inverse Geometric (IG) with
Uniform (U), which has the following pmf

1
(x+1)(x+2)’

(D) For a ==y =1, the DIWB reduces to, what the authors called, a compound of Inverse Rayleigh (IR) with Uniform
(U), which has the following pmf

f(x111)=

2x+1
(x2+1)((x2+1)+1)'
(E) For ¥ =2, the DIWB reduces to, what the authors called, a compound of Discrete Rayleigh (DR) with Beta (B),
which has the following pmf

f(x11,2)=

a+l
f(x;a,/?,Z): a+ﬁ+1v
B(A.(x+1) " +a)-B(A(0) " +a). xeN
Remark 3. Clearly, much simpler characterizations, similar to the Propositions 2.1.1 and 2.2.1, can be stated for the above
mentioned sub-models of DIWB.

x=0,
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