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Abstract

In this paper, a Nonhomogeneous Poisson Process (NHPP) reliability model based on the two-parameter Log-Logistic
(LL) distribution is considered. The essential model’s characteristics are derived and represented graphically. The
parameters of the model are estimated by the Maximum Likelihood (ML) and Non-linear Least Square (NLS) estimation
methods for the case of time domain data. An application to show the flexibility of the considered model are conducted
based on five real data sets and using three evaluation criteria. We hope this model will help as an alternative model to other
useful reliability models for describing real data in reliability engineering area.

Keywords: NHPP log-logistic model, maximum likelihood estimation, non-linear least square estimation, reliability

assessment
1. Introduction

The Log-Logistic (LL) distribution that results from a simple transformation of the familiar logistic distribution has been
found useful in many areas such as engineering, reliability data analysis, economics and hydrology. In the literature, it is
well-known as the Fisk distribution due to (Fisk, 1961). In some cases, the LL distribution is proved to be a good
alternative to the log-normal distribution since it characterizes increasing hazard rate function. Further, its use is well
appreciated in case of censored data that usually common in reliability and life-testing experiments. The Cumulative
Distribution Function (CDF) and Probability Density Function (PDF) of the two-parameter LL distribution can be defined
respectively as follows:
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where y > 0 is the scale parameter, and (3 > 0 is the shape parameter. The log-logistic reliability growth model is
quite flexible to analyze reliability data since it can capture increasing/decreasing nature of the failure occurrence rate per
fault. This property has attracted more attention of researchers. (Gokhale and Trivedi, 1998) considered the log-logistic
reliability growth model. The Maximum Likelihood (ML) estimation method of several existing finite-failure NHPP
models, as well as the log-logistic model was conducted based on inter-failure times data. They presented analysis using
two real data sets which encouraged the development of the log-logistic model. (Harishchandra, 2016) considered a
software reliability model in which time between two successive failures is assumed to follow the log-logistic distribution.
The parameters of their model were estimated using the ML method in the cases of interval domain data and time domain
data. A simulation study and real data were used to examine their model. The results showed that their considered model
performs better compared to previously suggested four NHPP models. In this paper, Nonhomogeneous Poisson Process
Log-Logistic (NHPP LL) model is considered. Reliability characteristics of this model including: intensity function,
number of remaining errors function, error detection rate function, instantaneous and cumulative mean time between
failure function, and conditional reliability function are provided and represented graphically. The estimation of the model
parameters is performed by the ML and Nonlinear Least Square (NLS) estimation methods. The flexibility of the new
model is illustrated by means of an application to five real data sets. We hope that the new model will help as an
alternative model to other useful models for representing positive real data in many areas.
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The rest of the paper is organized as follows. In Section 2, we define the NHPP LL model and provide mathematical
formulas and plots of its reliability characteristics. Estimation by the method of the ML and NLS methods is presented in
Section 3. Evaluation criteria is presented in Section 4. An application to a real data set illustrates the flexibility of the
NHPP LL model is given in Section 5. Conclusions are presented in Section 6.

2. NHPP Log-Logistic Reliability Growth Model

One way to model software failure phenomena is Non-Homogeneous Poisson process (NHPP) family of models with
Mean Value Function (MVF) at time t;, m(t;). The derivative of the MVF is the failure intensity, h(t;), of the software
which ordinarily decreases as faults are detected and removed. If F(t) is the distribution function that denotes the expected
number of faults that would be detected in a given infinite testing time, then the MVF as presented in (Lyu, 2002) is as
follows:

m(t;) = NF(t;) 3)
By inserting Eq.(1) in Eq.(3), we obtain the MVF of the NHPP LL model as follows:
Nyt;P
m(t;) = 1+Yy‘ti6, N,v,p >0, (4)

where t;, i = (1, 2,...,n) is the failure times, N is the number of initial errors, y is positive scale parameter, and B is
shape parameter.

The failure intensity function corresponding to (4) is defined as:

am(t)
h(t) = %
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while the constructed model’s number of remaining errors function is given by:
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also, its error detection rate function is given as follows:

h(t.
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Additionally, the instantaneous mean time between failures (MTBF) can be found by the inverse of the intensity function:

MTBF,(t;) = %

_ (a+pB)’ g
© NyptPt ®
while the cumulative MTBF can be calculated by:

t
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lastly, we have the conditional reliability function as follows:

R(tilx,) = exp{~(n(t; +x) — u(t))}

_ _ (ti"'xn)ﬁ—xrlf
=exp { NV ((1+yx5)(1+y(t+xn)5)>} (10)
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All the above reliability characteristics of the NHPP LL model are summarized in Table 1. While, Figures [1-7] show plots
of the NHPP LL model’s characteristic for different selected values of parameters. Figure 1 displays that the intensity
function varies in shape over the different selected values of the shape parameter, it reaches a larger peak level with the
larger value of the parameter N. Figure 2 illustrates the MVF which represents the variation of number of faults detected
with respect to time. From this figure we can see that, initially the faults detected during testing are very high but later on
become constant, also larger value of the parameter N gives higher MVF form. The number of remaining errors function
in Figure 3 decreases as the testing time increases, smaller value of the parameter N gives lower form of the number of
remaining errors function. Figure 4 shows the effect of different values of the parameters on the error detection rate
function, when the shape parameter is less than or equal to 1 the error detection rate function is declining exponentially,
while the error detection rate function is increasing at the beginning before start declining when the shape parameter is
greater thanl. In Figure 5, the conditional reliability function shows a decrease form with the progress of time, the
sharpness of the decreasing varies according to the variation in the selected parameters’ values, larger value of the
parameter N gives lower reliability form. The instantaneous and cumulative MTBF functions in Figure 6 and Figure 7,
respectively, either increase rapidly with the progress of testing time or show an initial decrease before start increasing, in
both cases larger value of the parameter N gives lower MTBF form.

Table 1. Listing of the NHPP LL model’s characteristics.

Characteristic name Characteristic function
Mean value function (MVF) m(t) = Nyt
' ! 1+Ytiﬁ'
: : NyBt;P1
Intensity function. h(t) = ——;.
(1+v4#)
N
Number of remaining errors function (NRE). n(t) = THif
1
Error detection rate (EDR) d(t,) = yByP
. ! 1+yt P
2
Instantaneous mean time between failures (I-MTBF). MTBF,(t;) = EVHBYtiB B_)l.
YBti
. B
Cumulative mean time between failures (C-MTBF). MTBF.(t;) = —tl(;::'tsl )
i
Conditional reliability function R(t;|x,) = exp{—N (ti+xn) Pxf
ty . il4n p Y (1+YXE)(1+V(t+Xn)B) .
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Figure 1. Plots of the NHPP LL model’s intensity function for some selected values of parameters (Solid lines
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Figure 2. Plots of the NHPP LL model’s MVF for some selected values of parameters
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Figure 3. Plots of the NHPP LL model’s NRE function for some selected values of parameters
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Figure 4. Plots of the NHPP LL model’s EDR function for some selected values of parameters
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Figure 5. Plots of the NHPP LL model’s reliability function for some selected values of parameters
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Figure 6. Plots of the NHPP LL model’s I-MTBF function for some selected values of parameters
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Figure 7. Plots of the NHPP LL model’s C-MTBF function for some selected values of parameters
3. Estimation of the NHPP LL Model’s Parameters

Two commonly used methods for parameter estimation in a NHPP model are the Maximum Likelihood (ML) and Least
Squares (LS) estimation methods (Knafl, 1992; Lyu, 1996; Zhao and Xie, 1996; Musa, 1999; Chang, 2001; Prasad et al.,
2011; Rana et al., 2013; Zeephongsekul et al., 2016). In this section, the ML and NLS estimation methods will be applied
to the NHPP LL model.

3.1 Maximum Likelihood Estimation

Suppose that we have n observations, denoted by t;, t,, ... , t,, then the likelihood function of the NHPP model can be
written as follows:

L(6[s) = e ™MW [TL, At) (1)

where © is the NHPP model’s parameters, m(t;) and A(t;) are, respectively, the NHPP model’s mean value and

intensity functions.
To simplify the mathematical computations, we take the natural logarithm of both sides of Eq.(11):

InL(0[S) = —m(t) + T, In A(ty). (12)
By substituting Eqs.(4) and (5) in Eq.(12), the log-likelihood function of the NHPP LL model can be written as:

49



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 8, No. 1; 2019

B-1
NyS NyBS;
InL(Ny, ¥, B|S) = +>, : (13)
(o B ==t ((wsff)
1’55 n n n B 14
= +nlny+nmB+ninN+pgY" Ins,— X" Ins; — ZZizlln(l + ySl.) (14)
Differentiating Eq. (14) with respect to N, y and S, we have:
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Setting the three expressions of Eq.(15) to zero we get the following system of equations:
B
N=n (—Hy;")
YSn
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Ins;
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The second and third expressions of Eq.(16) do not have a closed-form so we need numerical methods to obtain the ML
estimates of the parameters y and f, then by substituting # and § in the first expression, N can be obtained.

3.2 Nonlinear Least Squares Estimation

Assuming (ty,y4), (tz, ¥2),-.., (tn, ¥n) are n pairs of observations where i = 1,...,n. The model to be fitted to these
data is:

yi = f(t,0) +&, (17)
where 6 is the parameter vector, and ; is the error term. In statistics theory ¢; is assumed as independent variables of
normal distribution N(0, 06%), where o?: is the variance of the normal distribution. The NLS estimation method involves
in determining the value of the unknown parameters that minimizes:

Unis = Dimalyi — F&, 0] (18)
By substituting Eq.(4), our considered fitting function, in Eq.(18), the NLS estimates of the NHPP LL model’s parameters
are obtained by minimizing:

512
Ynis(N, v, B) = 21ty [Yi L ] . (19)

B
1+yti
Differentiating Eq. (19) with respect to N,y,and B then equating the resulted equations to zero subsequently yields the
following system of equations:

? fyse, (2L) (20)
N=X, 17, t/;/y i=1 1+VtiB .
OSnLsWNo¥B) _ g _ Vit B FNYST, 2k 0 on
ay i=1 (1+ytl )2 —( ytﬁ)
B 2p
0SNLs(No,v.B) n Yitp nt; t?
= T +N]/Z —lnt-=0. 22
B i=1 (1+ytﬂ) (1+yt’8)3 i (22)

The estimates of the parameters y and S can be obtained by solving the nonlinear Eqs.(21) and (22) numerically, then by
substituting these estimates in Eq.(20) the estimate of the parameter N can be obtained.
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4. Numerical Application

To illustrate the estimation procedures and examine the considered model, data analysis of real software data set is carried
out in this section.

4.1 Description of Datasets

The dataset used in our data analysis was that developed by (Musa, 1980) of Bell Telephone Laboratories, Cyber Security
and Information Systems Information Analysis Centre (CSIAC). Tables [2-6] present the selected five data sets.

Table 2. Failure time data Ds-1.

Failure Failure Failure Failure Failure Failure Failure Failure
Number Interval Number Interval Number Interval Number Interval
Length (in Length Length (in Length
CPU (in CPU CPU (in CPU
seconds) seconds) seconds) seconds)
1 115 11 50 21 15 31 10571
2 0 12 71 22 390 32 563
3 83 13 606 23 1863 33 2770
4 178 14 1189 24 1337 34 652
5 194 15 40 25 4508 35 5593
6 136 16 788 26 834 36 11696
7 1077 17 222 27 3400 37 6724
8 15 18 72 28 6 38 2546
9 15 19 615 29 4561
10 92 20 589 30 3186
Table 3. Failure time data Ds-2.
Failure Failure Failure Failure Failure Failure Failure Failure
Number Interval Number Interval Number Interval Number Interval
Length (in Length Length (in Length
CPU (in CPU CPU (in CPU
seconds) seconds) seconds) seconds)
1 5 15 424 29 283 43 887
2 73 16 92 30 50 44 149
3 141 17 520 31 308 45 469
4 491 18 1424 32 279 46 716
5 5 19 0 33 140 47 604
6 5 20 92 34 678 48 0
7 28 21 183 35 183 49 774
8 138 22 10 36 2462 50 256
9 478 23 115 37 104 51 14637
10 325 24 17 38 2178 52 18740
11 147 25 284 39 285 53 1526
12 198 26 296 40 171
13 22 27 215 41 0
14 56 28 116 42 643
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Table 4. Failure time data Ds-3.

Failure Failure Failure Failure Failure Failure Failure Failure
Number Interval Number Interval Number Interval Number Interval
Length (in Length Length (in Length
CPU (in CPU CPU (in CPU
seconds) seconds) seconds) seconds)
1 3 35 227 69 529 103 108
2 30 36 65 70 379 104 0
3 113 37 176 71 44 105 3110
4 81 38 58 72 129 106 1247
5 115 39 457 73 810 107 943
6 9 40 300 74 290 108 700
7 2 41 97 75 300 109 875
8 91 42 263 76 529 110 245
9 112 43 452 77 281 111 729
10 15 44 255 78 160 112 1897
11 138 45 197 79 828 113 447
12 50 46 193 80 1011 114 386
13 77 47 6 81 445 115 446
14 24 48 79 82 296 116 122
15 108 49 816 83 1755 117 990
16 88 50 1351 84 1064 118 948
17 670 51 148 85 1783 119 1082
18 120 52 21 86 860 120 22
19 26 53 233 87 983 121 75
20 114 54 134 88 707 122 482
21 325 55 357 89 33 123 5509
22 55 56 193 90 868 124 100
23 242 57 236 91 724 125 10
24 68 58 31 92 2323 126 1071
25 422 59 369 93 2930 127 371
26 180 60 748 94 1461 128 790
27 10 61 0 95 843 129 6150
28 1146 62 232 96 12 130 3321
29 600 63 330 97 261 131 1045
30 15 64 365 98 1800 132 648
31 36 65 1222 99 865 133 5485
32 4 66 543 100 1435 134 1160
33 0 67 10 101 30 135 1864
34 8 68 16 102 143 136 4116
Table 5. Failure time data Ds-4.
Failure Failure Failure Failure Failure Failure Failure Failure
Number Interval Number Interval Number Interval Number Interval
Length (in Length Length (in Length
CPU (in CPU CPU (in CPU
seconds) seconds) seconds) seconds)
1 191 15 50 29 3910 43 0
2 222 16 660 30 6900 44 0
3 280 17 1507 31 3300 45 300
4 290 18 625 32 1510 46 9021
5 385 19 912 33 195 47 2519
6 570 20 638 34 1956 48 6890
7 610 21 293 35 135 49 3348
8 365 22 1212 36 661 50 2750
9 390 23 612 37 50 51 6675
10 275 24 675 38 729 52 6945
11 360 25 1215 39 900 53 7899
12 800 26 2715 40 180 54
13 1210 27 3551 41 4225
14 407 28 800 42 15600
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Table 6. Failure time data Ds-5.

Failure Failure Failure Failure Failure Failure Failure Failure
Number Interval Number Interval Number Interval Number Interval

Length (in Length Length (in Length
CPU (in CPU CPU (in CPU
seconds) seconds) seconds) seconds)

1 3 20 8 39 41 58 27

2 14 21 1 40 7 59 140

3 59 22 12 41 43 60 33

4 32 23 36 42 1 61 5

5 8 24 38 43 4 62 36

6 52 25 74 44 5 63 74

7 2 26 43 45 1 64 40

8 25 27 236 46 16 65 2

9 2 28 121 47 70 66 86

10 3 29 18 48 60 67 221

11 4 30 9 49 2 68 6

12 1 31 23 50 2 69 891

13 30 32 1 51 3 70 23

14 21 33 672 52 169 71 4

15 196 34 189 53 29 72 437

16 265 35 83 54 88 73 66

17 6 36 52 55 55

18 3 37 8 56 27

19 8 38 1 57 24

4.2 Goodness of Fit Tests

Three evaluation criteria are used in the application. The variation between the predicted and actual values of observations
is calculated by the Mean Square Error (MSE) as follows (Hwang and Pham, 2009):

MSE = i (vi —I?l(ti))z’ (23)
n—k
where 7 is the number of observations and & is the number of model’s unknown parameters, y; denotes the number of
faults observed to the moment t;, and fi(t;) denotes the estimated number of faults detected to the time t; according to
the considered model; for i=1, 2, ..., n. The lower MSE indicates less fitting error, thus better performance. The Theil
Statistic (TS) is the average deviation percentage over all periods with regard to the actual values. The closer, TS is to zero,
the better the prediction capability of model. It is defined as (Li et al., 2005):

S (i -m), (24)

TS =100
* Z?:ﬂ’iz

The coefficient of multiple determinations R? value indicates the predictive measure of the difference among the
forecasting values. It is defined as follows (Xie and Yang, 2003):
ST (vi —@()°
2.
S (vi -2per"¥/n)
It ranges from 0 tol. The larger R? is the better the model fits data.

R?=1- (25)

4.3 Numerical Results and Analysis

The parameter estimation and evaluation criteria results of the NHPP LL model for the five considered data sets using the
ML and NLS estimation methods are respectively shown in Table [7] and Table [8]. By comparing the results in these two
tables, it is clear that the NHPP LL model provides better values of the MSE, R?, and TS criteria when using the NLS
estimation method for all cases. Based on the two studied methods of estimation, it is observed that the ranking of the data
sets varies with respect to the selection of evaluation criteria as follows: According to MSE criteria the NHPP LL model’s
performance is the best for Ds-1. While, according to TS and R? the NHPP LL model’s performance is the best for Ds-3.
According to all considered criteria the NHPP LL model’s performance is the worst for Ds-5.
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Table 7. Estimated parameters values and comparison criteria results using MLE method.

The NHPP LL Model
Data sets Parameters estimates Model selection criteria
Nuie Ymie Buie MSE TS R?
Ds-1 50.2091 0.0009 0.7298 2.4263 6.7768 0.9809
Ds-2 58.7724 0.0001 1.0684 6.1654 7.849 0.9746
Ds-3 239.8247 0.0004 0.7108 6.297 3.1549 0.996
Ds-4 86.625 0.0002 0.7746 2.9425 5.3253 0.9883
Ds-5 346.946 0.0004 0.7650 17.1994 9.6056 0.9623
Table 8. Estimated parameters values and comparison criteria results using NLSE method.
Data sefs The NHPP LL Model
Parameters estimates Model selection criteria
Nyise YNLsE Bnise MSE TS R?
Ds-1 43.7384 0.0009 0.7731 1.349 5.0532 0.9894
Ds-2 60.1523 0.00003 1.193 4.4649 6.6794 0.9816
Ds-3 244.4601 0.0004 0.7037 6.0325 3.0879 0.9961
Ds-4 102.3934 0.0005 0.6621 2.0405 4.4346 0.9919
Ds-5 3156.474 0.00005 0.7244 15.8935 9.2337 0.9652

5. Conclusion

As software has become more diverse and spread, software reliability has also become a key concern in software
development process. During the last 47 years numerous reliability models have been proposed (see; Yamada et al., 1983;
Goel, 1985; Cai and Lyu, 2007; Yamada, 2013). These models are used to measure the software reliability through several
characteristics such as: number of remaining errors, error detection rate, and mean time between failures. In this paper, we
have considered a NHPP model that based on the log-logistic distribution which can capture increasing/decreasing nature
of hazard function. Several essential characteristics of our studied model, the NHPP LL model, have been obtained and
represented graphically. The considered model’s parameters have been estimated using the ML, and NLS estimation
methods. An application has been conducted using five real data sets and three different evaluation criteria. The
considered model displays acceptable performance for the studied real data sets, particularly in the case of Ds-1 and Ds-3.
The findings reveal that that the NHPP LL model gives a reasonable predictive capability for the studied real failure data.
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