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Abstract  
In this paper, a Nonhomogeneous Poisson Process (NHPP) reliability model based on the two-parameter Log-Logistic 
(LL) distribution is considered. The essential model’s characteristics are derived and represented graphically. The 
parameters of the model are estimated by the Maximum Likelihood (ML) and Non-linear Least Square (NLS) estimation 
methods for the case of time domain data. An application to show the flexibility of the considered model are conducted 
based on five real data sets and using three evaluation criteria. We hope this model will help as an alternative model to other 
useful reliability models for describing real data in reliability engineering area. 

Keywords: NHPP log-logistic model, maximum likelihood estimation, non-linear least square estimation, reliability 
assessment 
1. Introduction 
The Log-Logistic (LL) distribution that results from a simple transformation of the familiar logistic distribution has been 
found useful in many areas such as engineering, reliability data analysis, economics and hydrology. In the literature, it is 
well-known as the Fisk distribution due to (Fisk, 1961). In some cases, the LL distribution is proved to be a good 
alternative to the log-normal distribution since it characterizes increasing hazard rate function. Further, its use is well 
appreciated in case of censored data that usually common in reliability and life-testing experiments. The Cumulative 
Distribution Function (CDF) and Probability Density Function (PDF) of the two-parameter LL distribution can be defined 
respectively as follows: F(t ; 𝜸, β) = ,                                        (1) 

and 𝑓(t ; 𝜸, β) = ,                                    (2) 

where 𝛾 > 0  is the scale parameter, and  β > 0 is the shape parameter.  The log-logistic reliability growth model is 
quite flexible to analyze reliability data since it can capture increasing/decreasing nature of the failure occurrence rate per 
fault. This property has attracted more attention of researchers. (Gokhale and Trivedi, 1998) considered the log-logistic 
reliability growth model. The Maximum Likelihood (ML) estimation method of several existing finite-failure NHPP 
models, as well as the log-logistic model was conducted based on inter-failure times data. They presented analysis using 
two real data sets which encouraged the development of the log-logistic model. (Harishchandra, 2016) considered a 
software reliability model in which time between two successive failures is assumed to follow the log-logistic distribution. 
The parameters of their model were estimated using the ML method in the cases of interval domain data and time domain 
data. A simulation study and real data were used to examine their model. The results showed that their considered model 
performs better compared to previously suggested four NHPP models. In this paper, Nonhomogeneous Poisson Process 
Log-Logistic (NHPP LL) model is considered. Reliability characteristics of this model including: intensity function, 
number of remaining errors function, error detection rate function, instantaneous and cumulative mean time between 
failure function, and conditional reliability function are provided and represented graphically. The estimation of the model 
parameters is performed by the ML and Nonlinear Least Square (NLS) estimation methods. The flexibility of the new 
model is illustrated by means of an application to five real data sets. We hope that the new model will help as an 
alternative model to other useful models for representing positive real data in many areas. 
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The rest of the paper is organized as follows. In Section 2, we define the NHPP LL model and provide mathematical 
formulas and plots of its reliability characteristics. Estimation by the method of the ML and NLS methods is presented in 
Section 3. Evaluation criteria is presented in Section 4. An application to a real data set illustrates the flexibility of the 
NHPP LL model is given in Section 5. Conclusions are presented in Section 6. 
2. NHPP Log-Logistic Reliability Growth Model 
One way to model software failure phenomena is Non-Homogeneous Poisson process (NHPP) family of models with 
Mean Value Function (MVF) at time t , m(t ). The derivative of the MVF is the failure intensity, h(t ), of the software 
which ordinarily decreases as faults are detected and removed. If F(t) is the distribution function that denotes the expected 
number of faults that would be detected in a given infinite testing time, then the MVF as presented in (Lyu, 2002) is as 
follows: 

                     m(t ) = NF(t )                                          (3) 
By inserting Eq.(1) in Eq.(3), we obtain the MVF of the NHPP LL model as follows: 

                      m(t ) = ,   N, γ, β > 0,                                    (4) 

where t  , i = (1, 2, … , n) is the failure times, N is the number of initial errors, 𝛾 is positive scale parameter, and β is 
shape parameter. 
The failure intensity function corresponding to (4) is defined as: 

                                         h(t ) = ( ) 
               = ,                                         (5) 

while the constructed model’s number of remaining errors function is given by: n(t ) = N − m(t ) 

                          = ,                                          (6) 

also, its error detection rate function is given as follows: 𝑑(t ) = h(t )𝑛(t ) 

                          = ,                                        (7) 

Additionally, the instantaneous mean time between failures (MTBF) can be found by the inverse of the intensity function: MTBF (t ) =  1ℎ(t )  
                          =                                      (8) 

while the cumulative MTBF can be calculated by: MTBF (t ) =  tm(t )  
                          = ,                                    (9) 

lastly, we have the conditional reliability function as follows: 𝑅(𝑡 |𝑥 ) = exp − μ(t + 𝑥) − μ(t )  

                        = 𝑒𝑥𝑝 −𝑁𝛾 ( ) ( )                             (10) 
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All the above reliability characteristics of the NHPP LL model are summarized in Table 1. While, Figures [1-7] show plots 
of the NHPP LL model’s characteristic for different selected values of parameters. Figure 1 displays that the intensity 
function varies in shape over the different selected values of the shape parameter, it reaches a larger peak level with the 
larger value of the parameter N. Figure 2 illustrates the MVF which represents the variation of number of faults detected 
with respect to time. From this figure we can see that, initially the faults detected during testing are very high but later on 
become constant, also larger value of the parameter N gives higher MVF form. The number of remaining errors function 
in Figure 3 decreases as the testing time increases, smaller value of the parameter N gives lower form of the number of 
remaining errors function. Figure 4 shows the effect of different values of the parameters on the error detection rate 
function, when the shape parameter is less than or equal to 1 the error detection rate function is declining exponentially, 
while the error detection rate function is increasing at the beginning before start declining when the shape parameter is 
greater than1. In Figure 5, the conditional reliability function shows a decrease form with the progress of time, the 
sharpness of the decreasing varies according to the variation in the selected parameters’ values, larger value of the 
parameter N gives lower reliability form. The instantaneous and cumulative MTBF functions in Figure 6 and Figure 7, 
respectively, either increase rapidly with the progress of testing time or show an initial decrease before start increasing, in 
both cases larger value of the parameter N gives lower MTBF form. 
Table 1. Listing of the NHPP LL model’s characteristics. 

Characteristic name Characteristic function 

Mean value function (MVF).  𝑚(t ) = . 

Intensity function.  h(t ) = . 

Number of remaining errors function (NRE).  n(t ) = . 

Error detection rate (EDR).  d(t ) = . 

Instantaneous mean time between failures (I-MTBF).  MTBF (t ) = . 

Cumulative mean time between failures (C-MTBF).  MTBF (t ) = . 

Conditional reliability function.  R(t |x ) = exp −𝑁γ ( ) ( ) . 
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Figure 1. Plots of the NHPP LL model’s intensity function for some selected values of parameters (Solid lines 
indicate N=50 and dashed lines indicate N=100) 

 

Figure 2. Plots of the NHPP LL model’s MVF for some selected values of parameters 
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Figure 3. Plots of the NHPP LL model’s NRE function for some selected values of parameters 

 

Figure 4. Plots of the NHPP LL model’s EDR function for some selected values of parameters 

 

Figure 5. Plots of the NHPP LL model’s reliability function for some selected values of parameters 
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Figure 6. Plots of the NHPP LL model’s I-MTBF function for some selected values of parameters 

 

Figure 7. Plots of the NHPP LL model’s C-MTBF function for some selected values of parameters 
3. Estimation of the NHPP LL Model’s Parameters 
Two commonly used methods for parameter estimation in a NHPP model are the Maximum Likelihood (ML) and Least 
Squares (LS) estimation methods (Knafl, 1992; Lyu, 1996; Zhao and Xie, 1996; Musa, 1999; Chang, 2001; Prasad et al., 
2011; Rana et al., 2013; Zeephongsekul et al., 2016). In this section, the ML and NLS estimation methods will be applied 
to the NHPP LL model. 
3.1 Maximum Likelihood Estimation  
Suppose that we have n observations, denoted by 𝑡 , 𝑡 , … , 𝑡 , then the likelihood function of the NHPP model can be 
written as follows: L Θ S = e ( ) ∏ 𝜆(t )                                (11) 

where Θ  is the NHPP model’s parameters, m(t ) and  𝜆(t ) are, respectively, the NHPP model’s mean value and 
intensity functions. 
To simplify the mathematical computations, we take the natural logarithm of both sides of Eq.(11): ln L Θ S = −m(t ) + ∑ ln 𝜆(t ).                           (12) 
By substituting Eqs.(4) and (5) in Eq.(12), the log-likelihood function of the NHPP LL model can be written as: 
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ln L N , 𝜸, β S = − + ∑ ln                            (13) 

= − 𝑁𝛾𝑆𝑛𝛽1+𝛾𝑆𝑛𝛽 + 𝑛 𝑙𝑛 𝛾 + 𝑛 𝑙𝑛 𝛽 + 𝑛 𝑙𝑛 𝑁 + 𝛽 ∑ ln 𝑠𝑖𝑛𝑖=1 − ∑ ln 𝑠𝑖𝑛𝑖=1 − 2 ∑ ln 1 + 𝛾𝑆𝑖𝛽𝑛𝑖=1         (14) 

Differentiating Eq. (14) with respect to N, 𝛾 and 𝛽, we have: 

   

⎩⎪⎪
⎨⎪⎪
⎧ ,𝜸, = − +  ,𝜸, = − + 2 ∑

,𝜸, = + ∑ ln 𝑠 − 𝜸 + 2 ∑                 (15) 

Setting the three expressions of Eq.(15) to zero we get the following system of equations: 

⎩⎪⎪⎨
⎪⎪⎧ 𝑁 = 𝑛 𝜸

− + 2 ∑ = 0
+ ∑ ln 𝑠 − + 2 ∑ = 0                         (16) 

The second and third expressions of Eq.(16) do not have a closed-form so we need numerical methods to obtain the ML 
estimates of the parameters 𝛾 and 𝛽, then by substituting 𝛾 and 𝛽 in the first expression, 𝑁 can be obtained. 
3.2 Nonlinear Least Squares Estimation 
Assuming (t , y ), (t , y ), . . . , (t , y ) are n pairs of observations where i = 1, … , n.  The model to be fitted to these 
data is:  𝑦  =  𝑓(𝑡 , 𝜃)  + 𝜀 ,                                    (17) 
where θ is the parameter vector, and ε  is the error term. In statistics theory ε  is assumed as independent variables of 
normal distribution N(0, σ ), where σ : is the variance of the normal distribution. The NLS estimation method involves 
in determining the value of the unknown parameters that minimizes: 𝜓 = ∑ 𝑦 − 𝑓(𝑡 , 𝜃)  .                               (18) 
By substituting Eq.(4), our considered fitting function, in Eq.(18), the NLS estimates of the NHPP LL model’s parameters 
are obtained by minimizing: 𝜓 (𝑁, 𝜸, β) = ∑ y  − .                           (19) 

Differentiating Eq. (19) with respect to 𝑁, 𝛾, 𝑎𝑛𝑑 𝛽 then equating the resulted equations to zero subsequently yields the 
following system of equations: N = ∑  𝛾 ∑  .                             (20) 

𝒮 ( ,𝜸, ) =  − ∑  + 𝑁𝛾 ∑ = 0.                     (21) 

𝒮 ( ,𝜸, ) =  − ∑  + 𝑁𝛾 ∑  𝑙𝑛 𝑡 = 0.                (22) 

The estimates of the parameters 𝛾 𝑎𝑛𝑑 𝛽 can be obtained by solving the nonlinear Eqs.(21) and (22) numerically, then by 
substituting these estimates in Eq.(20) the estimate of the parameter N can be obtained. 
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4. Numerical Application 
To illustrate the estimation procedures and examine the considered model, data analysis of real software data set is carried 
out in this section.  
4.1 Description of Datasets 
The dataset used in our data analysis was that developed by (Musa, 1980) of Bell Telephone Laboratories, Cyber Security 
and Information Systems Information Analysis Centre (CSIAC). Tables [2-6] present the selected five data sets. 
Table 2. Failure time data Ds-1. 

Failure 
Interval 
Length 
(in CPU 
seconds)

Failure 
Number 

Failure 
Interval 
Length (in 
CPU 
seconds) 

Failure 
Number 

Failure 
Interval 
Length 
(in CPU 
seconds) 

Failure 
Number 

Failure 
Interval 
Length (in 
CPU 
seconds) 

Failure 
Number 

10571 31 15 21 50 11 115 1 
563 32 390 22 71 12 0 2 
2770 33 1863 23 606 13 83 3 
652 34 1337 24 1189 14 178 4 
5593 35 4508 25 40 15 194 5 

11696 36 834 26 788 16 136 6 
6724 37 3400 27 222 17 1077 7 
2546 38 6 28 72 18 15 8 

  4561 29 615 19 15 9 
  3186 30 589 20 92 10 

Table 3. Failure time data Ds-2. 

Failure 
Interval 
Length 
(in CPU 
seconds)

Failure 
Number 

Failure 
Interval 
Length (in 
CPU 
seconds) 

Failure 
Number 

Failure 
Interval 
Length 
(in CPU 
seconds) 

Failure 
Number 

Failure 
Interval 
Length (in 
CPU 
seconds) 

Failure 
Number 

887 43 283 29 424 15 5 1 
149 44 50 30 92 16 73 2 
469 45 308 31 520 17 141 3 
716 46 279 32 1424 18 491 4 
604 47 140 33 0 19 5 5 

0 48 678 34 92 20 5 6 
774 49 183 35 183 21 28 7 
256 50 2462 36 10 22 138 8 

14637 51 104 37 115 23 478 9 
18740 52 2178 38 17 24 325 10 
1526 53 285 39 284 25 147 11 

  171 40 296 26 198 12 
  0 41 215 27 22 13 
  643 42 116 28 56 14 
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Table 4. Failure time data Ds-3. 
Failure
Interval 
Length 
(in CPU 
seconds)

Failure 
Number 

Failure
Interval 
Length (in 
CPU 
seconds)

Failure
Number 

Failure
Interval 
Length 
(in CPU 
seconds)

Failure 
Number 

Failure
Interval 
Length (in 
CPU 
seconds)

Failure 
Number 

108103 5296922735 3 1 
0104 379706536 302 

3110105 447117637 1133 
1247106 129725838 814 
943107 8107345739 1155 
700108 2907430040 9 6 
875109 300759741 2 7 
245110 5297626342 918 
729111 2817745243 1129 
1897112 1607825544 1510 
447113 8287919745 13811 
386114 10118019346 5012 
446115 44581647 7713 
122116 296827948 2414 
990117 17558381649 10815 
948118 106484135150 8816 
1082119 17838514851 67017 
22120 860862152 12018 
75121 9838723353 2619 

482122 7078813454 11420 
5509123 338935755 32521 
100124 8689019356 5522 
10125 7249123657 24223 

1071126 2323923158 6824 
371127 29309336959 42225 
790128 14619474860 18026 
6150129 84395061 1027 
3321130 129623262   1146 28 
1045131 2619733063 60029 
648132 18009836564 1530 
5485133 86599122265 3631 
1160134 143510054366 4 32 
1864135 301011067 0 33 
4116136 1431021668 8 34 

Table 5. Failure time data Ds-4. 
Failure
Interval 
Length 
(in CPU 
seconds)

Failure 
Number 

Failure
Interval 
Length (in 
CPU 
seconds)

Failure
Number 

Failure
Interval 
Length 
(in CPU 
seconds)

Failure 
Number 

Failure
Interval 
Length (in 
CPU 
seconds)

Failure 
Number 

043 3910295015 1911 
044 69003066016 2222 

30045 330031150717 2803 
902146 15103262518 2904 
251947 1953391219 3855 
689048 19563463820 5706 
334849 1353529321 6107 
275050 66136121222 3658 
667551 503761223 3909 
694552 7293867524 27510 
789953 90039121525 36011 

 54 18040271526 80012 
  422541355127 121013 
  156004280028 40714 
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Table 6. Failure time data Ds-5. 
Failure
Interval 
Length 
(in CPU 
seconds)

Failure 
Number 

Failure
Interval 
Length (in 
CPU 
seconds)

Failure
Number 

Failure
Interval 
Length 
(in CPU 
seconds)

Failure 
Number 

Failure
Interval 
Length (in 
CPU 
seconds)

Failure 
Number 

2758 4139820 3 1 
14059 740121 142 
3360 43411222 593 
561 1423623 324 

3662 4433824 8 5 
7463 5447425 526 
4064 1454326 2 7 
265 164623627 258 

8666 704712128 2 9 
22167 60481829 3 10 
668 249930 4 11 

89169 2502331 1 12 
2370 351132 3013 
471 1695267233 2114 

437
66 

 
 
 

72 
73 

 
 
 

29
88 
55 
27 
24

53
54 
55 
56 
57

189
83 
52 
8 
1

34 
35 
36 
37 
38 

196
265 

6 
3 
8 

15 
16 
17 
18 
19 

4.2 Goodness of Fit Tests 
Three evaluation criteria are used in the application. The variation between the predicted and actual values of observations 
is calculated by the Mean Square Error (MSE) as follows (Hwang and Pham, 2009): MSE = ∑  ( ) ,                                  (23) 

where n is the number of observations and k is the number of model’s unknown parameters, y   denotes the number of 
faults observed to the moment t , and m(t ) denotes the estimated number of faults detected to the time t  according to 
the considered model; for i=1, 2, …, n. The lower MSE indicates less fitting error, thus better performance. The Theil 
Statistic (TS) is the average deviation percentage over all periods with regard to the actual values. The closer, TS is to zero, 
the better the prediction capability of model. It is defined as (Li et al., 2005): 

TS = 100 ∗ ∑  ( )∑ %.                              (24) 

The coefficient of multiple determinations R  value indicates the predictive measure of the difference among the 
forecasting values. It is defined as follows (Xie and Yang, 2003): R = 1 − ∑  ( )∑  ∑ .                              (25) 

It ranges from 0 to1. The larger R  is the better the model fits data.  
4.3 Numerical Results and Analysis  
The parameter estimation and evaluation criteria results of the NHPP LL model for the five considered data sets using the 
ML and NLS estimation methods are respectively shown in Table [7] and Table [8]. By comparing the results in these two 
tables, it is clear that the NHPP LL model provides better values of the MSE, R , and TS criteria when using the NLS 
estimation method for all cases. Based on the two studied methods of estimation, it is observed that the ranking of the data 
sets varies with respect to the selection of evaluation criteria as follows: According to MSE criteria the NHPP LL model’s 
performance is the best for Ds-1. While, according to TS and R  the NHPP LL model’s performance is the best for Ds-3. 
According to all considered criteria the NHPP LL model’s performance is the worst for Ds-5. 
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Table 7. Estimated parameters values and comparison criteria results using MLE method. 

 
Data sets 

The NHPP LL Model 
Parameters estimates Model selection criteria 𝑵𝑴𝑳𝑬 𝜸𝑴𝑳𝑬 𝜷𝑴𝑳𝑬 MSE 𝐓𝐒 𝐑𝟐 

Ds-1 50.2091 0.0009 0.7298 2.4263 6.7768 0.9809 
Ds-2 58.7724 0.0001 1.0684 6.1654 7.849 0.9746 
Ds-3 239.8247 0.0004 0.7108 6.297 3.1549 0.996 
Ds-4 86.625 0.0002 0.7746 2.9425 5.3253 0.9883 
Ds-5 346.946 0.0004 0.7650 17.1994 9.6056 0.9623 

Table 8. Estimated parameters values and comparison criteria results using NLSE method. 

Data sets 
The NHPP LL Model 

 Parameters estimates Model selection criteria 𝑵𝑵𝑳𝒔𝑬 𝜸𝑵𝑳𝒔𝑬 𝜷𝑵𝑳𝒔𝑬 MSE 𝐓𝐒 𝐑𝟐 
Ds-1 43.7384 0.0009 0.7731 1.349 5.0532 0.9894 
Ds-2 60.1523 0.00003 1.193 4.4649 6.6794 0.9816 
Ds-3 244.4601 0.0004 0.7037 6.0325 3.0879 0.9961 
Ds-4 102.3934 0.0005 0.6621 2.0405 4.4346 0.9919 
Ds-5 3156.474 0.00005 0.7244 15.8935 9.2337 0.9652 

5. Conclusion 
As software has become more diverse and spread, software reliability has also become a key concern in software 
development process. During the last 47 years numerous reliability models have been proposed (see; Yamada et al., 1983; 
Goel, 1985; Cai and Lyu, 2007; Yamada, 2013). These models are used to measure the software reliability through several 
characteristics such as: number of remaining errors, error detection rate, and mean time between failures. In this paper, we 
have considered a NHPP model that based on the log-logistic distribution which can capture increasing/decreasing nature 
of hazard function. Several essential characteristics of our studied model, the NHPP LL model, have been obtained and 
represented graphically. The considered model’s parameters have been estimated using the ML, and NLS estimation 
methods. An application has been conducted using five real data sets and three different evaluation criteria. The 
considered model displays acceptable performance for the studied real data sets, particularly in the case of Ds-1 and Ds-3. 
The findings reveal that that the NHPP LL model gives a reasonable predictive capability for the studied real failure data. 
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