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Abstract 

In this paper, Non-Homogeneous Poisson Process (NHPP) model are created based on Type-I Generalized Half-Logistic 

Distribution (GHLD- I). Three methods for estimating the parameters of the NHPP GHLD- I model are considered in the 

case of failure-occurrence time data, for this purpose the necessary likelihood equations are obtained. Confidence 

intervals are studied, the upper and the lower bounds of the parameters are constructed. An application based on the NHPP 

GHLD-I and using four published data sets are conducted. The performance of NHPP GHLD-I model is checked based on 

three evaluation criteria and useful results are obtained. 

Keywords: software reliability growth models, non-homogeneous poisson process, generalized half-logistic model, 

maximum likelihood estimation, non-linear least square estimation, weighted non-linear least square estimation 

1. Introduction 

Nowadays, technological achievement needs effective and high accuracy hardware and software in order to make 

dramatic improvements and reach the expected goals. Statistical reliability modelling is an approach that has been 

intensively used in quantifying the software system reliability, which describe software failures behavior based on 

different basic assumptions. The main issue of the traditional reliability models approach which are applied in the testing 

phase of software development cycle is: to find theoretical distribution that able to well fit the failure time data, to assess 

the future behavior of time between software failure, to predict software system reliability, and to determine when the 

software product becomes mature and ready to be released to the user [see: Lai and Garg (2012) and Barraza (2010)].  

Several reliability models based on Non-Homogeneous Poisson Processes (NHPP) have been suggested during the past 

years, they are extensively and successfully used to describe the software failure process [see: Goel and Okumoto (1979), 

Yamada et al. (1983), Zhang et al. (2003), and Teng and Pham (2004)]. In this paper, a NHPP software reliability model is 

created, which optimistically will give a good representation of the uncertainty of the software system in the field of 

software reliability modeling belonging to the NHPP. Our suggested NHPP model is configured using Type-I Generalized 

Half-Logistic Distribution (GHLD-I) that proposed by [Kantam et al. (2013)] based on failure-occurrence time data. Our 

proposed model is expected to be flexible, able to well describe the growth phenomena, and useful for modeling life data, 

it offers several sub-models by changing the shape parameter, so the best fit model could be found easier and faster.  

The parameters of the NHPP GHLD-I Model are estimated using Maximum Likelihood (ML), Non-Linear Least Squares 

(NLS), Weighted Non-Linear Least Squares (WNLS) estimation methods and the confidence intervals are constructed.  

The Cumulative Distribution Function (CDF) of the GHLD-I with scale parameter σ and shape parameter θ is given by: 
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Using Equation (1), the Probability Density Function (pdf) can be obtained as follows: 
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Also, the reliability function can be obtained from Equation (1) as follows: 
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While the hazard function can be found using Equations (2) and (3) as follows: 
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The rest of this paper is arranged as follows: Section 2 displays the formulation of the NHPP GHLD-I model and describes 

the ML, NLS, and WNLS estimation approaches for this model. Section 3 illustrates the evaluation criteria that will be 

used in our evaluation study. Real data application will be shown in Sections 4. In the end, Section 5 is the conclusion of 

this paper. 

2. NHPP GHLD-I Model  

The section illustrates the suggested model formulation and the computation of the necessary mathematical equations for 

point and interval estimation. 

2.1 Model Formulation and Characteristics  

In this section, the NHPP GHLD-I model will be constructed by following [Lyu (2002)]: 

m( )    ( ),                                        (5) 

 ( )    ( ),                                        (6) 

where  ( ),  ( ) are respectively the CDF and PDF of the time to failure of an individual failure, 𝑎. From this, if we 

consider also distributions that belong to the finite failure type, i.e., lim𝑡→∞𝑚(𝑡)      we have that lim𝑡→∞𝑚(𝑡)   𝑎  
since lim𝑡→∞  (𝑡)    . Thus 𝑎 represents the eventual number of failures observed in the system if it could have been 

detected over an infinite amount of time. Then by using Equations (1), (2), (5) and (6) the mean value and failure intensity 

functions of the NHPP GHLD-I model can be obtained respectively as follows: 
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where the parameter 𝑎 is interpreted as the number of initial faults in the software, σ is the scale parameter and θ is 

shape parameter of the NHPP GHLD-I model. By using Equation (7) the number of remaining errors of this model can be 

written as follows: 

n( )  ,  m( )- 
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By using Equations (8) and (9), the error detection rate can be obtained as: 
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We can obtain the mean time between failures (MTBF) of our suggested model using Equation (8) as: 
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According to Equation (7) the conditional reliability function is: 
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2.2 Maximum Likelihood Estimation (MLE) Method 

Parameter estimation is of primary importance in software reliability prediction. The ML estimation method is the most 

important traditional and widely used estimation technique. This technique has several properties including consistency, 

efficiency and asymptotic normality. 

Suppose we have “n‟ time instants at which the first, second, third..., 𝑛𝑡ℎ failures of a software are experienced. In other 

words, if 𝑆𝑘 is the total time to the 𝑘𝑡ℎ failure, 𝑠𝑘 is an observation of random variable 𝑆𝑘 and “n‟ such failures are 

successively recorded. The joint probability of such failure time realizations 𝑠 , 𝑠 , 𝑠3, … , 𝑠𝑛 is: 

                           (  )∏  (  )
 
                                        (13) 

The function given in Equation (13) is also called the likelihood function of the given failure data. Values of the 

parameters of NHPP models that would maximize L are called maximum likelihood estimators and the method is called 

maximum likelihood (ML) estimation method [Prasad et al. (2011)]. 

For the purpose of estimating the unknown three parameters 𝑎, 𝜃 and 𝜎 of the NHPP GHLM-I model using ML 

estimation method and based on the data on failure occurrence time  k (k   , 2, … , n;   ≤   ≤   ≤ ⋯ ≤   ), we 

substitute Equations (7) and (8) in Equation (13) so we obtain the likelihood function as follows: 
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By taking the natural lnarithm of Equation (14) we obtain: 
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In order to estimate the parameters 𝑎, 𝜃 and 𝜎, the derivatives of Equation (15) with respect to 𝑎, 𝜃 and 𝜎 will be 

obtained as follows: 
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By equating the previous equations to zero, the equation becomes: 
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The value of the parameter a can be obtained using the first expression of Equation (17) after getting the estimate of the 

parameters 𝜃 and 𝜎. Since the second and third expression of Equation (17) are nonlinear, we can not find an analytic 

solution and must be obtained numerically, to facilitate this R programing language are used. 

2.3 Non-Linear Least Square Estimation (NLSE) Method 

The least squared sum in the Least Square Estimation (LSE) method is defined by: 

   ( )  ∑ ,i  m(  )-
  

                                    (18) 

where   is the parameters of the NHPP model, and m( ) is its mean value function. The resulting estimates of   

which is obtained by minimizing    ( ) is called the OLS estimates and can be calculated by using any non-linear 

regression technique. Usually, Gauss-Newton method or Lenvenberg-Marquardt algorithm is used to solve the 

minimization problem arg minΘ    ( ). More specifically, we consider formally the above optimization problem from 

the viewpoint of regression analysis.  

For the time epochs *τ : i   ,2, … , N( )+, which are the i.i.d. random variables with realizations *  : i   ,2, … , n+, N(t) 

denote the cumulative number of the faults detected by time t. it is easily shown from the time-scale transform of the 

NHPP that τ 
∗  m(τ ) is a Homogeneous Poisson Process (HPP) with rate 1 and that 

                       ,τ 
∗-   ,m(τ )-   ,       for i   ,2, …                      (19) 

When one sees the relationship between the random variable m(τ )  and its realization m(  ) , it may be 

straightforward to consider the following regression model: 

                      m(τ )  m(  )    ,       for i   ,2, …                       (20) 

Where *  : i   ,2, … + are the error terms. In a fashion similar to the usual regression analysis, if the errror terms    

are the i.i.d. random variables with mean  , the OLS is formulated to minimize: 
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Unfortunately, it is worth mentioning in the NHPP that the error terms in Equation (20), *  : i   ,2, … +, are neither 

independent nor identically distributed. This fact tells us that the OLS estimation may be irrelevant to the common 

linear regression analysis. It is evident that the resulting OLS estimates in the LSE can not be representative [Ishii et al 

(2012)] and the Non-Linear Least Square Estimation (NLSE) is needed. 

We can calculate the ordinary least squares estimates of the unknown three parameters  , θ and σ of the NHPP GHLM-I 

model by minimizing the least squared sum, whereas by using Equation (21), the least squared sum of our model is: 
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2.4 Weighted Least Square Estimation (WNLSE) Method 

As notable, some of estimates based on the NLSE estimation are less precise than others in the sense that their variances 

are relatively larger.  Since the variances of NLSE estimates are not equal, it is often necessary to adjust the NLSE 

estimation in such way that the mean value functions are weighted, i.e. 

                       N   ( )  ∑   (i  m(  ))
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where   (i   ,2, … , n) are positive weights to satisfy ∑   
 
    n. The resulting estimates as solutions of argmin 

   N   ( ) are called the weighted non-linear leas squares (WNLS) estimates, where the NLS estimate is a special 

case of WNLS estimates when the weights are all the same, i.e.,      for all i. By taking account of the fact that the 

variances of the random variable m(τ ) in Equation (20) is unequal with respect to i, the error terms *  : i  
 ,2, … , n+ should be normalized as the random variables with variance 1.  

Weighting function choice is an important concern when using the WNLSE method. Several ways of weighting 

techniques can be considered when using this method of estimation [Sun et al. (2102)]. From the analogy to the linear 

regression analysis the error terms are weighted by    that are inversely proportional to their variances, i.e., 
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Which is due to the common property that the variance of NHPP equals its mean value. It should  be  noted  that  

the  error  terms    are  not  still i.i.d. random  variables  because  our NHPP-based reliability model do not 

have the linear intensity. Hence, the weighted in Equation (24) is meaningful only when the error terms    can be 

approximately i.i.d. normal random variables [Ishii et al. (2012)]. 

The estimates of the unknown parameters  , θ and σ of the NHPP GHLM-I model using the WNLSE method can be 

obtained by minimizing: 
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For our application three weighting functions are considered: 
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And the following two empirical weight functions are formulated as follows: 
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2.5 Interval Estimation Method 

The estimation of the model parameters is normally different according to different estimation methods. Furthermore, an 

accurate parameters estimation requires many failure data which might not be available. So, we can use interval 

estimation of software reliability models’ parameters to solve these problems. 

A confidence interval is an interval of numbers containing the most acceptable values for our distribution parameters. Let 

  symbolize the parameters of NHPP model, in order to obtain the confidence limits for parameters   of NHPP 

models we calculate the Fisher information matrix. The Fisher information is a way of measuring the amount of 

information that an observable random variable 𝑠𝑛 carries about unknown parameters   of a NHPP models that 

models 𝑠𝑛. The inverse of the Fisher information matrix gives the asymptotic variance and covariance of the estimates of 

the parameters   of NHPP models. The two sided approximate    𝛼% confidence limits for the parameters   of a 

NHPP models are: 

                              ̂    ,   ( ̂)-
                                       (30) 

                              ̂    ,   ( ̂)-
                                       (31) 

where   is the parameters of the NHPP model and  ̂ is the ML, NLS or WNLS estimators of these parameters. 𝑍  is 

the (  𝛼) quartile of the standard normal distribution [Hong et al. (1997)]. 

In this section, we discuss the interval estimation of the parameters of the NHPP GHLD-I model of ML, NLS and 

WNLS estimators. In order to obtain the confidence limits for parameter 𝑎, 𝜃 and 𝜎, we find the Fisher information 
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matrix to obtain the asymptotic variance and covariance of the ML, NLS and WNLS estimates of the parameters. For 

obtaining confidence intervals of ML estimator, we define Fisher information matrix as the matrix of negative second 

partial derivatives of the log likelihood function that shown in Equation (15). 
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Aimed at obtaining confidence intervals for the NLS estimators, we define the Fisher information matrix as the matrix of 

negative second partial derivatives of least squared sum function that shown in Equation (22): 
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such that: 
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Also, with respect to attaining confidence intervals for the WNLS estimators, we define the Fisher information matrix as 

the matrix of negative second partial derivatives of weighted least squared sum function that shown in Equation (25): 
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By using Equations (30) and (31), along with     ( ),      ( ) and  W    ( ) matrices, the asymptotic    α% 

two-sided confidence limits for the parameters 𝑎, θ and σ of the NHPP GHLD-I model are respectively given by: 

                                         �̂� ±   ,   
  ( ̂)-     , 

                                         θ̂ ±   [   
  ( ̂)]

   
  , 

                                         σ̂ ±   ,   
  ( ̂)-     , 

where    
  ( ̂),    

  ( ̂) and    
  ( ̂) are respectively the diagonal elements of the asymptotic variance and covariance 

of the estimates of the parameters 𝑎, 𝜃 and 𝜎 of the NHPP GHLD-I model. 

3. Evaluation Criteria 

The mean of square errors (MSE), the sum of square errors (SSE), and the variance criteria are used for the evaluation 

purpose in our application. These criteria illustrate the variation between the actual and predicted values. The lower the 

criteria value, the better model performance. The formulas of those criteria are shown in Table (1). 

Table 1. Some evaluation criteria. 

Criteria Name Criteria Formula 

MSE 

[Hwang and Pham (2009)] 

 

∑
(y   ̂(  ))

 

  k

 
   , 

SSE 

[Zhang et al. (2003)] 

 

∑ (y  m̂
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Variance 

[Huang and Kuo (2002)] 

 

√(
 

   
)∑ (y  m̂(  )   i  )
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where 

m̂(  ): The estimated cumulative number of faults at time   . 

y : The total number of faults observed at time   . 

Bias: The average of prediction error, it gotten by the relationship: 

Bias=|
∑ , ̂(  ) y -
 
   

 
|. 

n: The number of faults. 

k: The number of model parameters.  

4. Real Data Application 

This section displays the real data sets that used in our application and the results obtained through estimating the 

unknown parameters 𝑎, 𝜃 and 𝜎 of the NHPP GHLM-I model by the three above-mentioned estimation methods as well 

as the obtained confidence intervals. Also, the results of the evaluation criteria are presented and discussed in this section. 

4.1 Real Data Sets 

In this section, four real data sets with sample sizes of (n = 34, 30, 136 and 41) are used to study the performance of the 

NHPP GHLM-I model. Dataset 1: represents the software failure data of Navel Tactical Data System (NTDS) [Prasad 

and Kantam (2010)]. Dataset 2: is from the procedure of a failures control chart for failure software process introduced by 

[Prasad et al. (2011)], the data consists of 30 software failures. Dataset 3: gives the time between 136 failures of a 

software product [Rao et al. (2011)]. Dataset 4: consists of 1197.945 time unit and 41 failures introduced by [Kim and 

Park (2010)].  The four data sets are summarized in Tables [(2)-(5)]. 
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Table 2. Failure time data (DS1) [Prasad and Kantam (2010)]. 

Failure Number Failure Time 

(days) 

Failure Number Failure Time 

(days) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

 

9 

12 

11 

4 

7 

2 

5 

8 

5 

7 

1 

6 

1 

9 

4 

1 

3 

 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

 

3 

6 

1 

11 

33 

7 

91 

2 

1 

78 

47 

12 

9 

135 

258 

16 

35 

Table 3. Failure time data (DS2) [Prasad et al. (2011)]. 

Failure Time 

(Hours) 

Failure Number Failure Time 

(Hours) 

Failure Number 

15.53 16 30.02 1 

25.72 17 1.44 2 

2.79 18 22.47 3 

1.92 19 1.36 4 

4.13 20 3.43 5 

70.47 21 13.2 6 

17.07 22 5.15 7 

3.99 23 3.83 8 

176.06 24 21 9 

81.07 25 12.97 10 

2.27 26 0.47 11 

15.63 27 6.23 12 

120.78 28 3.4 13 

30.81 29 9.1 14 

34.19 30 2.18 15 
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Table 4. Failure time data (DS3) [Rao et al. (2011)]. 

Failure 

Time 

(Hours) 

Failure 

Number 

Failure 

Time 

(Hours) 

Failure 

Number 

Failure 

Time 

(Hours) 

Failure 

Number 

Failure 

Time 

(Hours) 

Failure 

Number 

108 103 529 69 227 35 3 1 

0 104 379 70 65 36 30 2 

3110 105 44 71 176 37 113 3 

1247 106 129 72 58 38 81 4 

943 107 810 73 457 39 115 5 

700 108 290 74 300 40 9 6 

875 109 300 75 97 41 2 7 

245 110 529 76 263 42 91 8 

729 111 281 77 452 43 112 9 

1897 112 160 78 255 44 15 10 

447 113 828 79 197 45 138 11 

386 114 1011 80 193 46 50 12 

446 115 445 81 6 47 77 13 

122 116 296 82 79 48 24 14 

990 117 1755 83 816 49 108 15 

948 118 1064 84 1351 50 88 16 

1082 119 1783 85 148 51 670 17 

22 120 860 86 21 52 120 18 

75 121 983 87 233 53 26 19 

482 122 707 88 134 54 114 20 

5509 123 33 89 357 55 325 21 

100 124 868 90 193 56 55 22 

10 125 724 91 236 57 242 23 

1071 126 2323 92 31 58 68 24 

371 127 2930 93 369 59 422 25 

790 128 1461 94 748 60 180 26 

6150 129 843 95 0 61 10 27 

3321 130 12 96 232 62 1146 28 

1045 131 261 97 330 63 600 29 

648 

5485 

1160 

1864 

4116 

132 

133 

134 

135 

136 

1800 

865 

1435 

30 

143 

98 

99 

100 

101 

102 

365 

1222 

543 

10 

16 

64 

65 

66 

67 

68 

15 

36 

4 

0 

8 

30 

31 

32 

33 

34 
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Table 5. Failure time data (DS4) [Kim and Park (2010)]. 

Failure Number Failure Time 

(Hours) 

Failure Number Failure Time 

(Hours) 

1 5.649 22 141.712 

2 8.920 23 164.212 

3 20.29 24 342.850 

4 29.955 25 356.144 

5 34.715 26 399.144 

6 75.950 27 446.494 

7 78.171 28 476.644 

8 78.625 29 497.144 

9 83.022 30 497.661 

10 89.114 31 591.161 

11 89.804 32 665.644 

12 92.860 33 686.444 

13 93.660 34 765.944 

14 110.655 35 772.977 

15 111.988 36 774.944 

16 122.545 37 791.561 

17 127.045 38 815.978 

18 128.712 39 837.145 

19 128.99 40 861.945 

20 

21 

131.768 

131.829 

41 1197.945 

4.2 Application Results 

The results of the estimation process of initial faults 𝑎, scale parameter σ and shape parameter θ of the NHPP GHLM-I 

model for the ML, NLS and WNLS estimation methods along with their SSE, MSE and variance using the four data sets 

are reported in Tables [(6)-(8)]. While the corresponding confidence intervals of the model parameters are displayed in 

Table 9. Tables [(10)-(13)] present the prediction results for the last 16 failures based on the three estimation methods for 

the four real data sets. 

Table 6. Estimated parameters values using MLE method based on the NHPP GHLD-I model. 

 NHPP GHLD-I 

 

Data sets  Parameters 

estimates 

 Model selection criteria 

�̂�    �̂�    �̂�    SSE MSE Variance 

     

  2 

    

Ds4  

34.6813 

31.6754 

147.2553 

41.646 

194.521 

205.4441  

33985.03 

3414.608 

0.7763 

0.9855 

0.5738 

0.5749 

428.8038 

256.8063 

1733.453 

108.3965 

13.8324 

9.5113 

13.0335 

2.8525 

5.0411 

4.0693 

4.4975 

1.6506 

Bold values indicate the best fit model 

Table 7. Estimated parameters values using NLSE method based on the NHPP GHLD-I model. 

 NHPP GHLD-I 

 

Data sets  Parameters 

estimates 

 Model selection criteria 

�̂�     �̂�     �̂�     SSE MSE Variance 

    

  2 

    

Ds4 

29.6805 

27.0976 

145.5919 

40.6382 

59.5021 

91.6718 

33806.48 

4142.043 

1.5316 

1.4892 

0.5404 

0.4677 

104.7032 

41.0961 

1168.952 

32.0543 

3.3775 

1.5221 

8.7891 

0.8435 

1.7822 

1.1921 

2.9599 

0.8996 

Bold values indicate the best fit model 
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Table 8. Estimated parameters values using WNLSE method based on the NHPP GHLD-I model. 

  NHPP GHLD-I 

 

Parameters 

estimates 

 Data set   Model selection criteria 

Ds1 

 

Ds2 

 

Ds3 

 

Ds4 

 

 SSE MSE Variance 

�̂�    (  ( )) 

�̂�    (  ( )) 

�̂�    (  ( )) 

 

�̂�    (  ( )) 

�̂�    (  ( )) 

�̂�    (  ( )) 

 

�̂�    (  (3)) 

�̂�    (  (3)) 

�̂�    (  (3)) 

29.6099 

57.0869 

1.6252 

 

 

29.5454 

56.0506 

1.6602 

 

29.6655 

59.1144 

1.545 

26.8825 

85.2503 

1.6329 

 

 

26.9861 

87.847 

1.5752 

 

27.0896 

91.3745 

1.4957 

136.8682 

26899.84 

0.5797 

 

 

140.6833 

29766.41 

0.5625 

 

145.5158 

33741.85 

0.5408 

39.4737 

3526.323 

0.4959 

 

 

39.9391 

3755.842 

0.4854 

 

40.5987 

4119.637 

0.4687 

Ds1 105.0699 3.3894 1.7844 

Ds2 42.2495 1.5648 1.207 

Ds3 1327.275 9.9795 3.1355 

Ds4 35.0379 0.9221 0.9359 

Ds1 105.3328 3.3978 1.7866 

Ds2 41.5145 1.5376 1.1965 

Ds3 1217.667 9.1554 3.0041 

Ds4 33.2009 0.8737 0.9112 

Ds1 104.7107 3.3778 1.7821 

Ds2 41.0987 1.5222 1.1919 

Ds3 1168.963 8.7892 2.9594 

Ds4 32.0579 0.8436 0.8991 

Bold values indicate the best fit model 

Table 9. 95% confidence intervals using different methods of estimation based on the NHPP GHLD-I model. 

 

Data set 

 

Parameters 

estimates 

NHPP GHLD-I 

 

MLE LSE WNLSE 

(  ( )) 

WNLSE 

(  ( )) 

WNLSE 

(  (3)) 

 �̂� Lower 

Upper 

22.9336  

46.4289 

28.3388 

31.2102 

28.1842 

31.0932 

28.2230 

30.9436 

28.3285 

31.1770 

DS1 �̂� Lower 

Upper 

88.0258 

301.0162 

45.3288 

83.4627 

48.3797 

68.1005 

45.8576 

70.2422 

45.2914 

82.1209 

�̂� Lower 

Upper 

0.4276   

1.1249 

1.0631  

2.2698 

1.3586  

1.9862 

1.2910  

2.1883 

1.0812  

2.2706 

 �̂� Lower 

Upper 

19.8213  

43.5295 

26.0673  

28.1835 

25.6747 

28.1328 

25.8990  

28.1163 

26.0569  

28.1768 

DS2 �̂� Lower 

Upper 

69.9059 

340.9823 

77.3018 

110.2253 

75.0153 

97.3949 

76.1114 

102.2022 

77.2104 

109.5834 

 �̂� Lower 

Upper 

0.4703   

1.5007 

1.2058   

1.8701 

1.4319  

1.8795 

1.3377   

1.8781 

1.2153   

1.8713 

 �̂� Lower 

Upper 

122.2127   

172.2979 

140.4260   

152.1585 

132.5460   

142.0168 

136.1155   

146.2646 

140.3597   

152.0659 

DS3 �̂� Lower 

Upper 

30207.0606 

37762.9991 

30078.4896 

38710.7828 

24368.7350 

30020.7227 

26780.1560 

33533.2323 

30025.8677 

38627.0582 

 �̂� Lower 

Upper 

0.4757     

0.6719 

0.5227     

0.5592 

0.5645     

0.5956 

0.5458     

0.5800 

0.5230     

0.5595 

 �̂� Lower 

Upper 

28.8535   

54.4385 

39.0661   

42.7751 

37.9941   

41.2791 

38.4557   

41.8290 

39.0323   

42.7206 

DS4 �̂� Lower 

Upper 

2247.3104 

4581.9050 

3462.3114 

5140.5624 

3036.9827 

4178.5324 

3191.8628 

4536.2182 

3446.2786 

5105.5515 

 �̂� Lower 

Upper 

0.3840    

0.7658 

0.4388    

0.4995 

0.4744    

0.5191 

0.4597    

0.5135 

0.4399    

0.5003 
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Table 10. Predictions based on three estimation methods for DS1. 

Actual 

number 

of 

failure 

Prediction 

results by 

(MLE) 

Prediction 

results by 

(NLSE) 

Prediction 

results by 

(WNLSE( 

  ( ) 

Prediction 

results by 

(WNLSE( 

  ( ) 

Prediction 

results by 

(WNLSE( 

  (3) 

19 12.2301 17.3142 17.4220 17.5036 17.3336 

20 12.3170 17.4736 17.5860 17.6690 17.4936 

21 13.2542 19.1341 19.2901 19.3854 19.1603 

22 15.8709 23.0926 23.3051 23.4040 23.1261 

23 16.3908 23.7474 23.9600 24.0549 23.7807 

24 22.1551 28.2826 28.3653 28.3729 28.2935 

25 22.2625 28.3278 28.4073 28.4132 28.3381 

26 22.3160 28.3498 28.4278 28.4329 28.3599 

27 26.2777 29.3667 29.3483 29.3062 29.3607 

28 27.9152 29.5376 29.4948 29.4418 29.5275 

29 28.2843 29.5636 29.5166 29.4617 29.5528 

30 28.5491 29.5800 29.5302 29.4741 29.5687 

31 31.4808 29.6700 29.6024 29.5390 29.6557 

32 33.8023 29.6803 29.6099 29.5453 29.6654 

33 33.8709 29.6803 29.6099 29.5454 29.6654 

34 34.0031 29.6804 29.6099 29.5454 29.6655 

Bold values indicate the predictions based on the best estimation method 

Table 11. Predictions based on three estimation methods for DS2. 

Actual 

number 

of 

failure 

Prediction 

results by 

(MLE) 

Prediction 

results by 

(NLSE) 

Prediction 

results by 

(WNLSE( 

  ( ) 

Prediction 

results by 

(WNLSE( 

  ( ) 

Prediction 

results by 

(WNLSE( 

  (3) 

15 10.3039 13.6514 13.7592 13.6948 13.6534 

01 11.3665 15.2355 15.4197 15.3259 15.2411 

17 13.0608 17.5810 17.8535 17.7282 17.5912 

18 13.2395 17.8136 18.0927 17.9652 17.8242 

19 13.3618 17.9712 18.2545 18.1257 17.9820 

20 13.6233 18.3032 18.5947 18.4634 18.3145 

21 17.7185 22.6093 22.8913 22.7785 22.6222 

22 18.6029 23.3171 23.5695 23.4717 23.3290 

23 18.8036 23.4670 23.7118 23.6177 23.4787 

24 25.4915 26.5328 26.4583 26.5058 26.5316 

25 27.3710 26.8629 26.7178 26.7942 26.8584 

26 27.4151 26.8686 26.7221 26.7991 26.8641 

27 27.7077 26.9044 26.7489 26.8295 26.8994 

28 29.4083 27.0457 26.8500 26.9464 27.0388 

29 29.7143 27.0605 26.8599 26.9581 27.0533 

30 30.0070 27.0720 26.8673 26.9672 27.0647 

Bold values indicate the predictions based on the best estimation method 
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Table 12. Predictions based on three estimation methods for DS3. 

Actual 

number 

of 

failure 

Prediction 

results by 

(MLE) 

Prediction 

results by 

(NLSE) 

Prediction 

results by 

(WNLSE( 

  ( ) 

Prediction 

results by 

(WNLSE( 

  ( ) 

Prediction 

results by 

(WNLSE( 

  (3) 

121 118.1840 118.5723 118.7130 118.7483 118.5757 

122 118.5594 118.9256 119.0164 119.0769 118.9286 

123 122.5425 122.6676 122.1595 122.5177 122.6667 

124 122.6098 122.7308 122.2114 122.5751 122.7297 

125 122.6165 122.7371 122.2166 122.5809 122.7360 

126 123.3264 123.4029 122.7612 123.1847 123.4010 

127 123.5678 123.6292 122.9453 123.3894 123.6270 

128 124.0743 124.1040 123.3297 123.8177 124.1011 

129 127.6838 127.4821 125.9934 126.8238 127.4742 

130 129.4056 129.0904 127.2142 128.2267 129.0795 

131 129.9171 129.5677 127.5701 128.6393 129.5559 

132 130.2272 129.8570 127.7844 128.8885 129.8446 

133 132.6490 132.1138 129.4163 130.8077 132.0966 

134 133.1172 132.5497 129.7229 131.1731 132.5315 

135 133.8397 133.2218 130.1900 131.7329 133.2019 

136 135.3117 134.5899 131.1182 132.8580 134.5664 

Bold values indicate the predictions based on the best estimation method 

Table 13. Predictions based on three estimation methods for DS4. 

Actual 

number 

of 

failure 

Prediction 

results by 

(MLE) 

Prediction 

results by 

(NLSE) 

Prediction 

results by 

(WNLSE( 

  ( ) 

Prediction 

results by 

(WNLSE( 

  ( ) 

Prediction 

results by 

(WNLSE( 

  (3) 
26 25.7888 25.3933 25.7477 25.5867 25.4024 

27 27.5044 26.8313 27.2331 27.0567 26.8423 

28 29.1435 28.2124 28.6450 28.4604 28.2248 

29 30.6648 29.5056 29.9503 29.7654 29.5188 

30 32.0153 30.6676 31.1062 30.9284 30.6812 

31 33.4199 31.8962 32.3070 32.1457 31.9094 

32 34.7730 33.1061 33.4636 33.3294 33.1181 

33 35.9485 34.1857 34.4697 34.3703 34.1960 

34 37.0356 35.2162 35.4026 35.3473 35.2238 

35 37.9309 36.0957 36.1738 36.1659 36.1003 

36 38.6597 36.8392 36.8046 36.8448 36.8405 

37 39.2607 37.4771 37.3276 37.4157 37.4749 

38 39.7566 38.0258 37.7618 37.8966 38.0199 

39 40.1603 38.4921 38.1176 38.2968 38.4826 

40 40.4872 38.8871 38.4078 38.6282 38.8741 

41 40.8268 39.3201 38.7119 38.9821 39.3027 

Bold values indicate the predictions based on the best estimation method 

4.3 Discussion of Results 

The purpose of our application is to evaluate the performance of the NHPP GHLM-I model through three evaluation 

criteria and based on different real data sets. Three methods of estimation are used to estimate the initial faults 𝑎, scale 
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parameter σ and shape parameter θ of the NHPP GHLM-I model. The 95% confidence intervals around all effects for 

the four selected real data sets are constructed. By comparing the evaluation criteria values of the four real data sets 

using the ML, NLS and WNLS estimation methods, the following observations can be made: 

 The NHPP GHLM-I model shows good predictive ability according to our selected three criteria and using the 

four selected real data sets, but the model fits the fourth real data set with size 41 more than the rest of the 

studied real data sets since all the evaluation criteria have the lowest values for the fourth real data set 

compared to the other three.  

 The ML estimation method shows the worst performance among the three studied estimation methods; 

however, its evaluation criteria values are lower for the fourth data set than the rest of the studied data sets. 

 According to our studied data sets, the NHPP GHLD-I model shows the best performance when using the NLS 

estimation method with all the four studied real data sets. It has the lowest values for all the evaluation criteria 

among the others selected estimation methods.  

 The evaluation criteria values of the WNLS estimation method at weighting function (  (3)) are approximately 

the same as the evaluation criteria values of the NLS estimation method. In addition, for three comparison 

cases it has lower criteria values than the NLS estimation method this indicates that the use of this weighting 

function gives better prediction results than the other considered weighting functions. 

 According to confidence intervals of the model parameters the following points are concluded: For DS1, the 

estimator �̂� has the shortest expected length when using the WNLS estimation method at weighting function 

(  (3)) while the shortest expected length for �̂� and �̂� estimators is obtained by using the WNLS estimation 

method at weighting function (  ( )). For DS2, the estimator �̂� has the shortest expected length when using 

the NLS estimation method while the shortest expected length for �̂� and �̂� estimators is obtained by using 

the WNLS estimation method at weighting function (  ( )). For DS3 and DS4, all parameters estimators have 

the shortest expected length when using the WNLS estimation method at weighting function (  ( )). Based on 

the interval estimation the WNLS estimation method gives the best performance while the ML estimation 

method gives the worst performance. The first- and second-best weighting function are respectively   ( ) 
and   (3). 

5. Conclusion 

In this paper, a software reliability growth model that belong to the NHPP type of modeling and based on GHLD-I 

distribution have been constructed. The estimation process of the unknown parameters of the proposed NHPP 

GHLD-I model have been conducted by using the ML, NLS and WNLS estimation methods. In addition, confidence 

intervals of the model parameters which is important to the software reliability evaluation have been obtained. An 

application based on the NHPP GHLD-I model and using four real data sets have been conducted to measure the 

performance of our proposed model based on three evaluation criteria. Our numerical study illustrates the flexibility 

of the NHPP GHLD-I model and presents its positive contribution to the field of software reliability modeling. 
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