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Abstract 

A new estimator of the Poisson parameter is proposed using the moment generating function. Some statistical properties 

of the proposed estimator are studied. The performance of the new estimator is compared with the maximum likelihood 

estimator (MLE) via examples and simulation in terms of goodness of fit and relative efficiency. Simulation and examples 

to real-life data suggest that the new estimator has higher relative efficiency compared to the MLE, while both are 

comparable in goodness of fit. The R program utilized in all computation and simulation is incorporated to facilitate the 

implementation of the new estimator in computation.  
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1. Introduction 

Poisson distribution is well known for modeling rare events data. For applications of the Poisson distribution, one could 

refer to Black (2012), Bortkewitsch (1898), De Veaux, Velleman and Bock (2006), Doane and Seward (2010), Casella 

and Berger (2002), Jaggia and Kelly (2012), Letkowski (2014) and Rice (2007). The estimation of Poisson parameter 

using maximum likelihood method appears in any standard book of statistics, e.g., see Walpole et al. (2012), Hogg, 

McKean and Craig (2013), Casella and Berger (2002), Rice (2007), etc.  

A discrete random variable 𝑋 is said to follow a Poisson distribution with parameter 𝜇 if the probability mass function 

is given by 

𝑝(𝑥) = 𝑃(𝑋 = 𝑥) =
𝑒−𝜇𝜇𝑥

𝑥!
; 𝑥 = 0, 1, 2,⋯ ;  and 𝜇 > 0 

In general, 𝜇 is unknown and estimated using a sample. Let 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 be a random sample of size 𝑛. Then, the 

maximum likelihood function of 𝑝(𝑥) is given by 

𝐿(𝜇) =
𝑒−𝑛𝜇𝜇∑ 𝑥𝑖

𝑛
𝑖=1

∏ 𝑥𝑖!
𝑛
𝑖=1

 

Taking logarithm on both sides  

𝑙(𝜇) = 𝑙𝑜𝑔𝐿(𝜇) = −𝑛𝜇 +∑𝑥𝑖

𝑛

𝑖=1

𝑙𝑜𝑔(𝜇) −∑𝑙𝑜𝑔(𝑥𝑖!)

𝑛

𝑖=1

 

Taking derivative of 𝑙 with respect to 𝜇, and setting equal to zero, a maximum likelihood estimator (MLE) of 𝜇, �̂� is 

given by 

�̂� =
∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
= �̅� 

It is easy to see that �̂� is an unbiased estimator of 𝜇, i.e.,  

𝐸(�̂�) = 𝜇 

The variance of �̂� given by 

𝑉(�̂�) =
 𝜇

𝑛
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While the estimator �̂� of 𝜇 by the MLE method is unbiased, there is a possibility that other form of estimator of 𝜇, even 

biased, might have smaller variance. Indeed, in classical statistics, it is well-known that estimators might be biased but 

have increased accuracy (i.e., smaller variance), which is termed as bias-variance trade-off. For example, one might refer 

to James-Stein estimator (Stein, 1956; James and Stein, 1961) or LASSO (Tibshirani, 1996, 1997), where the estimator 

achieves lower mean square error (MSE) than the ML estimator.  

In this paper, we proposed a new estimator using the moment generating function, which is biased but provides an 

increased efficiency compared to the MLE estimator. Method of moments is widely used in different areas of statistics, 

such as causal inference (e.g., Lu, 2016).  

2. Proposed Estimator 

In this section, we propose a new estimator of the Poisson parameter 𝜇 using the moment generating function. The 

moment generating function of 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇) is  

𝑀𝑋(𝑡) = 𝐸(𝑒
𝑋𝑡) = 𝑒𝜇(𝑒

𝑡−1) 

Given a random sample 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 of size 𝑛, the moment generating function of ∑ 𝑋𝑖
𝑛
𝑖=1  is given by 

𝑀∑ 𝑋𝑖
𝑛
𝑖=1

(𝑡) = 𝐸(𝑒∑ 𝑋𝑖
𝑛
𝑖=1 𝑡) = 𝑒𝑛𝜇(𝑒

𝑡−1) 

By the method of moments, the proposed estimator of 𝜇, �̃� follows from the solving the equation  

𝑒∑ 𝑋𝑖
𝑛
𝑖=1 𝑡 = 𝑒𝑛�̃�(𝑒

𝑡−1)                       (1) 

After an algebraic manipulation of (1), we have the following new estimator �̃� of 𝜇 

�̃� =
𝑡�̅�

𝑒𝑡 − 1
; 𝑡 ≠ 0 

A similar method of estimation exists in literature; for example, see Sidhu, Tailor and Singh (2009). 

3. Properties of New Estimator 

In this section, we study some properties of the proposed estimator, which we state in terms of the following theorems: 

THEOREM 3.1 The expected value of �̃� =
𝑡�̅�

𝑒𝑡−1
 is 𝐸(�̃�) =

𝜇𝑡

𝑒𝑡−1
 and if 𝑡 → 0, then �̃� is an unbiased estimate of 𝜇. 

THEOREM 3.2 The bias of �̃� =
𝑡�̅�

𝑒𝑡−1
 is 𝐵(�̃�) =

𝜇(𝑡−𝑒𝑡+1)

𝑒𝑡−1
 and if 𝑡 → 0, then bias of �̃� is 0. 

THEOREM 3.3 The variance of �̃� =
𝑡�̅�

𝑒𝑡−1
 is 𝑉(�̃�) =

𝜇𝑡2

𝑛(𝑒𝑡−1)2
 and if 𝑡 → 0, then variance of �̃� is same as the 

variance of �̂�. 

THEOREM 3.4 The mean square error (MSE) of �̃� =
𝑡�̅�

𝑒𝑡−1
 is 𝑀𝑆𝐸(�̃�) =

𝜇𝑡2+𝑛𝜇2(𝑡−𝑒𝑡+1)
2

𝑛(𝑒𝑡−1)2
 and if 𝑡 → 0, then MSE 

of �̃� is the same as the variance of �̂�. 

THEOREM 3.5 The relative efficiency (RE) of �̃� =
𝑡�̅�

𝑒𝑡−1
 with respect to �̂� is  

𝑅𝐸 =
(𝑒𝑡 − 1)2

𝑡2 + 𝑛𝜇(𝑡 − 𝑒𝑡 + 1)2
× 100% 

It is easy to see that as 𝑡 → 0, �̃� and �̂� are the same. If  𝑡 ≠ 0, then there may exist a non-zero 𝑡 such that  

𝑀𝑆𝐸(�̃�) < 𝑉(�̂�)  

or, 𝑡2 + 𝑛𝜇(𝑡 − 𝑒𝑡 + 1)2 < (𝑒𝑡 − 1)2                        (2) 

We can easily search for values of 𝑡, for selected values of 𝜇 and 𝑛, satisfying the relation (2) and estimate the 

percent relative efficiency of the proposed estimator �̃� with respect to �̂�.  

In section 4, we provide an example of a Poisson distributional fit using the two estimators �̂� and �̃�. We have utilized 

an R program to search for values of 𝑡 while using �̃� for estimating 𝜇 and assessing goodness of fit.  

In section 5, we perform an empirical study for assessing relative efficiency of the estimator �̃� compared to �̂�. 
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4. Applications: Fitting Poisson Distributions to Real-Life Data 

In this section, we fit a Poisson distribution model to the number of land-falling hurricane in the USA in 98-year period 

from 1900 to 1997, appeared in Glover and Mitchell (2002). The data in Table 1, refers to number of hurricanes per year 

(𝑥𝑖) and their frequencies (𝑓𝑖).  

Table 1. Number of land-falling hurricane in the USA in 98-year period from 1900 to 1997 

𝑥𝑖  0 1 2 3 4 5 6 

𝑓𝑖  18 34 24 16 3 1 2 

We wish to test the null hypothesis 𝐻0 : The annual number of the US land-falling hurricane follows a Poisson 

distribution with an unknown parameter 𝜇, using estimators �̂� and �̃�. 

Note that an MLE of 𝜇 is given by 

�̂� = �̅� =
∑ 𝑓𝑖
𝑘
𝑖=1 𝑥𝑖
∑ 𝑓𝑖
𝑘
𝑖=1

=
159

98
= 1.622 𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒𝑠/𝑦𝑒𝑎𝑟 

Then, the number of the US land-falling hurricane is assumed to follow a Poisson distribution with parameter 

�̂� = 1.622 given by 

𝑝(𝑥; �̂�) =
𝑒−�̂��̂�𝑥

𝑥!
=
𝑒−1.622 1.622 𝑥

𝑥!
; 𝑥 = 0, 1, 2… 

The expected frequency 𝑒𝑖(�̂�) under the above model is estimated by 

𝑒𝑖(�̂�) = 𝑛 × 𝑝𝑖(𝑥; �̂�) = 98 × 𝑝𝑖(𝑥; �̂�) 

On the other hand, for the proposed new estimator �̃� =
𝑡�̅�

𝑒𝑡−1
, we execute a search of 𝑡 satisfying the equation (2) using 

an R program. By searching, we consider a value of 𝑡 = 0.0125. Then, we have  

�̃� =
𝑡�̅�

𝑒𝑡 − 1
=
0.0125 ∗ 1.622

𝑒0.0125 − 1
= 1.612 

The R program that we have used for the search is provided in the Appendix. 

Using the estimator �̃�, the Poisson distribution to hurricane data and the expected frequency 𝑒𝑖(�̃�), take the form: 

𝑝(𝑥; �̃�) =
𝑒−�̃��̃�𝑥

𝑥!
=
𝑒−1.612 1.612 𝑥

𝑥!
; 𝑥 = 0, 1, 2… 

𝑒𝑖(�̃�) = 𝑛 × 𝑝𝑖(𝑥; �̃�) = 98 × 𝑝𝑖(𝑥; �̃�) 

The estimated expected frequency corresponding to the observed frequency 𝑓𝑖 using two estimators �̂� and �̃� are 

provided in Table 2. 

Table 2. Observed and expected frequencies of the USA land-falling hurricane based on the MLE estimate 

   𝑥𝑖: 0 1 2 3 4 5 6 

   𝑓𝑖: 18 34 24 16 3 1 2 

𝑒𝑖(�̂�): 19.404 31.36 25.48 13.72 5.586 1.764 0.588 

𝑒𝑖(�̃�): 19.502 31.556 25.382 13.622 5.488 1.764 0.588 

The value of the Chi-squared test statistic under the MLE is given by 

𝜒2(�̂�) =∑
(𝑓𝑖 − 𝑒𝑖(�̂�))

2

𝑒𝑖(�̂�)
= 1.262

𝑘

𝑖=1
 

We computed the chi-square value by amalgamating expected frequencies for four or more hurricanes per year so that the 

expected frequency for each cell is at least 5. With this modification, we have a chi-square 𝑑𝑓 = 5 − 1 − 1 = 3, and 

𝑐𝑖(𝑑𝑓 = 3, 𝑎𝑙𝑝𝑎 = 0.05) = 7.81. Then, by comparing the observed value of chi-square (1.262, 𝑝-value = 0.7382) 

with 7.81, we may accept the null hypothesis that the US land-falling hurricane follows a Poisson (1.622) distribution. 

The value of the Chi-squared test statistic under the proposed estimator is given by 

𝜒2(�̃�) =∑
(𝑓𝑖 − 𝑒𝑖(�̃�))

2

𝑒𝑖(�̃�)
= 1.227

𝑘

𝑖=1
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As before, by comparing the observed value of chi-square (1.227, 𝑝-value = 0.7465) with 7.81, we may accept the 

null hypothesis that the US land-falling hurricane follows a Poisson (1.612) distribution. 

Note that using both the estimators we accept the null hypothesis that the US land-falling hurricane follows a Poisson 

with mean 1.622 using the MLE estimator and mean 1.612 using the proposed estimator, with comparable p-value. 

Therefore, the proposed estimator is better (higher p-value) or at least as good as the MLE estimator in goodness of fit 

of Poisson distribution to the given example case. 

5. Relative Efficiency of the Proposed Estimator 

In this section, we consider an empirical study to evaluation relative efficiency (𝑅𝐸) of the proposed estimator �̃� 

compared to the MLE �̂� for varying values of sample size 𝑛 and 𝑡. We consider four fixed values of estimator �̂� at 

 0.25, 0.50, 0.75 and 1.25, chosen arbitrarily, and sample size ranging between 5 and 50 at 𝑛=5, 6, 7, 8, 9, 10, 15, 20, 

25, 30, 35, 40, 45 and 50. For each combination of �̂� and 𝑛, we consider values of 𝑡 between 𝑎 and 𝑏 with an 

increment of 0.01, denoted by 𝑡 ∈ ,𝑎: 𝑏@0.01-, where 𝑎 = 0.01 and values of 𝑏 are evaluated using the search so as 

to satisfy the equation (2). The estimated 𝑅𝐸 of �̃� compared to the MLE �̂� are reported in Table 3 for varying 

sample size 𝑛 and 𝑡.  

Table 3. The estimated 𝑅𝐸 of the proposed estimator �̃� compared to the MLE �̂� for varying sample size 𝑛 and 𝑡, 
along with an optimum value of 𝑡, 𝑡𝑜𝑝𝑡 

�̂� 𝑛 𝑡 ∈ ,0.01, 𝑏,@0.01- 𝑡𝑜𝑝𝑡 𝑅𝐸 

 

 

 

 

 

 

0.25 

5 

6 

7 

8 

9 

10 

15 

20 

25 

30 

35 

40 

45 

50 

𝑡 ∈ ,0.01, 3.47@0.01- 

𝑡 ∈ ,0.01, 2.66@0.01- 

𝑡 ∈ ,0.01, 2.20@0.01- 

𝑡 ∈ ,0.01, 1.90@0.01- 

𝑡 ∈ ,0.01, 1.68@0.01- 

𝑡 ∈ ,0.01, 1.50@0.01- 

𝑡 ∈ ,0.01, 1.00@0.01- 

𝑡 ∈ ,0.01, 0.75 @0.01- 

𝑡 ∈ ,0.01, 0.61 @0.01- 

𝑡 ∈ ,0.01, 0.50 @0.01- 

𝑡 ∈ ,0.01, 0.44 @0.01- 

𝑡 ∈ ,0.01, 0.38 @0.01- 

𝑡 ∈ ,0.01, 0.34 @0.01- 

𝑡 ∈ ,0.01, 0.31 @0.01- 

1.08 

0.95 

0.84 

0.76 

0.70 

0.64 

0.46 

0.35 

0.29 

0.25 

0.21 

0.19 

0.17 

0.15 

100.07  𝑅𝐸  180.00 

100.01  𝑅𝐸  166.67 

100.28  𝑅𝐸  157.14 

100.17  𝑅𝐸  150.00 

100.04  𝑅𝐸  144.44 

100.45  𝑅𝐸  140.00 

100.61  𝑅𝐸  126.66 

100.95  𝑅𝐸  119.98 

100.36  𝑅𝐸  116.00 

100.99  𝑅𝐸  113.33 

100.99  𝑅𝐸  113.33 

100.99  𝑅𝐸  113.33 

100.99  𝑅𝐸  113.33 

100.99  𝑅𝐸  113.33 

 

 

 

 

 

0.50 

5 

6 

7 

8 

9 

10 

15 

20 

25 

30 

35 

40 

45 

50 

𝑡 ∈ ,0.01,1.50@0.01- 

𝑡 ∈ ,0.01,1.25@0.01- 

𝑡 ∈ ,0.01,1.07@0.01- 

𝑡 ∈ ,0.01,0.94@0.01- 

𝑡 ∈ ,0.01,0.84,@0.01- 

𝑡 ∈ ,0.01, 0.76,@0.01- 

𝑡 ∈ ,0.01, 0.51,@0.01- 

𝑡 ∈ ,0.01, 0.38,@0.01- 

𝑡 ∈ ,0.01, 0.31 @0.01- 

𝑡 ∈ ,0.01, 0.26 @0.01- 

𝑡 ∈ ,0.01, 0.22 @0.01- 

𝑡 ∈ ,0.01, 0.19 @0.01- 

𝑡 ∈ ,0.01, 0.17 @0.01- 

𝑡 ∈ ,0.01, 0.15 @0.01- 

0.64 

0.55 

0.48 

0.43 

0.39 

0.35 

0.25 

0.19 

0.15 

0.13 

0.11 

0.10 

0.09 

0.08 

100.45  𝑅𝐸  140.00 

100.39  𝑅𝐸  133.33 

100.62  𝑅𝐸  128.57 

100.51  𝑅𝐸  125.00 

100.35  𝑅𝐸  122.22 

100.20  𝑅𝐸  120.00 

100.37  𝑅𝐸  113.33 

100.75  𝑅𝐸  110.00 

100.23  𝑅𝐸  108.00 

100.12  𝑅𝐸  106.66 

100.42  𝑅𝐸  105.71 

100.63  𝑅𝐸  104.99 

100.49  𝑅𝐸  104.44 

100.72  𝑅𝐸  103.99 
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0.75 

5 

6 

7 

8 

9 

10 

15 

20 

25 

30 

35 

40 

45 

50 

𝑡 ∈ ,0.01,1.00@0.01- 

𝑡 ∈ ,0.01,0.84@0.01- 

𝑡 ∈ ,0.01,0.72@0.01- 

𝑡 ∈ ,0.01,0.63@0.01- 

𝑡 ∈ ,0.01,0.56@0.01- 

𝑡 ∈ ,0.01, 0.51@0.01- 

𝑡 ∈ ,0.01, 0.34@0.01- 

𝑡 ∈ ,0.01, 0.26 @0.01- 

𝑡 ∈ ,0.01, 0.20 @0.01- 

𝑡 ∈ ,0.01, 0.17 @0.01- 

𝑡 ∈ ,0.01, 0.15 @0.01- 

𝑡 ∈ ,0.01, 0.13 @0.01- 

𝑡 ∈ ,0.01, 0.11 @0.01- 

𝑡 ∈ ,0.01, 0.10 @0.01- 

0.46 

0.39 

0.34 

0.30 

0.27 

0.25 

0.17 

0.13 

0.10 

0.09 

0.07 

0.07 

0.06 

0.05 

100.61  𝑅𝐸  126.66 

100.35  𝑅𝐸  122.22 

100.56  𝑅𝐸  119.05 

100.71  𝑅𝐸  116.67 

100.81  𝑅𝐸  114.81 

100.37  𝑅𝐸  113.33 

100.57  𝑅𝐸  108.89 

100.12  𝑅𝐸  106.66 

100.89  𝑅𝐸  105.33 

100.49  𝑅𝐸  104.44 

100.05  𝑅𝐸  103.80 

100.18  𝑅𝐸  103.31 

100.67  𝑅𝐸  102.96 

100.53  𝑅𝐸  102.66 

 

 

1.25 

5 

6 

7 

8 

9 

10 

15 

20 

25 

30 

35 

40 

45 

50 

𝑡 ∈ ,0.01,0.60,@0.01- 

𝑡 ∈ ,0.01,0.51,@0.01- 

𝑡 ∈ ,0.01,0.44,@0.01- 

𝑡 ∈ ,0.01,0.38,@0.01- 

𝑡 ∈ ,0.01,0.34,@0.01- 

𝑡 ∈ ,0.01, 0.31,@0.01- 

𝑡 ∈ ,0.01, 0.20,@0.01- 

𝑡 ∈ ,0.01, 0.15,@0.01- 

𝑡 ∈ ,0.01, 0.12 @0.01- 

𝑡 ∈ ,0.01, 0.10 @0.01- 

𝑡 ∈ ,0.01, 0.09@0.01- 

𝑡 ∈ ,0.01, 0.07 @0.01- 

𝑡 ∈ ,0.01, 0.07 @0.01- 

𝑡 ∈ ,0.01, 0.06 @0.01- 

0.29 

0.25 

0.21 

0.19 

0.17 

0.15 

0.10 

0.08 

0.06 

0.05 

0.05 

0.04 

0.04 

0.03 

100.99  𝑅𝐸  116.00 

100.37  𝑅𝐸  113.33 

100.24  𝑅𝐸  111.43 

100.75  𝑅𝐸  110.00 

100.57  𝑅𝐸  108.89 

100.23  𝑅𝐸  108.00 

100.89  𝑅𝐸  105.33 

100.73  𝑅𝐸  104.00 

100.61  𝑅𝐸  103.19 

100.53  𝑅𝐸  102.66 

100.07  𝑅𝐸  102.26 

100.82  𝑅𝐸  102.00 

100.07  𝑅𝐸  101.74 

100.34  𝑅𝐸  101.60 

As appears in Table 3, the estimated 𝑅𝐸 of the proposed estimator �̃� as compared to the MLE �̂� is sensitive to 

sample size. For example, when 𝑛 = 5, the 𝑅𝐸 ranges from 100.07 to 180, when 𝑡 ranges from 0.01 to 3.47, with an 

optimum relative efficiency of 180 observed at optimum 𝑡𝑜𝑝𝑡 = 1.08. However, when 𝑛 = 10, the 𝑅𝐸 ranges from 

100.07 to 140, when 𝑡 ranges from 0.01 to 1.50, with an optimum relative efficiency of 140 observed at optimum 

𝑡𝑜𝑝𝑡 = 0.64. Overall, as �̂� increases the 𝑅𝐸 decreases. 

The estimated 𝑅𝐸 of the proposed estimator �̃� as compared to the MLE �̂� for selected sample sizes between 5 and 

50, and 𝑡 satisfying equation (2) are presented in Figures 1-4.  
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Figure 1. Relative efficiency of  compared to =0.25 for varying n and t 
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Figure 3. Relative efficiency of compared to =0.75 for varying n and t 

 

Figure 4. Relative efficiency of compared to =1.25 for varying n and t 
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6. Results and Discussion 

In order to search for 𝑡 satisfying equation (2), we have utilized a program written in R, which is incorporated in the 

Appendix. Once values of 𝑡  are obtained, we have evaluated the relative efficiency of the proposed estimator as 

compared to the MLE. It appears that the values of 𝑡 for the example data model remain positive for relative efficiency to 

be more than 100% for the proposed estimator compared to the MLE estimator. In empirical study, we have restricted our 

search for 𝑡  nearing 0 at positive values using trial and error method, by choosing values of 𝑡  in some interval. 

Theoretically, since the proposed estimate is unbiased as 𝑡 → 0, we wish to achieve efficiency as well as nearing unbiased 

estimate by choosing values of 𝑡 nearing 0. For example, when �̂�  =  0.50 and the sample size 𝑛 = 5, the relative 

efficiency of the proposed estimator ranges from 100.45 to 140 as 𝑡 ranges from 0.01 to 1.50, with a maximum relative 

efficiency of 140 observed at 𝑡 = 0.64. However, when the sample size increases to 𝑛 = 10 (�̂� =  0.50), the relative 

efficiency ranges from 100.20 to 120, when 𝑡 ranges from 0.01 to 0.76, with a maximum 𝑅𝐸 of 120 occurring at 0.35. 

From the reported results, it appears that for a fixed estimator of the Poisson parameter, the lower sample size provides 

better efficiency for the proposed estimator. It makes sense because as sample size gets larger, the values of 𝑀𝑆𝐸(�̃�) and 

𝑉(�̂�) both get smaller to lead to equally efficient estimator �̃� and �̂�. It also follows that relative efficiency of the 

proposed estimate is better when the value of MLE estimator �̂� is fixed at a lower value, a rare event rate. For example, 

the maximum value of the estimated 𝑅𝐸 of the proposed estimator �̃� is 180 when �̂� is 0.25 and 𝑛 = 5, whereas the 

maximum estimated 𝑅𝐸 decreases to 116 when the value of  �̂� decreases to 1.25  and 𝑛 = 5. Therefore, the 

proposed estimate is efficiently applicable to the rare events data.  

7. Concluding Remarks 

We have proposed a new estimator, �̃� =
𝑡�̅�

𝑒𝑡−1
, 𝑡 ≠ 0, for estimating the unknown Poisson parameter 𝜇 using the moment 

generating function. It appears that the new estimator is a constant multiple of the MLE of 𝜇 . Some properties of the new 

estimator such as 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒, 𝐵𝑖𝑎𝑠, 𝑀𝑆𝐸, 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 and 𝑅𝐸 have been studied. As 𝑡 → 0, the new estimator is 

unbiased, and MSE and Variance are identical to the Variance of the MLE. By searching values of 𝑡 nearing 0, we can 

have the higher relative efficiency of the proposed estimator as compared to the MLE �̂� = �̅� . The new estimator has 

been justified using an example, where the new estimator provides a better fit or at least as good as a fit similar to MLE. In 

empirical study, it appears that the proposed estimator has much higher relative efficiency as compared to the MLE for 

smaller sample size and lower value of the MLE. We write program in R to search for the range of 𝑡 and range of relative 

efficiency (RE), along with an optimum value of 𝑡 at which relative efficiency is maximum, which will provide a guide to 

implement the new method. Given the facts of the empirical study and a real-life application to the land-falling hurricane 

in the USA, we could conclude that the proposed new estimate is more efficient than the usual MLE estimator. Therefore, 

we recommend the new method of estimation for fitting Poisson model to rare events data and the estimation of Poisson 

parameter. 
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Appendix 

PROOF OF THEOREM 3.1. The expected value of �̃� =
𝑡�̅�

𝑒𝑡−1
 is  

𝐸(�̃�) =
𝑡𝐸(�̅�)

𝑒𝑡 − 1
=

𝜇𝑡

𝑒𝑡 − 1
; 𝑡 ≠ 0 

Taking limit as 𝑡 → 0 and applying the L’ Hospital Rule, we have  

𝑙𝑖𝑚
𝑡→0

𝐸(�̃�) = 𝑙𝑖𝑚
𝑡→0

𝐸(�̅�)

𝑒𝑡
= 𝜇 

PROOF OF THEOREM 3.2. The bias of �̃� =
𝑡�̅�

𝑒𝑡−1
 is  

𝐵(�̃�) = 𝐸(�̃�) − 𝜇 =
𝑡𝐸(�̅�)

𝑒𝑡 − 1
− 𝜇 =

𝜇𝑡

𝑒𝑡 − 1
− 𝜇 =

𝜇(𝑡 − 𝑒𝑡 + 1)

𝑒𝑡 − 1
; 𝑡 ≠ 0 

Taking limit as 𝑡 → 0 and applying the L’ Hospital Rule, we have  

𝑙𝑖𝑚
𝑡→0

𝐵(�̃�) = 𝑙𝑖𝑚
𝑡→0

𝜇(1 − 𝑒𝑡)

𝑒𝑡
= 0 

PROOF OF THEOREM 3.3. The variance of �̃� =
𝑡�̅�

𝑒𝑡−1
 is  

𝑉(�̃�) =
𝑡2𝑉(�̅�)

(𝑒𝑡 − 1)2
=

𝑡2𝜇

𝑛(𝑒𝑡 − 1)2
; 𝑡 ≠ 0 

Taking limit as 𝑡 → 0 and applying the L’ Hospital Rule, we have  

lim
𝑡→0

𝑉(�̃�) = lim
𝑡→0

2𝑡𝜇

2𝑛 (𝑒𝑡 − 1)(𝑒𝑡)
 

            = 𝑙𝑖𝑚
𝑡→0

2𝜇

2𝑛*(𝑒𝑡−1)(𝑒𝑡)+(𝑒𝑡)(𝑒𝑡)+
  

 =
2𝜇

2𝑛*(1−1)(1)+(1)(1)+
  

                                 =
𝜇

𝑛
 

                             = 𝑉(�̂�)  

PROOF OF THEOREM 3.4. The MSE of �̃� =
𝑡�̅�

𝑒𝑡−1
 is  

𝑀𝑆𝐸(�̃�) = 𝑉( �̃�) + ,𝐵( �̃�)-2  

=
t2μ

n(et − 1)2
+
μ2(t − et + 1)2

(et − 1)2
 

=
t2μ+nμ2(t−et+1)

2

n(et−1)2
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Taking limit as 𝑡 → 0 and applying the L’ Hospital Rule, we have  

limt→0MSE(μ̃) = lim
t→0

2tμ+2nμ2 (t−et+1)(1−et)

2n (et−1)(et)
  

                 = lim
t→0

2μ+2nμ2 {(t−et+1)(−et)+(1−et)(1−et)}

2n*(et−1)(et)+(et)(et)+
  

        =
2μ+2nμ2 *(0−1+1)(−1)+(1−1)(1−1)+

2n*(1−1)(1)+(1)(1)+
  

        =
μ

n
 

        = V(μ̂)  

PROOF OF THEOREM 3.5. The relative efficiency of �̃� =
𝑡�̅�

𝑒𝑡−1
 with respect to �̂� is given by  

          𝑅𝐸 =
𝑉(�̂�)

𝑀𝑆𝐸(�̃�)
× 100%   

and the proof follows immediately after substituting values of  𝑉(�̂�) and 𝑀𝑆𝐸(�̃�). 

R Code to search for 𝒕 in the sample  data for the proposed estimator �̃� 

n=98;     # Sample size of the given example 

m=1.622;    # MLE estimate, the sample mean for given example 

t=seq(0.0001,0.0251,0.0001);#Values of 𝑡 in the search, satisfying equation (2) 

re=c();    # Empty storage for relative efficiency   

k=length(t);   # Length of vector in the search of t 

for (j in 1:k){   # Beginning of the loop of the search 

a<-t[j]^2+n*m*(t[j]-exp(t[j])+1)^2; # Left quantity in equation (2) 

b<-(exp(t[j])-1)^2;   # Right quantity in equation (2) 

ifelse (a<b,{t[j]=t[j];re[j]=b/a*100},{t[j]=0;re[j]=0})}  

# Computing relative efficiency satisfying (2) 

re    # View relative efficiency for all possible values of t 

t    # View possible values of t in the search 

plot(t,re)   # Plotting relative efficiency versus value of t 

 

Sample R Program for Evaluating Relative Efficiency 

m=0.25; # MLE estimate 

n=5;#Sample size 

t=seq(0.01,3.47,0.01);#Sequence of t used in the search 

k=length(t);  

re=c(); #Empty storage for relative efficiency estimates 

for (j in 1:k){ a<-t[j]^2+n*m*(t[j]-exp(t[j])+1)^2;  

b<-(exp(t[j])-1)^2;  

ifelse (a<b,{t[j]=t[j];re[j]=b/a*100},{t[j]=0;re[j]=0}) 

} 

plot(t,re, type="l", col="black", lwd=2, ylab="Relative efficiency",main=expression("Figure 1: Relative efficiency of 

"*tilde(mu)*" compared to "*hat(mu)*"=0.25 for varying n and t"))  

indx=which(re==max(re)) 

c(min(re),max(re), t[indx]) 

rel<-function(n,mu,t, color){ 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 7, No. 6; 2018 

123 

k=length(t) 

re=c(); 

for (j in 1:k){  

a<-t[j]^2+n*m*(t[j]-exp(t[j])+1)^2;  

b<-(exp(t[j])-1)^2;  

ifelse (a<b,{t[j]=t[j];re[j]=b/a*100},{t[j]=0;re[j]=0})} 

lines(t,re,col=color,lwd=2) 

indx=which(re==max(re)) 

c(min(re),max(re), t[indx])} 

rel(n=10,mu=0.25, t=seq(0.01,1.50,0.01),col="red"); 

rel(n=15,mu=0.25, t=seq(0.01,1.00,0.01),col="blue"); 

rel(n=20,mu=0.25, t=seq(0.01,0.75,0.01),col="darkgreen"); 

rel(n=25,mu=0.25, t=seq(0.01,0.61,0.01),col="darkblue"); 

rel(n=30,mu=0.25, t=seq(0.01,0.50,0.01),col="purple"); 

colors<-c("black","red","blue","darkgreen","darkblue","purple") 

labels<-c(" n=5", " n=10"," n=15"," n=20"," n=25"," n=30") 

legend("topright", inset=.05,  

labels, lwd=2, lty=c(1, 1, 1, 1, 1, 1), col=colors) 
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