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Houphouët-Boigny de Yamoussoukro, Côte d’Ivoire
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Abstract
This paper presents a set of normality general results for kernel weighted averages. We extend existing literature for
independent data (Yao, 2007) to stationary dependent longitudinal data. The asymptotic properties of proposed weighted
averages are investigate under α-mixing conditions. These results are useful for covariance function estimation based on
nonparametric kernel method.
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1. Introduction

We present a set of asymptotic normality results of real-valued function that we assume to be formed by weighted averages
of longitudinal data. Since it’s well known that the most commonly nonparametric kernel type estimators are written as
kernel weighted averages, our results take in account a large class of estimators (Nadaraya, 1964; Watson, 1964; Stone,
1977; Müller, 1984).

Recently, Yao (Yao, 2007) has given general normality results for some function of kernel averages formed by longitudinal
independent data. He has applied his general result to covariance function estimator to derive its asymptotic distribution.
Soro & Hili (Soro & Hili, 2012) have generalized the results of Yao (Yao, 2007) to three-dimensional context. The data
were equally independent.

In this paper, we extend the two-dimensional general result (Yao, 2007) to dependent longitudinal data. Our main results
are the asymptotic normality of a sample averages of some function that we suppose to be formed by longitudinal data. We
suppose that the data are strongly mixing. The results we provide are applicable to covariance function kernel estimator
to derive its asymptotic distribution under alpha-mixing conditions.

In Section 2, we introduce the model as well as assumptions that are necessary in deriving the main results of this paper.
Section 3 presents main results of the paper.

2. Model and Some Assumptions

Let {(Xir,Uir,Tir), 1 ≤ i ≤ n, 1 ≤ r ≤ N} be n × N random variables, identically distributed as the random triple (X,U,T )
with values in R × R × T, where T is such that T = [0,T ] with T < ∞.

For the multi-index of integers λ = (λ1, λ2) and k = (k1, k2), let define |λ| = λ1 + λ2, |k| = k1 + k2; λ! = λ1!λ2! and
k! = k1!k2!.

We consider a model for repeated measurements, which is typically used for longitudinal data treatment :

Uir = Xi(Tir) + ϵir, 1 ≤ i ≤ n, 1 ≤ r ≤ N. (1)

In the model (1), Uir is referred to the r-th observation of the random variable Xi, made at the random time Tir.
Assume that

• the number of observations N(n) depends on the sample size n. For simplicity, N(n) will be noted N.

• X takes values in a probability space (Ω,A,P) whereas U is a real random variable.

• the observation times Tir are i.i.d. with a marginal density f0(t).
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For r , s, and (r, s) , (r′, s′), we define the joint probability densities as follow.
Let f1(t1, t2) be the joint density of (Tr,Ts), g(t, u) the density of (Tr,Us), g1(t1, t2, u1, u2) be the joint density of (Tr,Ts,Ur,Us)
and g2(t1, t2, t′1, t

′
2, u1, u2, u′1, u

′
2) be the joint density of (Tr,Ts,Tr′ ,Ts′ ,Ur,Us,Ur′ ,Us′).

We consider averages of longitudinal data of the form:

Θ̂n,ℓ = Θ̂n,ℓ(t1, t2)

=
1

nN(N − 1)h|λ|+3
n,K

n∑
i=1

∑
1≤r,s≤N

ψℓ(Tir,Tis,Uir,Uis)K
(

t1 − Tir

hn,K
,

t2 − Tis

hn,K

)
, (2)

for 1 ≤ ℓ ≤ L, where hn,K is a bandwidth, K : R2 −→ R is a kernel function and ψℓ : R2 −→ R are real functions.
Let

ϑℓ(t1, t2) = ∥K∥22
∫
R2
ψ2
ℓ (t1, t2, u1, u2)g1(t1, t2, u1, u2)du1du2, (3)

θℓ(t1, t2) =
d|λ|

dtλ1
1 dtλ2

2

∫
R2
ψℓ(t1, t2, u1, u2)g1(t1, t2, u1, u2)du1du2, (4)

B(t1, t2) =
(−1)|k|

k!


∫
R2

vk1 wk2 K(v,w)dvdw
d|k|

dtk1
1 dtk2

2

∫
R2
ψℓ(t1, t2, u1, u2)g1(t1, t2, u1, u2)du1du2

 , for 1 ≤ ℓ ≤ L.(5)

Let N(t1,t2) be a neighborhood of (t1, t2) ∈ [0;T ]2.
Now, we introduce the following basic assumptions that are necessary in deriving the main result of this paper.

(H1) (i) The kernel K is symmetric with a compact support.

(ii) ∥K∥22 =
∫
R2 K2(v,w)dvdw < ∞.

(iii) K is a kernel function of order (|λ|, |k|), that is,∫
R2

vl1 wl2 K(v,w)dvdw =


0, 0 ≤ |l| < |k|, |l| , |ν|.

(−1)|ν|ν!, |l| = |ν|,
C, |l| = |k|.

(6)

where C is a non null constant.

(H2) The bandwidth hn,K satisfies,

(i) hn,K −→ 0, nN(N − 1)h|λ|+2
n,K −→ ∞, nN(N − 1)h2|λ|+2

n,K −→ a2, where a is a positive constant, as n −→ +∞.

(ii) h|λ|+2
n,K −→ ∞, nh|λ|+2

n,K −→ ∞ and N(N − 1)h|λ|n,K −→ ∞, as n −→ ∞.

(H3) (i) d|k|

duk1 dvk2 dwk3
f1(v,w) exists and is continuous for (v,w) ∈ N(t1,t2);

(ii) g1(v,w, u1, u2) is continuous for (v,w) ∈ N(t1,t2), uniformly for (u1, u2) ∈ R2;

(H4) (i) d|k|

dvk1 dwk2
g1(v,w, u1, u2) exists and is continuous for (v,w) ∈ N(t1,t2), uniformly for (u1, u2) ∈ R2;

(ii) g2(v,w, v′,w′, u1, u2, u′1, u
′
2) is continuous for (v,w, v′,w′) ∈ N2

(t1,t2), uniformly for (u1, u2) ∈ R2.

(H5) The collection {ψℓ}ℓ=1,...,l of real functions ψℓ : R4 −→ R satisfies:

(i) ψℓ(t1, t2, u1, u2) is continuous for (t1, t2) uniformly for (u1, u2) ∈ R2,

(ii) d|k|

dtk1
1 dtk2

2

ψℓ(t1, t2, u1, u2) exists for all arguments (t1, t2, u1, u2) ∈ R4.

Let F b
a be the sigma algebra generated by the random variables {Xi,Yi.}bi=a.

The stationary process {Xi,Yi.}bi=a is called strongly mixing (Rosenblatt, 1956) if

α( j) = sup
t

sup
A∈F t

−∞,B∈F ∞t+ j

|P(A ∩ B) − P(A)P(B)| −→ 0, as j −→ ∞.

(H6) The process {Xi,Yi} is strongly mixing with coefficient
∞∑
j=1

ja[α( j)]1−2/δ < ∞ for some a > 1 − 2/δ, and some δ > 2. (7)
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Comments on the assumptions. Assumptions (H1) and (H2) are technical conditions for the proofs. Assumptions (H3)
and (H4) are regularity conditions for joint probability densities. Assumption (H6) is mixing condition verified by the
process.

3. Main Results: Consistency and Asymptotic Normality of Kernel Averages

Before establishing the main results of the paper, we first prove the consistency and the asymptotic normality of weighted
averages (2).

3.1 Consistency of Kernel Averages

In this part of paper, we establish the consistency of (2). The result is given in the following theorem.

Theorem 1 If assumptions (H1)-(H5) are satisfied, we have

Θ̂n,ℓ(t1, t2)
P−→ θℓ(t1, t2), (8)

where θℓ(t1, t2) is defined in (4) for ℓ = 1, ..., L.

Proof. To establish the consistency of (8) we have to consider the following decomposition

E
{(
Θ̂n,ℓ(t1, t2) − θℓ(t1, t2)

)2}
= Var

{
Θ̂n,ℓ(t1, t2)

}
+

{
E[Θ̂n,ℓ(t1, t2)] − θℓ(t1, t2)

}2
. (9)

We denote by
L2

−→ (respectively
P−→) the convergence in L2 (resp. in probability) and we also recall that when (9) goes to

zero, we have

Θ̂n,ℓ(t1, t2)
L2

−→ θℓ(t1, t2) implies Θ̂n,ℓ(t1, t2)
P−→ θℓ(t1, t2).

• Let prove that the second term in (9) goes to 0 when n goes to +∞. We have

EΘ̂n,ℓ(t1, t2) =
1

nN(N − 1)h|ν|+2
n,K

E
 n∑

i=1

∑
1≤r,s≤N

ψℓ(Tir, Tis,Uir,Uis)K
(

t1 − Tir

hn,K
,

t2 − Tis

hn,K

)
=

1

N(N − 1)h|ν|+2
n,K

E
 ∑

1≤r,s≤N

ψℓ(Tir,Tis,Uir,Uis)K
(

t1 − Tir

hn,K
,

t2 − Tis

hn,K

)
=

1

h|ν|+2
n,K

E
{
ψℓ(T11,T12s,U11,U12)K

(
t1 − T11

hn,K
,

t2 − T12

hn,K

)}

= θℓ(t1, t2) +
(−1)|k|

k!

{∫
R2

vk1 wk2 K(v,w)dvdw

× d|k|

dtk1
1 dtk2

2

∫
R2
ψℓ(t1, t2, u1, u2)g1(t1, t2, u1, u2)du1du2 × h|k|−|λ|n,K

}
+ o(h|k|−|λ|n,K )

= θℓ(t1, t2) + B(t1, t2) × h|k|−|λ|n,K + o(h|k|−|λ|n,K ). (10)

Then,

EΘ̂n,ℓ(t1, t2) − θℓ(t1, t2) = B(t1, t2) × h|k|−|λ|n,K + o(h|k|−|λ|n,K ).

And it follows that

EΘ̂n,ℓ(t1, t2) − θℓ(t1, t2) −→ 0. (11)

• Now, we prove that Var
(
Θ̂n,ℓ(t1, t2)

)
−→ 0, as n −→ ∞.

Let

Γℓi,r,s = ψℓ(Tir,Tis,Uir,Uis)K
(

t1 − Tir

hn,K
,

t2 − Tis

hn,K

)
. (12)
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Using the definition of the variance, we have

Var
(
Θ̂n,ℓ(t1, t2)

)
=

1

nN(N − 1)h2|λ|+4
n,K

Var
(
Γℓ1,1,2

)
+

1{
nN(N − 1)h|λ|+2

n,K

}2

n∑
i=1
i,i′

n∑
i′=1

∑
1≤r,s′≤N

∑
1≤r′,s′≤N

Cov
(
Γℓi,r,s,Γ

ℓ
i′,r′,s′

)
= I1 + I2.

 Concerning I1,

I1 =
1

nN(N − 1)h|λ|+2
n,K

×
E

 1

h|λ|+2
n,K

ψ2
ℓ (T11,T12,U11,U12, )K2

(
t1 − T11

hn,K
,

t2 − T12

hn,K

)
− E2

 1

h|λ|+2
n,K

ψ2
ℓ (T11, T12,U11,U12, )K2

(
t1 − T11

hn,K
,

t2 − T12

hn,K

)


=
1

nN(N − 1)h|λ|+2
n,K

×
 1

h|λ|+2
n,K

∫
R4

g1(t, t′, u1, u2)ψ2
ℓ (t, t

′, u1, u2)K2
(

t1 − t
hn,K

,
t2 − t′

hn,K

)
dtdt′du1du2

−
 1

h|λ|+2
n,K

∫
R4

g1(t, t′, u1, u2)ψℓ(t, t′, u1, u2)K
(

t1 − t
hn,K

,
t2 − t′

hn,K

)
dtdt′du1du2

2 .
We have by changing variables

I1 =
1

nN(N − 1)h|λ|+2
n,K

 1

h|λ|n,K

∫
R4

g1(t1 − hn,Kv, t2 − hn,Kw, u1, u2)×

ψ2
ℓ (t1 − hn,Kv, t2 − hn,Kw, u1, u2)K2 (v,w) dvdwdu1du2

− h2
n,K

 1

h|λ|n,K

∫
R4

g1(t1 − hn,Kv, t2 − hn,Kw, u1, u2)

ψℓ(t1 − hn,Kv, t2 − hn,Kw, u1, u2)K (v,w) dvdwdu1du2
]2
}

=
1

nN(N − 1)h|λ|+2
n,K

{
ϑℓ(t1, t2) + o(1)

}
−→ 0, n −→ +∞. (13)

 Concerning I2,

put

Γ
ℓ,1,2
i,r,s = ψℓ(T

(1)
ir ,T

(2)
is ,U

(1)
ir ,U

(2)
is )K

 t1 − T (1)
ir

hn,K
,

t2 − T (2)
is

hn,K

 .
Given that triples {Yi j, Yik,Yil} and {Yi j′ ,Yik′ ,Yil′ } are independent and equidistributed then we can write

I2 =
{N(N − 1)}2{

nN(N − 1)h|λ|+2
n,K

}2

n∑
i=1
i,i′

n∑
i′=1

Cov
(
Γ
ℓ,1,2
i,1,1 ;Γℓ,1,2i′,2,2

)

=
1

n2h2|λ|+4
n,K

n∑
i=1
i,i′

n∑
i′=1

Cov
(
Γ
ℓ,1,2
i,1,1 ;Γℓ,1,2i′,2,2

)

=
1

n2h2|λ|+4
n,K

n∑
i=1
i,i′

n∑
i′=1

Cov
(
Γi,ℓ;Γi′,ℓ

)
. (14)
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Let Λn be a positive sequence tending to∞ to be specified later on. Define

S =
{
(i, i′) : 0 ≤ |i − i′| < Λn, i, i′ = 1, ..., n, i , i′

}
.

Split (14) into two separate summations over index in S and not in S . That is

I2 = I21 + I22, (15)

where

I21 =
1

n2h2|λ|+4
n,K


n∑

i,i′=1

∑
(i,i′)∈S

Cov
(
Γi,ℓ;Γi′,ℓ

) (16)

I22 =
1

n2h2|λ|+4
n,K


n∑

i,i′=1

∑
(i,i′)<S

Cov
(
Γi,ℓ;Γi′,ℓ

) . (17)

For (16), using Hölder’s inequality, |Cov
(
Γi,ℓ,Γi′,ℓ

) | ≤ (
EΓ2

i,ℓEΓ
2
i′,ℓ

)1/2
+

(
E|Γi′,ℓ |

)2 , it follows that

|I21| ≤
1

n2h|λ|+2
n,K

n∑
i,i′=1

∑
(i,i′)∈S

 1

n2h|λ|+2
n,K

(
EΓ2

i,ℓEΓ
2
i′,ℓ

)1/2
+

1

n2h|λ|+2
n,K

(
E|Γi′,ℓ |

)2


=

1

n2h|λ|+2
n,K

n∑
i,i′=1

∑
(i,i′)∈S

{ϑℓ(t1, t2) + o(1)} .

Since Card(S ) ≤ nΛn, then

|I21| ≤
nΛn

n2h|λ|+2
n,K

{ϑℓ(t1, t2) + o(1)}

≤ Λn

nh|λ|+2
n,K

{ϑℓ(t1, t2) + o(1)} . (18)

Clearly, if taking Λn = (ln ln n)2 ln n, hn,K =
ln ln n
ln n in (18), one obtain

Λn −→ ∞, h|λ|+2
n,K −→ 0, nh|λ|+2

n,K −→ ∞ and
Λn

nh|λ|+2
n,K

−→ 0, (19)

so

I21 −→ 0, as n −→ +∞. (20)

Turn to I22. Applying Davydov’s Lemma (see Hall & Heyde, Corollary A.2), and assumption (H6) we have

|Cov
(
Γi,ℓ,Γi′,ℓ′

) | ≤ 8
(
E|Γi,ℓ |δ

)2/δ (
α(|i − i′|))1−2/δ

≤ 8Const
[
h|λ|+2

n,K

]2/δ
[α(|i − i′|)]1−2/δ. (21)

Using (21)

|I22| ≤
8Const.

[
h|λ|+2

n,K

]2/δ

n2h2|ν|+4
n,K

n∑
i,i′=1

∑
(i,i′)<S

[α(|i − i′|)]1−2/δ

≤ 8Const.

n2h(|λ|+2)(2(1−1/δ))
n,K

n∑
i,i′=1

∑
(i,i′)<S

[α(|i − i′|)]1−2/δ.

Reducing the double sum above to a single sum, it follows that

|I22| ≤
8Const.

n2h(|λ|+2)(2(1−1/δ))
n,K

n∑
ℓ=Λn+1

ℓa[α(ℓ)]1−2/δ

≤ 8nConst.

n2h(|λ|+2)(2(1−1/δ))
n,K

n∑
ℓ=Λn+1

ℓa[α(ℓ)]1−2/δ

≤ 8Const.

nh(|λ|+2)(2(1−1/δ))
n,K

∞∑
ℓ=Λn+1

ℓa[α(ℓ)]1−2/δ. (22)
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Since δ > 2, it is easy to see that (2 − 1/δ) > 0, by (H2) nh|λ|+2
n,K −→ ∞ and applying (H6) in (22) it follows that

I22 −→ 0, as n −→ +∞. (23)

Finally Var
(
Θ̂n,ℓ(t1, t2)

)
−→ 0, as n −→ ∞ via (13), (19) and (23).

This conclude the proof of theorem 1 2

3.2 Asymptotic Normality of Kernel Averages

Here, we give the asymptotic normality of (2) in the following theorem.

Theorem 2 If assumptions (H1)- (H5) and (H6) are satisfied, we have

√
nN(N − 1)h|λ|+2

n,K

(
Θ̂n,ℓ(t1, t2) − EΘ̂n,ℓ(t1, t2)

) D−→ N
(
0, ϑℓ(t1, t2)

)
, (24)

where
D−→ denote the convergence in distribution.

Proof. We will establish the asymptotic normality of Θ̂n,ℓ(t1, t2) − EΘ̂n,ℓ(t1, t2) suitably normalized.
We have √

nN(N − 1)h|λ|+2
n,K

(
Θ̂n,ℓ(t1, t2) − EΘ̂n,ℓ(t1, t2)

)
=

√
nN(N − 1)h|λ|+2

n,K

nN(N − 1)h|λ|+2
n,K

n∑
i=1∑

1≤r,s≤N

[
ψℓ(Tir,Tis,Uir,Uis)K

(
t1 − Tir

hn,K
,

t2 − Tis

hn,K

)

− Eψℓ(Tir, Tis,Uir,Uis)K
(

t1 − Tir

hn,K
,

t2 − Tis

hn,K

)]

=
1√

nN(N − 1)h2
n,K

n∑
i=1

∑
1≤r,s≤N

[
Γℓi,r,s − EΓℓi,r,s

]

=

n∑
i=1

∑
1≤r,s≤N

1√
nN(N − 1)h2

n,K

[
Γℓi,r,s − EΓℓi,r,s

]
,

where Γℓi,r,s is defined in (12).
Denote

Ξi jkl =
1√

nN(N − 1)h2
n,K

Γℓi,r,s.

Then √
nN(N − 1)h|λ|+2

n,K

(
Θ̂n,ℓ(t1, t2) − EΘ̂n,ℓ(t1, t2)

)
=

n∑
i=1

∑
1≤ j,k,l≤N

(Ξi jkl − EΞi jkl)

=

n∑
i=1

Ξn,i. (25)

We now introduce Bernstein’s big-block and small-block decomposition. We partition the set {1, 2, ..., n} into 2kn + 1
subsets with large blocks of size un and small blocks of size vn and we set kn =

⌊
n

un+vn

⌋
, where un =

⌊
nN(N − 1)h|λ|+2

n,K

⌋
and

vn = o
(
nN(N − 1)h|λ|+2

n,K

)
. The symbol ⌊.⌋ is integer part. Using (H2), one has

vn

un
−→ 0,

un

n
−→ 0 ,

nN(N − 1)
unh2

n,K

−→ 0,
n
un
α(vn) −→ 0, as n −→ +∞.

(26)
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Let Um, Vm and Wm be defined as follows:

Um =

m(un+vn)+un∑
i=m(un+vn)+1

Ξn,i, 0 ≤ m ≤ kn − 1 (27)

Vm =

(m+1)(un+vn)∑
i=m(un+vn)+un+1

Ξn,i, 0 ≤ m ≤ kn − 1 (28)

Wm =

n∑
i=kn(un+vn)+1

Ξn,i. (29)

Then, we obtain the decomposition

Zn =

n∑
i=1

Ξn,i =

kn−1∑
m=0

Um +

kn−1∑
m=0

Vm +Wm (30)

= S n,1 + S n,2 + S n,3. (31)

Now, let start the proof of theorem 2. The main idea is to show that as n −→ ∞,

E[S 2
n,2] −→ 0 (32)

E[S 2
n,3] −→ 0 (33)∣∣∣∣∣∣∣E[exp(iuS n,1) −

kn−1∏
m=0

E[exp(iuUm)]

∣∣∣∣∣∣∣ −→ 0 (34)

E[U2
m] −→ ϑℓ(t1, t2) (35)

kn−1∑
m=0

E
[
U2

mI {|Um| > εϑℓ(t1, t2)}
]
−→ 0, for every ε > 0. (36)

Remark: Relations (32) and (33) imply that S n,2 and S n,3 are asymptotically negligible; (34) and (35) show that the sum-
mands {Um} in S n,1 are asymptotically independent, verifying that the sum of their variances tends to ϑℓ(t1, t2). Expression
(36) is the Lindeberg-Feller’s condition for asymptotic normality of S n,1 under dependence. Asymptotic normality of Zn

is a consequence of equations (34)-(35):

Zn
D−→ N

(
0, ϑℓ(t1, t2)

)
. (37)

• Proof of (32)

E[S 2
n,2] = Var

kn−1∑
m=0

Vm


=

kn−1∑
m=0

Var(Vm) +
kn−1∑
m=0
m,m′

kn−1∑
m′=0

Cov(Vm,Vm′ )

= J1 + J2. (38)

 Concerning J1,
we have

Var(Vm) = var

 (m+1)(un+vn)∑
i=m(un+vn)+un+1

Ξn,i


=

(m+1)(un+vn)∑
i=m(un+vn)+un+1

Var(Ξn,i) +
(m+1)(un+vn)∑

i=m(un+vn)+un+1
i,i′

(m+1)(un+vn)∑
i′=m(un+vn)+un+1

Cov(Ξn,i,Ξn,i′).

(39)
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Using the second-order stationarity and the fact that {Ξirs} and {Ξir′ s′ } are independent, (39) becomes

Var(Vm) =

vn∑
i=1

Var(Ξn,i) +
vn∑

i= 1
i,i′

vn∑
i′=1

Cov(Ξn,i,Ξn,i′)

= vnVar(Ξn,1) +
vn∑

i= 1
i,i′

vn∑
i′=1

Cov(Ξn,i,Ξn,i′ ). (40)

First, we have

Var(Ξn,1) = Var

 ∑
1≤r,s≤N

(Ξ1rs − EΞ1rs)


= Var

 ∑
1≤r,s≤N

(Ξrs − EΞrs)


=

∑
1≤r,s≤N

var (Ξrs − EΞrs)

= N(N − 1)Var(Ξ11 − EΞ11)
= N(N − 1)

{
E(Ξ11 − (EΞ11)2

}
= N(N − 1)

{
ϑℓ(t1, t2)

nN(N − 1)
(1 + o(1))

}
=

ϑℓ(t1, t2)
n

(1 + o(1)). (41)

Secondly,

|Cov(Ξn,i,Ξn,i′ )| ≤
N(N − 1)

n

∣∣∣∣∣∣∣ 1

h|λ|+2
n,K

Cov(Γℓi,1,1,Γ
ℓ′

i′,1,1)

∣∣∣∣∣∣∣
≤ N(N − 1)

n

{
ϑ2
ℓ (t1, t2) + o(1)

}
vn∑

i= 1
i,i′

vn∑
i′=1

|Cov(Ξn,i,Ξn,i′ )| ≤
vn

n
{vnN(N − 1)[ϑℓ(t1, t2) + o(1)]}

=
vn

n
{o(n)}

= vno(1). (42)

Thirdly, replacing (41) and (42) in (40), it follows

Var(Vm) = vn
ϑℓ(t1, t2)

n
(1 + o(1)) + vno(1)

= vn

{
ϑℓ(t1, t2)

n
(1 + o(1)) + o(1)

}
. (43)
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At the end, J1 in (38) is such that

|J1| ≤
kn−1∑
m=0

vn

{
ϑℓ(t1, t2)

n
(1 + o(1)) + o(1)

}
= knvn

{
ϑℓ(t1, t2)

n
(1 + o(1)) + o(1)

}
= knvnvn

{
ϑℓ(t1, t2)

n
(1 + o(1))

}
= kn

vn

n
ϑℓ(t1, t2)(1 + o(1))

=

⌊
n

un + vn

⌋
vn

n
ϑℓ(t1, t2)(1 + o(1))

∼ n
un

vn

n
ϑℓ(t1, t2)(1 + o(1))

=
vn

un
ϑℓ(t1, t2)(1 + o(1))

−→ 0, by (26). (44)

 Concerning J2,

J2 =

kn−1∑
m=0
m,m′

kn−1∑
m′=0

Cov(Vm; Vm′)

=

kn−1∑
m=0
m,m′

kn−1∑
m′=0

(m+1)(un+vn)∑
i=m(un+vn)+un+1

i,i′

(m′+1)(un+vn)∑
i=m′(un+vn)+un+1

Cov(Ξn,i;Ξn,i′)

=

kn−1∑
m=0
m,m′

kn−1∑
m′=0

vn∑
i= 1

i,i′

vn∑
i=1

Cov(Ξn,m(un+vn)+un+i;Ξn,m′(un+vn)+un+i′)

=

kn−1∑
m=0
m,m′

kn−1∑
m′=0

vn∑
i= 1

i,i′

vn∑
i=1

Cov(Ξn,ηm+i;Ξn,ηm′+i′)

since |ηm − ηm′ + i − i′| ≥ un then we reduce the sums and we write

|J2| ≤
n∑

i= 1
|i−i′ |≥un

n∑
i=1

|Cov(Ξn,i,Ξn,i′ )|

≤ N(N − 1)

nh|λ|+2
n,K

8C[h|λ|+2
n,K ]2/δ

∞∑
ℓ=1

ℓa[α(ℓ)]1−2/δ.

=
8CN(N − 1)

nh(|λ|+2)(1−2/δ)
n,k

∞∑
ℓ=1

ℓa[α(ℓ)]1−2/δ

= o(1) by (26) .

Therefore J2 −→ 0, as n −→ +∞. (45)

Combining (44) and (45), it follows that E[S 2
n,2] −→ 0 and

S n,2 −→ 0 in probability.

This achieves the proof of (32).

• Proof of (33) Using the same arguments as in the proof of (32), one has
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E[S 2
n,3] = Var(

kn−1∑
m=0

Um)

≤ un + vn

n
{ϑℓ(t1, t2) + o(1)} .

∼ un

n
{ϑℓ(t1, t2) + o(1)} .

−→ 0. (46)

• Proof of (34)

We make use of Volkonskii & Rozanov’s (1959) Lemma (see the appendix in Masry (2005)).
Note that Um is {Fi1,...,iun

}-measurable with i1 = m(un + vn) + 1 and
iun = m(un + vn) + un. Note that using that Vm = exp(iuUm) as in the Lemma of Volkonskii & Rozanov, we have∣∣∣∣E{

exp(iuS n,1)
}
−

kn−1∏
m=0

E
{

exp(iuUm)
}∣∣∣∣ ≤ 16knα(vn + 1)

∼ 16
n
un
α(vn + 1)

−→ 0 by (26) (47)

as n goes to infinity.

• Proof of (35)

Replacing un by vn we have

Var(Um) = var

 m(un+vn)+un∑
i=m(un+vn)+1

Ξn,i


=

m(un+vn)+un∑
i=m(un+vn)+1

Var(Ξn,i) +
m(un+vn)+un∑
i=m(un+vn)+1

i,i′

m(un+vn)+un∑
i′=m(un+vn)+1

Cov(Ξn,i,Ξn,i′)

= unϑℓ(t1, t2)(1 + o(1)). (48)

So
kn−1∑
m=0

E[U2
m] = kn

un

n
ϑℓ(t1, t2)(1 + o(1))

∼ un

un
ϑℓ(t1, t2)(1 + o(1))

−→ ϑℓ(t1, t2).

• Proof of (36)

We first establish the asymptotic normality (37) for the particular case where ψℓ is bounded. The case of ψℓ possi-
bly unbounded is then establish by using a truncation argument. Let τn be a fixed truncation point. We can replace
ψℓ(Tir,Tis,Uir,Uis) with the truncated process
ψℓ(Tir,Tis,Uir,Uis)I

{∣∣∣∣ψℓ(Tir,Tis,Uir,Uis)
∣∣∣∣ ≤ τn

}
in (Uir,Uis). Denote

Ξ
τn
irs =

1√
nN(N − 1)h|λ|+2

n,K

ψℓ(Tir,Tis,Uir,Uis)I
{∣∣∣∣ψℓ(Tir,Tis,Uir,Uis)

∣∣∣∣ ≤ τn

}
× K

(
t1 − Tir

hn,K
,

t2 − Tis

hn,K

)
,

Ξ
τn
n,i =

∑
1≤r,s≤N

(
Ξ
τn
irs − EΞ

τn
irs

)
.
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Define Zτn
n =

∑n
i=1 Ξ

τn
n,i and

Z∗τn
n =

n∑
i=1

(Ξn,i − Ξτn
n,i) =

n∑
i=1

Ξn,iI
{∣∣∣∣ψℓ(Tir,Tis,Uir,Uis)

∣∣∣∣ > τn

}
. (49)

Since
∣∣∣∣ψℓ(Tir, Tis,Uir,Uis)

∣∣∣∣ ≤ τn and from (H.5), it follows that

|Ξτn
n,i| ≤ 2C

N(N − 1)τn√
nN(N − 1)h|λ|+2

n,K

and
max

0≤m≤kn−1
|Uτn

m | ≤ 2C
N(N − 1)unτn√
nN(N − 1)h|λ|+2

n,K

.

Therefore if we take τn and un such that

unτn =
n1/2h|λ|+3

n,K

(N(N − 1))1/2 ,

then,

max
0≤m≤kn−1

|Uτn
m | ≤ 2C

N(N − 1)unτn√
nN(N − 1)h|λ|+2

n,K

−→ 0.

Hence, for n sufficiently large, the set
{∣∣∣∣Uτn

m

∣∣∣∣ > ϵϑℓ(t1, t2)
}

becomes empty for all ε > 0. Thus, P
(
|Uτn

m | > εϑℓ(t1, t2)
)
−→ 0

for large n, for all ε > 0. So
kn−1∑
m=0

E
[
U2

mI
{
|Um| > εϑℓ(t1, t2)

}]
= 0, for all ε > 0.

Hence

Zτn
n

D−→ N
(
0, ϑℓ,τn (t1, t2)

)
. (50)

In order to complete the proof, namely to establish (37) for the general case, it suffices to show that as first n −→ +∞ and
τn −→ +∞ (see Masry, 2005 or Fan & Masry, 1992) we have

Var
(
Z∗τn

n

)
−→ 0. (51)

Indeed, ∣∣∣∣E exp
{
iuZn

}
− exp

{
− u2ϑℓ(t1, t2)/2

}∣∣∣∣
=

∣∣∣∣E exp
{
iu(Zτn

n + Z∗τn
n )

}
− exp

{
− u2ϑℓ,τn (t1, t2)/2

}
+ exp

{
− u2ϑℓ,τn (t1, t2)/2

}
− exp

{
− u2ϑℓ,τn (t1, t2)/2

}∣∣∣∣
≤

∣∣∣∣E exp
{
iuZτn

n

}
− exp

{
− u2ϑℓ,τn (t1, t2)/2

}∣∣∣∣ + E∣∣∣∣ exp
{
iuZ∗τn

n

}
− 1

∣∣∣∣
+
∣∣∣∣ exp

{
− u2ϑℓ,τn (t1, t2)/2

}
− exp

{
− u2ϑℓ(t1, t2)/2

}∣∣∣∣.
Letting n −→ +∞, the first term goes to zero by (50), for every τn > 0; the second term converges to zero by (51), because
first n −→ +∞ and then τn −→ +∞; the third term goes to zero as τn −→ +∞ by the dominated convergence theorem.

Therefore, it remains to prove (51). Note that by (50), Z∗τn
n has the same structure as Zτn

n except that Ξτn
n,i is replaced

by
(
Ξn,i − Ξτn

n,i

)
. Applying the Lemma 2.3 in Fan & Masry (1992) or using the same arguments as in Masry (2005) we

conclude that, for all fixed τn > 0, one has (51).

Then, it suffices to choose τn sufficiently large, such that the non-truncated part becomes asymptotically negligible. 2
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The following theorem provides the first main result of the paper.

Theorem 3 Under assumptions of theorems 1 and 2, we have

√
nN(N − 1)h|λ|+2

n,K

[
Θ̂n,ℓ(t1, t2) − θℓ(t1, t2)

] D−→ N
(
B(t1, t2), ϑℓ(t1, t2)

)
. (52)

Proof. According to the Proposition 2, p 243 (Müller & Song, 1993), Theorem 3 is a consequence of theorem 1 and
theorem 2.2

Now, we extend the general result (Theorem 2 of Yao, 2007) under alpha-mixing conditions. Then, additional assumptions
on the bandwidth are given in assumptions (H.2).

Let H : RL −→ R be a function with continuous second order derivatives. If we denote the gradient vector
(
∂H
∂x1

(v), ..., ∂H
∂xL

(v)
)T

by DH(v), and let

B̃(t1, t2) =
(−1)|k|a

k!

L∑
ℓ=1


∫
R2

vk1 wk2 K(v,w)dvdw
d|k|

dtk1
1 dtk2

2

∫
R2
ψℓ(t1, t2, u1, u2)g1(t1, t2, u1, u2)du1du2


×

{
∂H
∂θL

(θ1, ..., θL)T
}

and

ϑℓ,ℓ′(t1, t2) = ∥K∥22
∫
R4
ψℓ(t1, t2, u1, u2)ψℓ′(t1, t2, u1, u2)g2(t1, t2, t1, t2, u1, u2, u′1, u

′
2), du1du2du′1du′2,

V =
(
ϑℓ,ℓ′ (t1, t2)

)
1≤ℓ,ℓ′≤L

the variance-covariance matrix,

then the second main result of the paper follows.

Theorem 4 Assume that assumptions of theorem 3 hold. Then

√
nN(N − 1)h|λ|+2

n,K

[
H(Θ̂1n, ..., Θ̂Ln) − H(θ1, ..., θL)

] D−→ N
(
B̃(t1, t2), [DH(θ1, ..., θL)]T V[DH(θ1, ..., θL)]

)
. (53)

Proof. A L-dimensional Taylor expansion of H around (m1, ...,mL)T of order 1 combined with (8) gives√
nN(N − 1)h|λ|+2

n,K [H(EΘ̂1n, ..., Θ̂Ln) − H(θ1, ..., θL)]
P−→ B̃(t1, t2). (54)

Applying the Cramér-Wold device to (24) it comes√
nN(N − 1)h|λ|+2

n,K (H(Θ̂1n, ..., Θ̂Ln) − H(EΘ̂1n, ...,EΘ̂Ln)) −→ N
(
0, [DH(θ1, ..., θL)]T V[DH(θ1, ..., θL)]

)
. (55)

Finally, (54) and (55) lead to (53). 2
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