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Abstract

The accuracy of the treatment effect estimation is crucial to the success of Phase 3 studies. The calculation of sample size
relies on the treatment effect estimation and cannot be changed during the trial in a fixed sample size design. Oftentimes,
with limited efficacy data available from early phase studies and relevant historical studies, the sample size calculation may
not accurately reflect the true treatment effect. Several adaptive designs have been proposed to address this uncertainty
in the sample size calculation. These adaptive designs provide flexibility of sample size adjustment during the trial by
allowing early trial stopping or sample size adjustment at interim look(s). The use of adaptive designs can optimize the
trial performance when the treatment effect is an assumed constant value. However in practice, it may be more reasonable
to consider the treatment effect within an interval rather than as a point estimate. Because proper selection of adaptive
designs may decrease the failure rate of Phase 3 clinical trials and increase the chance for new drug approval, this paper
proposes measures and evaluates the performance of different adaptive designs based on treatment effect intervals, and
identifies factors that may affect the performance of adaptive designs.
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1. Introduction

It is well-reported that the cost of drug development keeps rising at a high rate while the new drug applications do not keep
up with the same rate (Lesko, 2006). It was estimated that the failure rate for Phase 3 trials exceeds 50% (Chuang-Stein,
2004). A poorly designed Phase 3 trial may be a likely reason to account for the high failure rate. It costs both money and
patient lives (Thoelke, 2007). The accuracy of the treatment effect assumption is crucial to the success of Phase 3 studies.
The calculation of sample size in fixed sample size (FS) designs relies on the assumption of treatment effect and cannot
be changed during the trial. With limited efficacy data available from early phase or other relevant historical studies, the
sample size calculation may not accurately reflect the true treatment effect. This lack of knowledge leads to the calculated
sample size either too small or too large. Thus, the trial may be either oversized or underpowered. The results could be
either a waste of finances and patient resources or trial failure.

Many adaptive designs have been proposed to address this issue (e.g., Armitage et al., 1969; Cui et al., 1999; Gould and
Shih, 1992 and 1998; Hybittle, 1971; Jennison and Turnbull, 1990 and 2006; Lan and DeMets, 1994; Li et al., 2002 Li et
al., 2005; Liu et al., 2008; OBrien and Fleming, 1979; Peto et al., 1976; Pocock, 1977; Proschan et al., 2006; Tsiatis and
Mehta, 2003; Wittes and Brittain, 1990). A broad definition of adaptive designs given by Shih (2006) is used in this paper.
All classical group sequential (GS) designs and sample size re-estimation (SSR) designs fall into adaptive design scope
per this definition. For (classical) GS designs, under a pre-specified total number of looks and maximum sample size, a
study is allowed to stop for efficacy or futility at the interim analysis but no extension is allowed beyond the pre-specified
maximum sample size. An adaptive GS design is a two-phase GS design with sample size adjustment as illustrated in
Figure 1G, which conducts the sample size adjustment at the jth interim analysis (phase 1 portion of the trial), then the
remaining duration of the study with the modified sample size is the phase 2 portion. It has been called SSR design in
the group sequential setting in the literature (e.g., Gould and Shih, 1998; Cui et al., 1999). We simply call it SSR design
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in this paper since it is equivalent to the SSR design with the sample size adjustment at the first look ( j = 1). Shih et al.
(2016) gave a review on popular weighted and unweighted SSR designs. In all adaptive designs, since interim analyses
are built into the traditional studies and the results at the interim look(s) are used to adjust the future course of the study,
the overall type I error rate and adequate power or conditional power need to be maintained in all adaptive designs.

Currently, the discussion in the literature on adaptive designs mostly focused on a single specified value as a representation
of the unknown treatment difference. However, in practice what is often known is a treatment effect interval (Liu et al.,
2008), as illustrated in the following.

It is believed that if an experimental drug is added to the current standard therapy (Carboplatin plus Paclitaxel), the
remission time for ovarian cancer patients after surgery will be prolonged. A Phase 3 confirmatory trial is planned to
compare the treatment effect of the combination therapy versus the standard therapy alone. Progression free survival
(PFS) is used as the primary efficacy endpoint. The treatment effect is estimated based on the results of Phase 2 proof of
concept studies for the experimental drug and published median PFS for the standard treatment. However, different PFS
medians for standard therapy are found in the literature. In the Hellenic Cooperative Oncology Group (HeCOG) study
(Aravantinos et al., 2005), the median PFS of 121 patients randomized to the standard (Carboplatin plus Paclitaxel) therapy
was 38 months. In the Gynecologic Oncology Group (GOG) study, the median PFS of 392 patients receiving standard
therapy was 19.4 months (Ozols et al., 2003). In another Phase 3 study supported by Bristol-Meyers Squibb, the median
PFS of patients receiving standard therapy was 16 months (Neijt et al., 2000). Two other randomized trials indicated the
median PFS was around 17.5 months (DuBois et al., 2003; Parmar et al., 2002). The standard therapy regimens including
dose levels and dose frequencies were similar in these studies. There were also differences in cancer stages and tumor sizes
among the patient populations enrolled into these studies. Thus, it became very difficult to find an accurate point estimate
of the true median PFS for the standard therapy. After careful comparison of study designs including inclusion/exclusion
criteria and treatment schedules, the median PFS for standard therapy was most likely between 15 to 20 months.

Most previous research and designs focused on how to maximize the study efficiency when the treatment effect was
estimated as a point value. From the example above, the question arises as to how the current available adaptive designs
can be used to maximize the study efficiency on a treatment effect interval? How can we use mathematical framework to
evaluate the performance of different designs? What factors will affect the performance of adaptive designs? Under the
same constrains, whether certain GS designs (e.g., with different boundaries or different sample size increments) have a
similar performance as SSR designs?

In this paper, we address these issues. To be specific, we develop a method to evaluate and compare the performance of
adaptive designs including GS, weighted and unweighted SSR designs on a pre-specified treatment effect interval. We
first introduce the measures and indicators to be used for evaluating adaptive design performance in Section 2. The perfor-
mance of adaptive designs when the treatment effect follows a uniform and in general, a location-scaled beta distribution
are discussed in Section 3 and Section 4, respectively. Discussion and conclusion are given in Section 5.

2. Methods of Evaluation of Adaptive Design Performance

2.1 Determination of Treatment Effect Interval

Treatment effect interval should be determined based on the combination of multiple considerations. The lower limit of
treatment effect interval should be based on (1) clinical meaningful treatment difference, (2) medical policies, such as
restriction of medication price, and (3) company financial considerations. The upper limit of treatment effect interval
should be based on (1) the minimum number of patients needed for adequate safety evaluation of the test drug and (2) a
realistic estimate of the largest treatment difference.

2.2 Measures of Performance

Several authors have evaluated adaptive designs in different contexts. For example, Xi et al. (2017) investigated the
optimal timing of interim analyses for making the futility decision. Chen et al. (2016) proposed a biomarker-based sub-
group analysis at the end of a Phase III trial to fine-tune the statistical design including hypothesis adjustment. Levin et
al. (2013) compared adaptive designs with the test statistics which are based on minimal sufficient statistic, thus included
GS and unweighted SSR designs but excluded the weighted SSR design (Cui et al. 1999). All these literature used
average sample size to compare the performance of different adaptive designs. In this paper, we use functions of the true
treatment effect δ on the treatment effect interval [δL, δU] as the measures and construct performance indicators based on
the measures. When comparing the sample size, this function is

u (δ) =
2
(
zβ + zα/2

)2

δ2
,
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where α and β are the pre-specified type I error and type II error for the study. When comparing the power, this function
is

p (δ) = 1 − β.

These functions can be used separately or be combined as seen in the sequel. Let us first illustrate with the FS design.

2.3 True Treatment Effect Function for the Fixed Size Design

Without knowing the true treatment effect δ, the sample size for FS design has to be calculated based on an estimated
effect δ̂ from a previous study or historical data. Sample size cannot be changed during the study. Sample size curves as
function of the true treatment effect for the FS design are illustrated in Figure 1A. Only when δ̂ is equal to true treatment
effect δ, the FS design will have the ideal performance. When δ̂ is shifted away from the δ, the FS design will be either
under powered (if δ̂ > δ) or oversized (if δ̂ < δ). Its performance will be worse as the difference between the true and
estimated value gets larger.

2.4 Indicators to Compare Performance

2.4.1 Failure Rate

Failure and Failure Rate:

At each point on the treatment effect interval, it is considered a failure when the sample size for a particular design at that
point is more than 1

fs
(usually 1

fs
= 2) times the sample size based on the true treatment effect or the power decreased

more than fp (usually 20%) of the power based on the true treatment effect, where 0 < fs < 1 and 0 < fp < 1. For
example, when fp = 20% and the nominal power is 80%, failure occurs if the power of the design is no more than 64%
(= 80% × (1 − 0.2)). The failure rate is defined as the proportion of points that meet the failure criteria on the treatment
effect interval. A lower failure rate indicates a better performance of the adaptive design.

Failure Rate for Fixed Sample Size Design:

Denote the sample size at the true treatment effect δ as u (δ) and n0 the sample size calculated based on the FS design.
Based on the above criterion, a failure occurs when n0 is larger than 1

fs
u (δ) . Because the sample size curve for the

true treatment effect is monotone, it is very easy to see that failure occurs for all δ > δ fn on the interval, where δ fn =√
2(Zα/2+Zβ)2

fsn0
.

The targeted power on the interval for true treatment effect function is always 1 − β. Using the above criterion, it is a
failure when power is decreased more than fp times of the targeted power. Also, because of the monotonicity of power
curves given the sample size n0 calculated based on the FS design, it can be seen that the failure occurs for all δ < δ fβ on

the interval, where δ fβ =

√
2(Zα/2+Z1− fp (1−β))2

n0
.

Thus the total failure rate on a treatment effect interval that combines both sample size and power measures is defined as:

R f =

(
δU − δ fn

)
+

(
δ fβ − δL

)
δU − δL

× 100%.

Below is an example of failure rate for FS designs. When treatment effect interval is [0.0882, 0.5] and assume fs =
1
2 and

fp = 0.2, the failure rates at different sample sizes for FS designs are

1. Failure rate for a FS design with sample size calculation at δU :

R f = (0.4131−0.0882)/(0.5−0.0882)×100% = 78.9%. As indicated in Figure 1B, when treatment effect falls into
the region (0.0882 < δ < 0.4131), power decreases more than 20% of the true treatment effect function for power
(1 − β = 80%).

2. Failure rate for a FS design with sample size calculation at δL:

R f = (0.5−0.1247)/(0.5−0.0882)×100% = 91.1%. As indicated in Figure 1C, when treatment effect falls into the
region (0.1247 < δ <0.5), sample size is more than two times of the sample size from the true treatment function.

3. Failure rate for a FS design with sample size calculation at δM =
√
δLδU :

R f = [(0.5 − 0.2968) + (0.1738 − 0.0882)]/(0.5 − 0.0882) ∗ 100% = 70.1%. As indicated in Figure 1D and Figure
1E, when treatment difference falls into the red region (0.0882 < δ <0.1738), power decreases more than 20% of
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the power from the true treatment effect function; when treatment difference falls into the red region (0.2968 < δ
<0.5), sample size is more than two times of the sample size from the true treatment effect function.

Generalization of Failure Rate:

A generalized formula for failure rate on a treatment effect interval is:

R f =

∫ δU

δL

I( g(δ)
u(δ)>

1
fs

or 1− f (δ)
p(δ)> fp

) (δ) W (δ) dδ,

where g(δ) and f (δ) denote the sample size and power for adaptive design when treatment effect is δ, u(δ) and p (δ) denote
the sample size and power from the true treatment effect function when treatment effect is δ, and IA(δ) is the indicator
function of A. W (δ) denotes the weight assigned to δ ∈ [δL, δU] which will be a probability density function on the
treatment effect interval. When treatment effects have a uniform distribution over [δL, δU], W (δ) is equal to 1/ (δU − δL).
Treatment effect also can be assumed to follow other distributions. In this paper, we will consider the treatment effect
follow a uniform and a location-scaled beta distribution in Sections 3 and 4, respectively. The generalized failure rate is
used as an indicator of performance in the paper. For simplicity, we just call it failure rate in the sequel.

2.4.2 Area between Log Curves (ABLC)

Loss function:

Loss function (or regret) in decision theory can also be used to evaluate the performance of a design at the true treatment
effect δ on the interval [δL, δU]. The ratio of the upper limit to lower limit of the interval is called adaptive index (AI), i.e.,
AI = δU/δL. We consider the absolute loss function:

l
(
Ŝ (δ) ; S (δ)

)
=

∣∣∣Ŝ (δ) − S (δ)
∣∣∣ , δ ∈ [δL, δU] ,

where S (δ) is the sample size or power at the true δ and Ŝ (δ) is the estimated sample size or the power based on the
design. The smaller the loss is, the better the adaptive design performance is. In the following, we consider the loss in
terms of sample size only. The study of the loss in terms of power is available from the authors upon request.

Area Between Curves:

Loss only accounts for the performance of adaptive design at a particular point on a treatment effect interval. It is important
to identify a criterion to account for the cumulative performance on the treatment effect interval. The risk function is the
average of loss over the treatment effect interval. Since the length of the treatment effect interval is the same, comparisons
of risks is the same as comparisons of the areas between curves as defined in the following.

Area Between Curves (ABC) of Adaptive Design and True Treatment Effect Function:

To account for the deviation from the true treatment effect function, ABC for each adaptive design can be calculated on
the treatment effect interval (see Figure 1F) by

ABC =
∫ δU

δL

∣∣∣Ŝ (δ) − S (δ)
∣∣∣ dδ.

Performance can be evaluated by comparing ABC for different designs. The smaller the area between the curves is, the
better the performance is.

Area between Log Curves (ABLC) for Adaptive Design and True Treatment Effect Function:

One can interpret Ŝ (δ) − S (δ) as the sample size difference between the adaptive design and the true treatment effect
function. More appropriately though, the ratio of Ŝ (δ) to S (δ) indicates the relative difference. For easier interpretation,
log ratio can be calculated. We have

log
(

Ŝ (δ)
S (δ)

)
= log(Ŝ (δ)) − log(S (δ)).

Define ABLC as

ABLC =
∫ δU

δL

∣∣∣log(Ŝ (δ)) − log(S (δ))
∣∣∣ dδ.

In addition to the failure rate R f , ABLC is used as another performance indicator of a design in Sections 3 and 4.
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3. Performance of Adaptive Designs when Treatment Effect Follows a Uniform Distribution

3.1 Method

In this section, the performance of (classical) GS designs, weighted SSR designs, and unweighted SSR designs on a
treatment effect interval are evaluated, assuming that the treatment effect follows a uniform distribution. CHW design
(Cui et al., 1999) is used as the representative of the weighted SSR design. For the unweighted (likelihood) SSR design
(e.g., Li et al., 2002; Shih et al., 2016), boundaries for the interim looks after the sample size adjustment are recalculated
to maintain the overall type I error rate. For weighted and unweighted SSR designs, an initial sample size is selected
based on the sample size at δL, δU , and δM . Sample size can then be increased based on the interim finding on treatment
effect size during the study. However, there is a restriction for the maximum allowed sample size. Sample size adjustment
can be done based on the conditional power at selected looks before the final analysis. Effects on the patient increment
patterns and different adaptive indices are also studied.

For the (classical) GS and weighted SSR designs, boundaries at each interim and final looks are fixed at the design
stage through pre-specified alpha-spending. Four kinds of discrete boundaries - O’Brien and Fleming boundaries (OBF),
Pocock boundaries (PK), Haybittle-Peto boundaries with critical value α0 of 0.01 (HP01), and with critical value α0
of 0.005 (HP005) are considered in the performance comparisons. Boundaries are calculated from exact methods (as
opposed to the approximation of alpha-spending function for continuous boundaries). More specifically, let K be the total
number of looks, t1, t2, · · · , tK denote information fraction at each look, δ denotes the treatment effect, and Zt1 ,Zt2 , · · · ,ZtK

denote the test statistic at each look, then,

1. Pocock Boundary c satisfies
P

(
Zt1 > c, or Zt2 > c, · · · , or ZtK > c|δ = 0

)
= α.

2. O’Brien-Fleming Boundary c satisfies

P
(
Zt1
√

t1 > c, or Zt2
√

t2 > c, · · · , or ZtK

√
tK > c|δ = 0

)
= α.

3. Haybittle-Peto Boundaries c0 and cα−α(K−1) satisfy

P
(
Zt1 > c0, or Zt2 > c0, · · · , or ZtK > cα−α0(K−1)|δ = 0

)
= α,

where c0 = Φ
−1 (1 − α0) , α0 is predetermined and α0 (K − 1) is the cumulative alpha spending in the first K − 1 looks.

For unweighted SSR design, since sample size will be updated based on the interim finding, the information time needs
to be updated. Thus, the boundaries after the sample size adjustment needs to be recalculated as well.

The effect of different patient increment patterns are also studied. Performance is compared when patient increment is
equally-spaced or unequally-spaced with 2 time increments. Information time for each analysis is calculated based on the
total number of looks and the patterns of increment.

3.2 Simulation Plan

Simulations for adaptive designs are based on the steps outlined below:

Step 1: Identify an interval of exploration and the maximum and minimum allowed sample size on the basis of early
study results and literature.

Step 2: Choose candidate adaptive designs to be considered - GS designs with OBF boundary, Pocock boundary,
Haybittle-Peto boundary or SSR designs.

Step 3: Determine the following design parameters:

• Adaptive index

• Maximum sample size for GS designs and initial sample size for SSR designs

• Total number of looks

• Types of information increment

• Time of sample size adjustment for SSR designs

• Adjustment of sample size at the predetermined interim look

Step 4: Obtain average sample size and power at 11 points of treatment effect for 10 evenly divided sections on the
selected treatment effect interval for each design via Monte Carlo simulations
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Step 5: Get the sample size and power curve on the treatment effect interval through interpolation

Step 6: Evaluate the performance for each adaptive design

All simulation results are based on 10,000 runs for each treatment effect. Simulations are repeated based on different
simulation parameters specified in step 3.

3.3 Results

3.3.1 Performance of Adaptive Designs

Performance for each adaptive design on the treatment effect interval [0.0882, 0.5] is evaluated by failure rate R f and area
between log curves (ABLC). For GS design, performance is evaluated at different maximum sample sizes - 2018, 356,
and 63 which are the sample sizes in the FS design when treatment effects are δL, δM , and δU , respectively. For SSR
designs, 356 is used as initial sample size (ninit) and the maximum allowed sample size after sample size adjustment is
2018. Sample size adjustment is based on a targeted conditional power of 80%.

In Figure 2, the top row shows the performance for GS designs with nmax = 2018, 356 and 63. Rows 2 to 5 are graphs
for the weighted SSR designs with ninit = 2018, 356 and 63. The last row shows the performance for unweighted SSR
designs with ninit = 365. Both equally-spaced and unequally-spaced (double increment) information time are considered.

For GS designs (top row), the design with PK boundary has the best performance (low failure rate R f and low ABLC)
when nmax is not small. When nmax is small (= 63), OBF is the best. In terms of the total number of looks, when nmax

is large (= 2018), the performance of GS designs gets better as the number of looks increases, regardless of the kind of
boundaries. When nmax is not large, the performance does not alter as much with the increase of the number of looks and
is similar among the GS designs with different boundaries. In terms of the maximum allowed sample size, nmax = 356
gives better performance than nmax = 63 or 2018. There is an exception though with unequally-spaced information time,
where the best performance is observed when nmax is 2018.

For the weighted SSR design (rows 2 to 5), the best performance is still with the PK boundary. The focus here is the
initial sample size. The best performance is obtained when the initial sample size ninit = 365 for the following reason:
When the initial sample size is small (= 63), the sample size adjustment is done based on very limited information and is
not reliable. When the initial sample size is already large (= 2018), no sample size adjustment could occur, thus the SSR
designs become GS designs.

Based on the observations for the weighted SSR designs, the unweighted SSR designs (last row) are examined with the
initial sample size = 356 only. For unweighted SSR designs, the focus is on the total number of looks, the timing of the
sample size adjustment, and the pattern of sample size increment. As shown, the SSR with PK boundary still performs the
best overall. Performance improves for all boundaries when the total number of looks increases. However, the failure rate
R f remains similarly low after 3 looks. The timing of the sample size adjustment does not matter for R f , but for ABLC it
is the earlier adjustment, the lower ABLC.

3.3.2 Performance of SSR Designs with j = 1

Comparison of SSR designs with j = 1 are presented on the first row of Figure 3. In general, ABLC of the unweighted
SSR are slightly smaller than the weighted SSR designs, while failure rate for these two designs are almost identical.

3.3.3 Comparison of Maximum of 5 Looks Unequally-Spaced GS Designs Using HP Boundaries Versus SSR Designs
Using OBF and Pocock Boundaries

Since sample size can be adjusted based on interim findings, failure rate and ABLC for SSR designs are usually low.
However in practice, there is still a lack of understanding on SSR designs compared to the (classical) GS designs. Thus,
SSR designs are not well accepted by the regulatory agency (FDA). In the second and third rows of Figure 3 we compare
unequally-spaced (double increment) maximum of 5 looks GS designs using HP01 and HP005 boundaries versus SSR
designs using OBF and PK boundaries. As shown, the failure rate (second row) and ABLC (third row) for GS designs with
HP01 and HP005 boundaries are lower than or similar to that of SSR designs with OBF boundary. However, the opposite
is true for SSR designs with PK boundary except for two-stage designs. We discuss more on the special two-stage design
in the next sub-section.

3.3.4 Performance of Two-Stage Adaptive Designs

Two-stage adaptive designs have one interim analysis and one final analysis. Because of the simplicity of two-stage
designs, they are most often used in clinical trials. Comparison of performance of GS design with maximum sample
size of 2018 and weighted and unweighted SSR designs with initial sample size of 356 is presented on the last row of
Figure 3. As there is only one interim analysis before the final look, the average sample size for GS design is at least 1009
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Figure 2. Performance Indicators for GS Design and Sample Size Re-estimation Design (Top row is for GS designs,
rows 2 to 5 are for weighted sample size re-estimation designs, last row is for unweighted sample size re-estimation

designs with ninit = 356,)
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Figure 3. Comparisons of Performance Indicators (Top row is for comparisons of SSR designs with j = 1, and 2nd and
third rows are for comparisons between maximum of 5 looks unequal increment GS designs and equal increment sample

size re-estimation designs, last row is for comparisons of two-stage adaptive designs, )
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(= 2018/2) and it is over-sized for a large portion of the treatment effect intervals. Weighted or unweighted SSR designs
start with a much smaller initial sample size and sample size will only be increased when the interim finding indicates
a small treatment effect. Thus, the performance of two-stage SSR designs is better than the two-stage GS designs. The
performance of weighted SSR designs is almost identical to the performance of unweighted SSR designs.

4. Performance of Adaptive Designs when Treatment Effect Follows a Location-Scaled Beta Distribution

In this section, we report results from the same simulation procedures and parameters as in the previous section, except
that treatment effects follow the location-scaled beta distributions: Beta (5, 2), Beta (2, 5), or Beta (4, 5) on the treatment
effect interval [0.0882, 0.5] (see Figure 1H).

4.1 Results

The top row of Figure 4 shows the performance indicators of GS designs with the maximum sample size nmax = 2018.
As in the previous uniform distribution case, GS design with PK boundary has the best performance (low failure rate R f

and low ABLC). In terms of the total number of looks, also similar to the uniform distribution case, the performance of
GS designs gets better as the number of looks increases, regardless of the kind of boundaries, equal or unequal patient
increments. The performance seems robust to the true treatment distribution, especially with the ABLC indicator.

The second and third rows of Figure 4 presents the performance indicators of the weighted and unweighted SSR designs
with the initial sample size ninit = 365 and the sample size adjustable to maximum = 2018 after sample size adjustment.
(See previous discussion on ninit = 365 in Section 3.3.1). Only either 2 or 5 looks are considered here. As shown, the best
performance is still with the Pocock boundary. The most striking result here is that designs with treatment effect following
the location-scaled beta(5, 2) perform much better than designs with treatment effect following a location-scaled beta(2, 5)
or beta(4, 5), also the performance indicators with beta(5, 2) are relatively insensitive to the number of looks, the timing
of the sample size adjustment, or the pattern of sample size increment.

The last row of Figure 4 presents the comparison of 2-look or 5-look unequally-spaced (double increments) GS designs
using HP01 and HP005 boundaries versus SSR designs using OBF and PK equally-spaced boundaries. As shown, when
the treatment distribution is beta(5, 2) and looks=5, similar to the uniform distribution case, GS designs with HP01 and
HP005 boundaries perform better than or similar to SSR designs with OBF boundary, but worse than SSR designs with
PK boundary. When the treatment distribution is beta(2, 5) or beta(4, 5) and looks=5, GS designs with HP01 and HP005
boundaries may perform better or worse than SSR designs with OBF boundary or PK boundary, depending on the timing
of the sample size adjustment. In general, early or middle timing is better than late adjustment. For two-stage designs
(looks=2), conclusions are the same as the uniform distribution case.

5. Discussion and Conclusion

Among the various adaptive designs, the use of the classical GS designs in clinical trials is well established. However, as
commented in a recently published US FDA’s Guidance for Industry, the adaptation of sample size based on the interim
treatment effect estimates is still regarded as a less understood area (FDA 2010). In this paper, we attempt to contribute
to the understanding of SSR designs by comparing performance of GS designs versus SSR designs with different design
parameters. One aim is to examine situations where the performance of a SSR design may also be achieved a classical
GS design, perhaps with different design parameters.

In this paper, the performance of adaptive designs is based on the measure of sample size and/or power function over
the treatment effect interval. The design parameters include the maximum sample size for GS designs, initial sample
size for SSR designs, alpha-spending boundaries, total number of looks, types of information increment (equal or double
increment), timing of sample size adjustment, etc. Treatment effect is assumed to follow either a uniform distribution or
a general location-scaled beta distribution.

There are several interesting findings. First, with the performance indicators defined by failure rate and ABLC in terms
of the sample size and/or power measure, PK boundary is the best choice in most cases. GS designs perform better
with interim analyses at double increment of information time than at equally-spaced increment. Not surprisingly, the
more interim looks the better performance for GS, but not necessarily for SSR designs. Of course, more interim analyses
requires more logistic efforts.

For the more common two-stage design, SSR designs perform better than GS designs, regardless of alpha-spending
boundary or timing of the interim analysis. The weighted and unweighted SSR designs perform similarly.

Most interestingly, we find that 5-look unequally-spaced GS design with HP01 and HP005 boundaries can achieve similar
or better performance than the SSR designs with OBF, but not necessarily better than SSR with PK boundary.

Finally, adaptive designs may not always be the best choice. When the treatment effect interval is narrow, indicating
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Figure 4. Performance Indicators for designs when treatment effect follows a location-scaled beta distribution (Top row
is for GS designs, the second and third rows are for sample size re-estimation designs, and the bottom row is for

comparisons of GS design with HP boundary versus SSR with OBF or PK boundaries)
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relatively accurate estimation of the treatment effect, performance is robust on the interval regardless of the design chosen.
Thus, a fixed sample size design may be good for this circumstance. However, because of the difficulty of obtaining such
a narrow treatment effect interval, one should be cautious and may use simulations to confirm the point treatment estimate
before the fixed sample size design instead of adaptive design is used.
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