
International Journal of Statistics and Probability; Vol. 7, No. 6; November 2018
ISSN 1927-7032 E-ISSN 1927-7040

Published by Canadian Center of Science and Education

GLM for Some Class of Com-Poisson Distributions with Applications
Bayo H. Lawal1

1 Department of Statistics & Mathematical Sciences, Kwara State University, Nigeria.

Correspondence: Bayo H. Lawal, Department of Statistics & Mathematical Sciences, Kwara State University, Malete.
Nigeria.

Received: July 2, 2018 Accepted: July 20, 2018 Online Published: August 17, 2018

doi:10.5539/ijsp.v7n6p1 URL: https://doi.org/10.5539/ijsp.v7n6p1

Abstract

In this paper, we present regression models (GLM) for the class of Conway-Maxwell-Poisson (Com-Poisson) distribution-
s. This class of models include the Com-Poisson, the Com-Poisson negative binomial, the Generalized Com-Poisson and
the Extended Com-Poisson distributions, all of which have been presented in various literatures within the last five years.
While these distributions have been applied most especially to frequency count data exhibiting over or under dispersion,
not much has been presented in the application of this class of models to data having several covariates (the exception
being the Com-Poisson itself). Thus in this paper, we present the generalized linear model formulation for these distri-
butions and compare our results with the baseline Com-Poisson and Poisson models. Two data sets are employed in this
application. We further extended our discussion to the zero-inflated versions of these distributions and applying same to
a well established data with having 64% zero observations. All the models are fitted using SAS PROC NLMIXED. In all
cases, empirical means and variances are generated which leads to our ability to compute the Wald’s goodness-of-fit test
statistic for all the models employed in this paper.

Keywords: Com-Poisson, NDHS, under-dispersion, empirical mean, zero-inflated models

1. Introduction

Most often, discussions are based on fitting distributions for over-dispersed data. Not much is focussed on under-dispersed
count data. The Com-Poisson distribution (Shmueli et al.) however can be used to model both under and over dispersed
count data. Consequently, we have applied the Com-Poisson model to three data sets having covariates in this study.
Thus, our goal here is to fit the generalized linear model versions to the class of Com-Poisson to these data sets. We
note here that the Com-Poisson distribution and its generalized linear model (GLM) has been explored and found very
flexible in handling count data. See results in Lord et al. (2008), Sellers et al. (2012), and Francis et al. (2012) amongst
several others. However, not much has been extended to the various extensions of the Com-Poisson distribution presented
in Imoto (2014), Chakraborty & Ong (2014) and Chakraborty & Imoto (2016). We present in the next sections brief
discussions of this class of Com-Poisson distributions.

For the data employed in this study however, the first data set is extracted from the 2013 Nigerian Demographic Health
Survey (NDHS). The data comprises a subset of 3980 observations where the response variable is the number of children
alive and using as an offset, the total number of children given birth to by women respondents in the six south-west states
of Nigeria. The data is under-dispersed. The second data set is the 2003 U.S. Medical Expenditure Panel Survey (MEPS)
data set relating to the number of doctor visits (Y=docvis) in 2003 for a number of elderly patients as well as several other
covariates relating to patients’ characteristics. This data set is over-dispersed.

Our third data set is the example which examines how waste quotas (emps) and the strictness of policy implementation
(strict) affect the frequency of waste spill accidents of plants (accident) in Australia. Our focus is on employing the
zero-inflated versions of these distributions to this data set that has excess zeros. We present here a brief introductory
discussions on the Com-Poisson distributions and its extensions. These are models that are subsequently applied to the
three data sets described above.
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2. The Com-Poisson Distribution

The Com-Poisson (here referred to as COMP) distribution, first introduced by Conway and Maxwell (1962) and which
Shmueli et al. (2005) re-introduced has seen a lot of attention in recent times. The distribution is defined for a random
variable Y as:

f (y; ν, λ) =
λy

(y!)ν
1

Z(λ, ν)
, y = 0, 1, 2, · · · , λ > 0, ν ≥ 0. (1)

Where

Z(λ, ν) =
∞∑
j=0

λ j

( j!)ν
. (2)

is the normalizing term and ν is the dispersion parameter such that if (ν > 1) we have under dispersion, and when (ν < 1),
we have over dispersion. The distribution reduces to the Poisson, Geometric and Bernoulli as ν = 1, ν = 0 and ν → ∞
distributions respectively. The mean and variance of Y can be obtained respectively from:

E(Y) =
1

Z(λ, ν)

∞∑
j=0

j λ j

( j!)ν
, and

Var(Y) =
1

Z(λ, ν)

∞∑
j=0

j2 λ j

( j!)ν
− E(Y)2

(3)

However, the mean and variance of the Com-P distribution do not have closed form expressions, and, consequently,
Shmueli et al. (2005) provided approximate mean and variance of the distribution as:

E(Y) ≈ λ1/ν − ν − 1
2ν
, for ν ≤ 1 or λ > 10

Var(Y) ≈ 1
ν
λ1/ν

(4)

2.1 Class of COM-Poisson Distributions

Chakraborty & Iyamote (2016) introduced the distributions presented in the following sections, their properties and ap-
plications to both frequency distributed data,including zero-truncated case.

2.2 Com-Poisson NB-COMNB

The COM-Poisson Negative Binomial distribution Chakraborty & Ong, (2014) has the pdf in (5) with parameters (ν, p, α):

f (y; ν, p, α) =
(ν)y py

(y!)α 1Hα−1(ν, 1, p)
=

Γ(ν + y)
Γ(ν) 1Hα−1(ν, 1, p)

.
py

(y!)α
; y = 0, 1, 2, . . . (5)

where

1H(ν, 1, p) =
∞∑

k=0

(ν)k pk

(k!)α
=

∞∑
k=0

Γ(k + ν) pk

Γ(ν)(k!)α

and the distribution is defined in the parameter space

ΘCOM−NB = {ν > 0, p > 0, α > 1} ∪ {ν > 0, 0 < p < 1, α = 1}

2.3 The Generalized Com-Poisson Distribution-GCOM

Imoto (2014) proposed the generalized Com-Poisson distribution-GCOM with parameters (ν, p, β) and has the pdf:

f (y; ν, p, β) =
[Γ(ν + y)]β

C(ν, p, β)
.
py

y!
; ν, p > 0; β < 1. (6)

where

C(ν, p, β) =
∞∑

k=0

[Γ(ν + k)]β

k!
pk
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With the distribution is defined in the parameter space

ΘGCOMP = {ν > 0, p > 0, β < 1} ∪ {ν > 0, 0 < p < 1, β = 1}

2.4 The Extended COM-Poisson (ECOMP) Distribution

The pmf of a random variable Y having the extended COM-Poisson distribution with parameters (ν, α, , β) is given by:

f (y; ν, α, β) =
[(ν)y]β

1S βα−1(ν, 1; p)
.

py

(y!)α
=

[Γ(ν + y)]β

[Γ(ν)]β 1S βα−1(ν, 1; p)
.

py

(y!)α
(7)

where

1S βα−1(ν, 1; p) =
∞∑
j=0

[Γ(ν + j)]β

[Γ(ν)]β
.

p j

( j!)α

The distribution is defined in the parameter space

ΘECOMP = {ν ≥ 0, p > 0, α > β} ∪ {ν > 0, 0 < p < 1, α = β}

Chakraborty & Imoto (2014) have discussed the properties of these distributions in detail, and we would thus not focus
on these here.

3. Com-Poisson Type Regression Formulation

We present in this section the application of these distributions in regression situations where we have several covariates.
This regression approach is often described as generalized linear Models (GLM regressions. In all cases, we would assume
a log link between the parameter, λ, µ or p and the linear predictor (x′β). For the COMP (basic) model, is modeled in two
ways as:

log(λi) = β0 + β1xi1 + β2xi2 + . . . + βzxiz (8a)
log(µi) = β0 + β1xi1 + β2xi2 + . . . + βzxiz (8b)

The formulation in (8a) is designated here as model COMP and models λ and the linear predictor x′β. The formulation in
(8b) however is based on Guikema and Coffel (2008) alternative parameterization of the COM-Poisson regression model
using µ = λ1/ν, the approximate mean of the distribution. This approach leads to the expression in (1) now becoming:

f (y; ν, µ) =
(
µy

y!

)ν 1
S (µ, ν)

, (9)

where, S (µ, ν) =
∞∑
j=0

(
µ j

j!

)ν
. This model will be designated here as COMµ and has its mean and variance defined as:

E(Y) = µ + 1/2ν − 1/2 and Var(Y) = µ/ν. Models COMNB, GCOMP and ECOMP are each modeled with the following
GLM formulation:

log(pi) = β0 + β1xi1 + β2xi2 + . . . + βzxiz (10)

3.1 Estimation

In all cases, MLE of the above models and those in other sections are carried out with PROC NLMIXED in SAS,
which minimizes the function −LL(y,Θ) over the parameter space Θ numerically. The integral approximations in PROC
NLMIXED is the Adaptive Gaussian Quadrature, Pinheiro & Bates (1995) and the Newton-Raphson optimization algo-
rithm in PROC NLMIXED (NEWRAP) are employed.

3.2 Application-Example I

The data for this example comes from the 2013 Nigeria Demographic Health Survey (NDHS). This is a nationwide survey
covering the six geographical zones of the country. For our analysis here, we have selected those for zone 6-South West
Nigeria comprising of six states: Ekiti, Ondo, Ogun, Osun, Oyo and Lagos. The data concerns the response of women
(3980 respondents) relating to current number of living children as the response variables. Other variables chosen for this
data are age of respondent (age), age at first child birth (age1), total number of children born (tot), and any previous still
birth or miscarriage (1 for yes, 0 for No). Other explanatory variables not used here (preliminary analysis indicate they
are not significant) are religion (1,0), Education(1,0), dwelling (urban, rural) and wealth, a categorical variable.
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The covariates are:

• age in years

• age1-age at first child birth

• term- any previous still birth or miscarriage (1 for yes, 0 if no)

• lch=number of living children (response variable)

• tch-total number of children given birth to.

• edu-any formal education(1,0)

• rsd-residence (urban=1, rural=0)

• rlg-religion (1-christanity, 0-for others)

We present the first and last five observations for this data set (n = 3980).

Obs age edu edu1 rsd rlg age1 term tch lch wlt lof

--------------------------------------------------------------------------------

1 49 2 1 1 1 12 0 9 2 4 2.19722

2 46 1 1 1 1 12 1 7 5 4 1.94591

3 42 1 1 1 1 12 0 4 3 4 1.38629

4 26 3 1 1 1 12 0 2 2 5 0.69315

5 48 2 1 1 1 12 1 6 4 5 1.79176

--------------------------------------------------------------------------------

3976 39 0 0 0 1 37 1 1 1 5 0.00000

3977 43 2 1 1 0 38 0 2 2 5 0.69315

3978 42 1 1 0 1 39 0 1 0 5 0.00000

3979 45 3 1 1 1 39 0 1 1 5 0.00000

3980 49 3 1 1 1 40 0 2 2 5 0.69315

We would employ here the Poisson (P), COMP, COMµ, COMBNB, GCOMP and ECOMP models to data having covari-
ates. Models COMP and COMµ are modeled respectively in (11a) and (11b) respectively as:

log(λi) = β0 + β1age + β2age1 + β3term + lof (11a)
log(µi) = β0 + β1age + β2age1 + β3term + lof (11b)

and for the COMBNB, GCOMP and ECOMP models, we have the formulation:

log(pi) = β0 + β1age + β2age1 + β3term + lof (12)

We note here that in all the proposed models above, lof is employed as an offset, that is, log(tch). Further, our preliminary
analysis indicates that none of the other covariates is significant for inclusion in our proposed model.

3.3 Results

The results of applying these model to the NDHS data are presented in Table 1. These results demonstrate that any Comp-
Poisson model and its other extensions clearly performs better than the underlying Poisson model. The Poisson model

gives a Wald’s test statistic. X2
W =

 N∑
i=1

(yi − m̂i)2

σ̂2
i

 of 429.9002 on 3976 d.f., giving a dispersion parameter of 0.1081 << 1

clearly indicating under-dispersion in the data. We note that for the Poisson, m̂i = σ̂
2
i . The negative-binomial (NB) model

will not be suitable in this case as it often leads to non-convergence for under-dispersed data. Under the circumstance
therefore, the Com-Poisson (two parameterization approaches) and its extended forms (COMPNB, GCOMP and ECOMP)
models discussed earlier are implemented on this data set.

Based on the -2 log-likelihood (-2LL) and the Akaike Information Criteria (AIC), the most parsimonious model would
be the Guikema and Coffel (2008) parameterized model COMµ with the lowest -2LL and consequently lowest AIC of
7841.6. However, this model produces a very high Wald’s goodness-of-fit test statistic of 3568.7497 on 3975 d.f. This
GOF value is very much on the high side when compared with those of the other Com-Poisson based models in Table 1.
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Table 1. Estimated ML estimates and standard errors in Parentheses for all the models
Parameter P COM COMµ COMNB GCOMP ECOMP
Intercept -0.1342 1.5617 0.0748 1.0507 0.5968 1.2408

(0.0595) (0.1040) (0.0191) (0.3278) (0.1431) (0.1127)
age -0.0033 0.0575 -0.0087 0.0567 0.0538 0.0539

(0.0012) (0.0026) (0.0004) (0.0026) (0.0027) (0.0026)
age1 0.0071 -0.0616 0.0127 -0.0604 -0.0564 -0.0569

(0.0021) (0.0039) (0.0007) (0.0039) (0.0040) (0.0039)
term -0.0504 -0.2190 -0.0343 -0.2158 -0.2048 -0.2061

(0.0252) (0.0400) (0.0082) (0.0398) (0.0394) (0.0394)
ν̂ = 2.7500∗ ν̂ = 7.9302 ν̂ = 1.8535∗ ν̂ = 0.2733∗ ν̂ ≈ 0.0000

(0.0537) (0.1865) (0.6457) (0.0772) (0.0000)
α̂ = 3.5294∗ - α̂ = 2.4777∗

(0.1351) - (0.0700)
β̂ = −1.2517∗ β̂ = −0.0453

(0.0783) (0.0247)
-2LL 12014.14 10055 7831.6 10050 10033 10,002
AIC 12022.14 10065 7841.6 10062 10045 10,016
X2 429.9002 2064.0394 3568.7497 2050.2128 2016.5757 2027.1024
d.f. 3976 3975 3975 3974 3974 3973

The Wald’s test statistics computed for the other models are such that m̂i and σ̂2
i are computed using similar expressions

for the means and variances in (3) for the COMP model. Our approach here, for these computations agree with those
employed in SAS PROCs GLIMMIX, GENMOD and HPFMM. To further test the validity of our approach in computing
these moments from expressions in (3), we have similarly, for the Com-Poisson distribution, computed the approximate
means and variances given by expressions in (4) respectively. Results in Table 2 gives the results of this comparison. Only
results for the first five and last five observations are presented.

Table 2. Computations of means and variances and Wald test Statistics

Obs# λ̂ ν̂ suma sumb sumc mean var m1 v1

1 343.458 2.75003 183246242.86 1472526066.24 12390169882.58 8.03578 3.04114 8.04030 3.03942

2 180.572 2.75003 1871424.24 11774976.99 78594404.80 6.29199 2.40801 6.29777 2.40578

3 102.043 2.75003 74431.74 375926.17 2044374.72 5.05062 1.95771 5.05783 1.95490

4 20.322 2.75003 178.54 474.52 1456.24 2.65773 1.09269 2.67147 1.08714

5 173.651 2.75003 1466121.99 9087814.76 59811888.05 6.19854 2.37409 6.20441 2.37183
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3976 3.6985 2.75003 7.130 8.992 15.65 1.26114 0.60383 1.29081 0.58508

3977 10.8989 2.75003 41.514 85.011 210.36 2.04775 0.87379 2.06538 0.86674

3978 4.8375 2.75003 10.229 14.632 27.67 1.43046 0.65879 1.45581 0.64508

3979 5.7489 2.75003 13.226 20.467 40.91 1.54752 0.69817 1.57072 0.68687

3980 13.6086 2.75003 66.876 150.450 401.73 2.24968 0.94607 2.26581 0.93963

In Table 2, the columns labeled mean and var are based on computations from expressions in (3), while those labeled m1
and v1 refer to computations based on approximate results in Shmueli et al. (2005) presented in expressions in (4). The
means and variances are very similar and this is true for all the 3980 observations in the data. The columns labeled suma,
sumb, sumc are computed as follows:

suma = Z(λ̂, ν̂) =
∞∑
j=0

λ̂ j

( j!)ν̂
; sumb =

∞∑
j=0

j λ̂ j

( j!)ν̂
, sumc =

∞∑
j=0

j2 λ̂ j

( j!)ν̂

In actuality, the summation converges in the region 200 ≤ j ≤ 1000. Thus, the mean is obtained as (sumb/suma) and
the variance similarly as (sumc/suma)-(mean*mean). Similarly, the approximate means and variances (m1 & v1) are
obtained using expressions in (4). The corresponding Wald test statistic under the latter is 2099.3164 for the Com-Poisson
(λ parameterization based) model. We observe here that the means and variances obtained from either expressions in (3)
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or (4) are very close, indicating that the procedure employed in the former (which is adopted here across all models) is
validated.

Although the COMµ has the lowest -2LL and AIC fit statistics, its Wald’s GOF is unusually high. This is due to fact that
it generally underestimates the expected variances. For Instance, we present in Table 3, the estimated mean and variances
under this model using expressions in (3). We see that the procedure gives estimated means that are very close to the
estimated mean µ̂ in column 2, however, the variances are all very small compared with those in Table 2.

Table 3. Mean and variances Computations under the COMµ Model

Obs µ̂ ν̂ suma sumb sumc mean var
1 7.36402 7.93020 1.4496702355E19 1.0033769958E20 7.0795108996E20 6.92142 0.92933
2 5.68133 7.93020 57833332304401 302875077631962 1.6276534003E15 5.23703 0.71735
3 3.47926 7.93020 8553145.31 25929805.92 82365614.60 3.03161 0.43920
4 2.00057 7.93020 500.38 764.24 1313.90 1.52731 0.29314
5 4.78537 7.93020 86996774021.64 377540720887.28 1690983678904.2 4.33971 0.60424
6 4.03625 7.93020 418131530.14 1500441091.15 5597799155.20 3.58844 0.51073
7 4.46736 7.93020 8909552579.89 35826620720.88 149095908016.80 4.02115 0.56476
8 5.04531 7.93020 566997108425.79 2608197501472.0 12359065886056 4.60002 0.63723
9 4.58309 7.93020 20377683836.28 84305118811.50 360579318156.39 4.13713 0.57897
10 6.77855 7.93020 1.8673706994E17 1.1830632949E18 7.6550030331E18 6.33545 0.85556

Because of the inconsistency of the COMµ model, we see from Table 1, that of all other models, the GCOMP gives the
most parsimonious model with Wald’s X2 = 2016.5757 on 3974 d.f. The corresponding -2LL and AIC are 10,033 and
10,045 respectively. The ECOMP model has serious convergence problem and the estimated parameter ν under this model
is very small.

For all these models, the effects of age, age at first birth (age1) and previous miscarriage or still birth (term) are all
significant. Thus, for ten years increase in age (keeping all other variables constant), the expected number of children
alive is exp(10 × 0.0538) = 1.71,or an average of 1 additional child surviving.

4. GLM with Variable Dispersion Parameters

For all the models applied above to the NDHS data, we have assumed that the dispersion parameters (e.g. ν in the COMP
model) are constant and do not depend on the explanatory variables that may or may not necessarily belong to the list of
covariates in the main model as for example in model (10). Many often times, the dispersion parameters themselves can
be function of these regressions which makes the assumption of constant dispersion parameter untenable. Consequently,
in this section, we will model the dispersion parameters ν in the following form:

log ν = a0 + a1age + a2age1 + a3term (13)

where {a0, a1, a2, a3} are additional parameters to be estimated from the data. Further, all or some of these additional
parameters may or may not be significant at say, α = 0.05. The results of these applications to our models are presented
in Table 4.
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Table 4. Estimated ML estimates and standard errors in Parentheses for all the models Under variable dispersion
Parameters

Parameter COM COMµ COMNB GCOMP
Intercept 0.2407 0.0746 1.3346 1.2520

(0.2641) (0.0176) (0.3679) (0.1667)
age 0.1162 -0.0086 0.0410 0.0457

(0.0077) (0.0004) (0.0065) (0.0029)
age1 -0.0828 0.0119 -0.0739 -0.0596

(0.0113) (0.0007) (0.0115) (0.0045)
term -0.2317 -0.0236 -0.1529 -0.2774

(0.1213) (0.0087) (0.1746) (0.0484)
Dispersion Parameters

a0 0.6364 2.5383 -0.2074 1.0321
(0.0706) (0.1496) (0.5639) (0.3630)

age 0.0134* -0.0519* 0.0290* -0.1781*
(0.0015) (0.0031) (0.0080) (0.0201)

age1 -0.0022 0.0689* 0.0207 0.1392*
(0.0025) (0.0055) (0.0178) (0.0243)

term 0.0067 -0.2709* -0.1225 -0.1415
0.0288) (0.0665) (0.3049) (0.1985)

α̂ = 3.3383∗ β̂ = −1.4860∗
(0.1477) (0.0595)

-2LL 9,995.9 7,391.3 10,036 9,936.1
AIC 10012 7407.3 10,054 9,954.1
X2 2137.7439 3663.8494 2042.3323 2096.1014
d.f. 3971 3971 3970 3970

We note that we did not implement a variable dispersion parameter for the ECOMP model because results from Table
1 indicate that the dispersion parameter is not significant for this model, its estimate being ν̂ ≈ 0.00. However, for all
the other models, Table 4 gives the results of this application. Clearly, not all covariates are necessarily significant in the
dispersion formulation. For instance for the COMP model, only the explanatory variable age is significant while for the
COMµ model, all the explanatory variables are significant. All the significant covariates are asterisk-ed in Table 4.

These are clearly contrasting results. Ideally therefore,it would make sense to remove all non-significant covariates in the
dispersion GLM formulation. Thus for the COMP model for instance, the dispersion model should be log(ν) = a0+a1age.
Again here the COMµ model gives the lowest -2LL and AIC but much higher Wald’s GOF test value. The GCOMP model
provides a much better fit with the dispersion parameter modeled as log(ν) = a0+a1age+a2age1 (a3 omitted). The results
for this reduced model when implemented is presented in figure 1.

The SAS System 

The NLMIXED Procedure 

 !"!#$%$"&'(%)#!%$(&

 !"!#$%$"& '(%)#!%$&

*%!+,!",&

'""-"& ./& %&0!12$&  "&3&4%4&

567&8-+9),$+:$&

;)#)%(& <"!,)$+%&

=>& !"#$!# %"!&&' ()*% '"$! +"%%%! %")#,$ !"$'*% -%"%%%%$ 

=?& %"%,$'% %"%%#**) ()*% !$"*# +"%%%! %"%,%%( %"%$!(& %"%%%%)( 

=@& -%"%$)', %"%%,$#( ()*% -!("#! +"%%%! -%"%&*&! -%"%$%** -%"%%%%) 

=A& -%"#$)& %"%,!*$ ()*% -&"#% +"%%%! -%"(,!' -%"!''& &"!,!.-' 

!>& !"%,'% %"(&!& ()*% #")% %"%%(* %"((*! !"'$$) -%"%%%!$ 

!?& -%"!'** %"%#%!* ()*% -*"*& +"%%%! -%"#!*, -%"!()( %"%%%,)( 

!@& %"!(*& %"%#,#* ()*% $"'! +"%%%! %"%)%)) %"!*&# %"%%%,,* 

=$%!& -!",*&% %"%$),$ ()*% -#$"%% +"%%%! -!"&%#& -!"(&)$ %"%%%%!( 

Figure 1. Parameter estimates under GCOMP Model
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Under this model, -2LL=9936.6, AIC=9952.6 and the Wald’s GOF statistic is 2096.3987 on 3971 d.f. (pvalue=1.000), a
very good fit.

4.1 Example II

Our second example data here is the U.S. Medical Expenditure Panel Survey (MEPS) data set relating to the number of
doctor visits (Y=docvis) in 2003 for a number of elderly patients as well as several other covariates relating to patients’
characteristics. The covariates are:

• private insurance coverage (supplemental to Medicare) (0,1)

• medicaid-eligibility for low income Medicaid coverage (0,1)

• female-gender of patients (1 if female, 0 if male)

• actlim-limitation of activity (0,1)

• totchr-number of chronic conditions

• phylim-physical limitation (0,1)

• educyr-number of years of educational attainment.

We present the first and last five observations for this data set (n = 3677).

Obs docvis female phylim private medicaid educyr actlim totchr

1 4 1 0 1 0 15 0 3

2 6 1 1 0 0 8 1 2

3 2 1 1 0 1 11 0 2

4 11 0 0 1 0 13 0 3

5 3 1 0 1 0 14 0 1

---------------------------------------------------------------------------

3671 5 1 1 1 0 16 0 1

3672 2 0 0 0 0 6 1 2

3673 15 1 1 0 1 12 1 3

3674 8 1 1 1 0 9 1 6

3675 6 1 0 1 0 13 0 2

3676 14 1 1 0 0 3 1 2

3677 10 0 1 0 0 4 1 1

We also created the interaction term femedu of female and educyr. The baseline Poisson regression model has Pear-
son’s X2 = 22930.3628 on 3668 d.f., giving a dispersion parameter of 6.2515, which clearly indicates very strong over-
dispersion, considering the size of the data. In Table 5 are the estimated parameters, together with their standard errors
for the distributions considered here.
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Table 5. Estimated ML estimates and standard errors in Parentheses for all the models
Parameter P COM COMµ COMNB GCOMP ECOMP
Intercept 0.7374 -0.1913 -2.6490 -0.2627 -0.2632 -0.6088

(0.0361) (0.1074) (0.3791) (0.0371) (0.0371) (0.2280)
female 0.2405 0.0494* 0.6838* 0.0499* 0.0499* 0.0520*

(0.0427) (0.0188) (0.2625) (0.0187) (0.0187) (0.0188)
phylim 0.1898 0.0383* 0.5302* 0.0387* 0.0387* 0.0403*

(0.0165) (0.0072) (0.1034) (0.0072) (0.0072) (0.0073)
private 0.1235 0.0230* 0.3179* 0.0228* 0.0228* 0.0233*

(0.0144) (0.0062) (0.0870) (0.0061) (0.0061) (0.0062)
medicaid 0.0777 0.0135 0.1873 0.0131 0.0130 0.0119

(0.0190) (0.0079) (0.1100) (0.0078) (0.0078) (0.00783)
educyr 0.0440 0.0082* 0.1139* 0.0081* 0.0081* 0.0082*

(0.0027) (0.0012) (0.0174) (0.0012) (0.0012) (0.0012)
actlim 0.0836 0.0138* 0.1912* 0.0135 0.0135 0.0136

(0.0167) (0.0070) (0.0968) (0.0069) (0.0069) (0.0070)
totchr 0.2408 0.0404* 0.5588* 0.0391* 0.0391* 0.0383*

(0.0047) (0.0022) (0.0377) (0.0023) (0.0023) (0.0023)
femedu -0.0265 -0.0052* -0.0717* -0.0052* -0.0052* -0.0054*

(0.0035) (0.0015) (0.0058) (0.0015) (0.0015) (0.0015)
ν̂ = 0.0722∗ ν̂ = 0.0722∗ ν̂ = 1.1661∗ ν̂ = 1.1763∗ ν̂ = 29.0697

(0.0058) (0.0058) (0.0810) (0.0837) (23.7274)
α̂ = 1.0496∗ - α̂ = 0.1149∗

(0.0112) - (0.0185)
β̂ = 0.9506∗ β̂ = 0.1405∗

(0.0117) (0.0397)
-2LL 29974.04 21269 21269 21264 21264 21254
AIC 29992.40 21289 21289 21286 21286 21278
X2 22930.3628 4541.3103 4541.3111 4565.7195 4566.1066 4653.6250
d.f. 3667 3666 3666 3665 3665 3664

Results in Table 5 demonstrate again that that the Com-Poisson model and its various other extensions clearly perform
better than the underlying Poisson model. The most parsimonious models are the COMP and COMµ models. Although
the extended Com-Poisson models have slightly lower AIC and BIC than the COMP models, however, COMP is based on
fewer parameters and has the lowest GOF of 4541.3103 on 3666 d.f. We observe here the considerable reductions in the
AIC and Wald’s test statistic for the Com-Poisson models and its extensions. For all these models, the effect of medicaid
is not significant. actlim-activity limitation is barely significant in the COMP models but not in the extended models. The
interaction term between female and education years is also significant. Thus, for a ten year increase in education (keeping
all other variables constant), the expected number of doctors’ visits is exp(10×−0.0052) = exp(−0.052) = 0.949,or 5.1%
reduction in men visits to doctors. The corresponding value for females would be exp{10 × (0.0494 − 0.0052)} = 1.045.
Thus, females expected number of visits will increase by 4.5%. These are based on adopting the COMP model as the
most parsimonious.

4.2 Variable Dispersion Parameter Models

For the corresponding variable dispersion models, we present below the summary fit statistics for the models.

COMP COMµ COMNB GCOM ECOMP
-2LL 21135 21219 20983 20977 20906
AIC 21171 21255 21021 21015 20942
X2 4468.4723 4417.0485 3926.1479 3890.9365 3695.1955
d.f 3659 3659 3657 3657 3657

Although the ECOMP model gives the lowest -2LL and AIC and a most parsimonious value of Wald’s X2, it however
most often suffers from convergence and under the circumstance, the GCOMP model may be preferred to the ECOMP
model and a typical output under the GCOMP model is presented in figure 2. A test on whether the additional estimated
parameters from the variable dispersion model is significant is provided by −(2LL2 − 2LL1) = (221264 − 20977) = 287
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and is based on (3665-3657)=8 d.f which is highly significant. We note from figure 2 however, that not all the dispersion
covariates are significant in the model.

The SAS System 

The NLMIXED Procedure 
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Figure 2. Parameter estimates under GCOMP Variable Disp. Model

5. Zero-Inflated GLM Models

We present in this section the effect of applying the procedure employed in the last section to data exhibiting excess zeros
(like the data in our next example where 64% of the data are zeros. We present here the results of fitting the ZICOMP,
ZICOMµ, ZINBCOMP and ZIGCOMP models are given in Table 6. To accomplish these, we recall that a zero-inflated
(ZI) model is a two-part process manifested by the structural zeros part and the process that generates random counts and
can be written in the form:

Pr(Y = y|ϕ) =

ϕ + (1 − ϕ) Pr(Y = 0) if yi = 0

(1 − ϕ) Pr(Y = yi)) if yi = 1, 2, · · ·
(14)

where ϕ is the extra proportion of zeros and Y is the count random variable with specified parameters. ϕ is modeled here
in the logit form. Thus, the probability mass function for the ZICOMP, ZICOMµ, ZINBCOMP and ZIGCOMP models
are given respectively in expressions (15) to (19).

For the Com-Poisson, we have the probability density function:

P(λ, β; yi) =


ϕ + (1 − ϕ) 1

Z(λi, ν)
if yi = 0

(1 − ϕ) 1
Z(λi, ν)

λ
yi
i

(y!)ν
if yi = 1, 2, · · ·

(15)

where

Z(λi, ν) =
∞∑
j=0

λk
i

(k!)ν

and the mean and variance of Yi are respectively given as:

E(Yi) = (1 − ϕ) 1
Z(λi, ν)

∞∑
j=0

j λ j

( j!)ν
(16a)

Var(Yi) = (1 − ϕ) 1
Z(λi, ν)

∞∑
j=0

j2 λ j

( j!)ν
− E(Y)2 (16b)

Similarly, for the ZICOMµ, the probability mass function is given by:

P(λ, β; yi) =


ϕ + (1 − ϕ) 1

S (µi, ν)
if yi = 0

(1 − ϕ) 1
S (µi, ν)

(
µy

y!

)ν
if yi = 1, 2, · · ·

(17)
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where, S (µ, ν) =
∞∑
j=0

(
µ j

j!

)ν
.

The probability model for the ZINBCOMP is given by:

Pr(Yi = y) =


ϕ + (1 − ϕ)H−1 if y = 0

(1 − ϕ) Γ(ν + y)
Γ(ν) 1Hα−1(ν, 1, p)

.
py

(y!)α
; if y > 1

(18)

Similarly, the probability mass function for the ZIGCOMP is given by:

Pr(Yi = y) =


ϕ + (1 − ϕ)[Γ(ν)]βC−1 if y = 0

(1 − ϕ) [Γ(ν + y)]β

C(β, ν, p)
.
py

y!
; if y > 1

(19)

where H in (18) and C in (19) are defined respectively as:

1H(ν, 1, p) =
∞∑

k=0

Γ(k + ν) pk

Γ(ν)(k!)α
and C(β, ν, p) =

∞∑
k=0

[Γ(ν + k)]β

k!
pk

The pmf model for the ZIECOMP model can also easily be displayed. Consequently, from the above, it is not too difficult
to formulate the corresponding log-likelihoods.

5.1 Example Data

We apply these zero-truncated models to the following data example which examines how waste quotas (emps) and the
strictness of policy implementation (strict) affect the frequency of waste spill accidents of plants (accident). The data
originally came from David Good of Indiana University.

We have reproduced the first and last five observations for these data which has a total of 778 observations. The variables
are:

• Accident: number of waste spill accidents recorded in the plant

• Strict: strictness of policy implementation, where,

Strict:

1 strict policy
0 lenient

• emps: the size of the waste quotas

Table 6. Reported accident numbers with the two covariates

Subj emps Strict accident
1 30 0 11
2 58 1 0
3 34 0 0
4 133 1 0
5 1 0 1
...

...
...

...
774 50 1 0
775 112 0 0
776 13 0 3
777 138 1 2
778 36 1 0

11
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A frequency distribution of the data reveals that 498 or 64% of the data are zeros. Clearly, there is overabundance of zeros
in this data. We would therefore expect that there are more zeros in these data than would normally be expected from a
Poisson model.

We present the results of these analyses in Table 6.

Table 7. Parameter Estimates under zero-inflated Com-Poisson Models
Parameters ZICOMP ZICOMµ ZINBCOMP ZIGCOMP ZIECOMP
Intercept -0.2800 -520.86 -0.1021 -0.0988 -0.4142

(0.0274) (829.83) (0.1185) (0.1116) (0.0740)
emps 0.0005 -0.8345 0.0001 0.0001 0.0001

(0.0005) (1.6522) (0.0004) (0.0004) (0.0004)
strict -0.0226 -42.3245 -0.0665 -0.0669 -0.0678

(0.0415) (102.50) (0.0334) (0.0334) (0.0332)

ZInflated Parameters
Intercept 0.0930 0.0935 0.0779 0.0768 0.0501

(0.1793) (0.1791) (0.4011) (0.4026) (0.4229)
emps -0.0220* -0.0220* -0.2318* -0.2335* -0.2533*

(0.0071) (0.0071) (0.1027) (0.1032) (0.1072)
strict 1.5702* 1.5683* 8.3002* 8.3556* 8.9973*

(0.3295) (0.3290) (3.2664) (3.2819) (3.3946)

ν̂ ≈ 0.000 0.0005 0.3455 0.3300 ν̂ =≈ 0.0000
(0.0000) (0.0008) (0.0824) (0.0961) (0.0000)

α̂ = 1.0294 β̂ = 0.9686 α̂ = −0.0378
(0.0503) (0.0485) (0.0554)

β̂ = 0.0320
(0.0366)

-2LL 2194.0 2194.1 2178.7 2178.6 2173.0
AIC 2208.0 2208.1 2194.7 2194.6 2191.0
X2 990.2061 988.5184 974.1406 977.4219 2667.7243

Results from Table 6 indicate that the ZICOMµ gives parameter estimates whose standard errors are greater than the
absolute values of the parameters. This observation is validated by the use of PROC COUNTREG in SAS using the
zeromodel option. However, the model gives the same test statistics values as the lambda based ZICOMP model. The
ZIECOMP model is sometimes intractable and very unattractive because of its convergence issues. Further, parameter
estimates are not often conformed with the theoretical justification of the model such as α̂ > β̂. Of all these models,
the ZINBCOMP (zero inflated negative binomial Com-Poisson) is the most parsimonious model with Wald’s GOF value
being 974.1406 on 770 d.f. For this model, both covariates are significant in the zero part of the model. The estimate
of the dispersion parameter here is ν̂ = 0.3455 which is significant. Of course we could stretch this model further by
modeling with a variable dispersion parameter that incorporates the covariates.

6. Conclusions

We have demonstrated here that we can extend the generalized linear modeling approach to the Com-Poisson class of
distributions. While the ECOMP model is sometimes difficult to fit in terms of convergence and obtaining initial parameter
estimates, we have however, for the examples provided in this paper able to obtain convergence for this distribution. The
Generalized Com-Poisson model (GCOMP) and its various forms works well for most data and readily converges. The
Com-Poisson re-parameterization by Guikema & Coffelt (2008) produces very large values of Wald’s GOF because it
sometimes underestimates the true variances. The SAS programs for implementing these models are available from the
author.
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