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Abstract

Dynamic modelling of decision maker choice behavior of best and worst in discrete choice experiments (DCEs)
has numerous applications. Such models are proposed under utility function of decision maker and are used in
many areas including social sciences, health economics, transportation research, and health systems research.
After reviewing references on the study of such experiments, we present example in DCE with emphasis on time
dependent best-worst choice and discrimination between choice attributes. Numerical examples of the dynamic
DCEs are simulated, and the associated expected utilities over time of the choice models are derived using
Markov decision processes. The estimates are computationally consistent with decision choices over time.

Keywords: discrete choice models, best-worst scaling, Markov decision processes
1. Introduction and Motivation

Discrete choice experiments (DCEs) are applied in social sciences, health economics, transportation research,
and health systems (see Potoglou et al., 2011; Lancsar & Louviere, 2008; Greene & Hensher, 2003). DCEs and
their models (Discrete choice models, DCMs) focus on predicting a decision maker’s choices in products or
services. In many cases, they are time dependent. Such research has not been practically implemented in
attribute-level best-worst DCE, in which the decision maker’s task is to choose the best option and the worst
option from a choice set instead of just the best option, as in traditional DCEs. This class of experiments falls
under best-worst scaling (BWS) experiments (Louviere et al., 2015). Here, we apply the BWS models over a
time sequence to quantify and measure decision maker behavior and derive the utilities using Markov decision
processes (MDPs). The change in utilities from one time to the next is described in the form of gain or loss. The
utility is composed of a systematic component that is dependent on the key attributes of the product and a
random component. Train (2009) presents multiple models based on different assumptions about the distribution
of the random component. In his suggested model, the error terms are assumed to be homogeneous and
uncorrelated (Train, 2009). By assuming the covariates are generated under a normal distribution and the error
terms under a generalized extreme value distribution, the output data is then modeled as binary and conditional
logit. Our focus is on the conditional logit assumption but add a dependence structure through time and transition
probabilities under MDPs.

Lancsar et al. (2013) and Louviere et al. (2015) provide three cases of the BWS experiments: 1) best-worst
object scaling, 2) best-worst attribute-level scaling or profile case, and 3) best-worst discrete choice experiments
(BWDCESs) or multi-profile case. We are interested in the profile case, also referred to as Case 2 (BWS). It is
also of interest to us to extend the model built on a function of the data, as presented in Grasshoff et al. (2003),
Grasshoff et al. (2004) and Grossmann et al. (2009), to the attribute-level best-worst DCEs. In extending this
work to these experiments, we provided an additional way to define the systematic component that provides
flexibility that is not seen in traditional methods.

By scaling the attributes and the attribute-levels, it is possible to determine the impact the variables have on
decision maker behavior. We simulated data and computed the associated parameter estimates. The results of this
simulation were used to project the expected discounted utility over time using MDPs.

The manuscript is organized as follows. In Section 2, we present the model design and properties for
attribute-level best-worst experiments. Extensions of MDPs for Case 2 BWS with time dependent factor are
provided in Section 3. Simulated data example of Case 2 BWS models over time and results are described in
Section 4. A conclusion is provided in Section 5.
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2. Attribute-Level Best-Worst Designs

In traditional DCE, we have a sample of n decision makers with J alternate choices. The utility function for the
ith individual selecting the jth choice is given as:

Uy =V + €, (1
in which V;; is the systematic component and €;; is the unobserved component, or error term, where
i=1..,nand j=1,..,].

In McFadden (1974), a common distribution for the error terms was proposed, which was the Type I extreme
value distribution or Gumbel distribution. That assumption leads to the conditional logit for modelling the data.
Train (2009) presented other models and associated assumptions in modelling the choice made by the decision
makers. As stated in Train (2009), the most important criterion is not so much about the shape of the error terms
but that the errors are correlated and possibly also the utilities. To allow for dependence in choices, the error
terms may be distributed as normal, and that assumption allows the outcomes to be modelled under the probit or
the generalized extreme value distribution.

Let Y;; denote ith subject choosing the jth alternative, in which

1,if i"subject chooses the j™alternative,

0, otherwise.

A model that describes the behavior is described through the conditional logit, and the utility associated to the
various products are then estimated, with the error term of the utility from the Type I extreme value distribution.
The systematic component is given as:

Vij = xi;8),

with x;; describing the ith subject’s covariates on the jth alternative, and f; isdefined as the subject specific
covariate estimates.
The utility is then given as in Equation (1). Hence, the probability of the jth alternative being chosen by ith
subject is:
B exp(x;;B;) _ exp(V;;)

Tyrec XPOGB) Ty e Vi)’
with Z§=1 P;j =1 and for C the set of all possible choices.

Py =P(Y; =1)

The above can be seen as a special approach at the intersection of information theory (e.g., entropy function) and
the multinomial logit (Anas, 1983). Such model can be enhanced by adding attributes associated with
alternatives.

2.1 Attribute-Level Best-Worst DCE

Attribute-level best-worst scaling (or BWS) are modified DCEs designed to elicit the impact the attributes and
attribute-levels have on the utility of a product. As mentioned by Louviere and Timmermans (1990), an
experiment must be designed in a way to evaluate combinations of attribute-levels to obtain information about
attribute impacts on utility. Best-worst attribute-level DCEs provide such an experimental design to attain these
1mpacts.

Following the setup as described by Street and Knox (2012), there are K attributes that describe the products
denoted as Ai with each attribute consisting of [, levels for k = 1,...,K. In the study done by Knox et al.
(2012) and Knox et al. (2013) for contraceptive data, there were K = 7 attributes, with attribute levels
L =81l =313 =4Il; =41, =81, =9, and lg = 6. One of the attributes is the contraceptive’s
effect on acne, and the levels associated with that attribute are no effect, improves, or worsens acne symptoms.
Each product is represented by a profile x = (xq,...,xg)" in which x; is the attribute level for A; that makes
up the product where the attribute-levels take values from 1 to [, for k = 1, ..., K. The choice task considered
here is to look at the pairs of attribute-levels and build a utility function over time. For every profile, the choice
set (pairs of attribute levels) is then given as:

Cy = {(x1,x3), oo, (1, X5, (X2, X3), wov, (X1, Xg), (X, X1), e, (X, Xg—1) },

where the first attribute-level is considered to be the best and the second is the worst. From the profile C,, the
decision maker evaluates the choice set and determines from the 7 = K(K — 1) choices given which is the
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best-worst pair.

Grasshoff and Schwabe (2015) suggested that research is needed for larger number of choice sets. Here we
extended the state of choices as follows. Let there be G choice sets and the associated profiles are given as,

X1 = (X11, %12, e X1k)

Xy = (X210, X2, +es Xoi)

X = (Xg1, Xg2) -+ » Xgk)
The corresponding choice pairs for the G choice sets are given in Figure 1. To simplify the notation, let

Cyx, - Cx, bedenoted as Cjy, ..., Cg, respectively.

Cs

(x61,%62)

(xg1,%63)

¢

(ey1,%12)
(11, x13)

G

(x21,X22)
(21, X23)

(xg1i Xgx)
(x62,%g3)

(X21, X21)
(x22,%23)

(1, X11)
(x12,%13)

(xgk-1,X6K)

(x62,%61)
(xg3,%61)

(Xok -1 X2)
(x22,%21)
(x23,%21)

(-1, X1k)
(x12,%11)

(x13,%11)

(10 X1K-1) (e2k, %26-1) (xgk, XgK-1)

Figure 1. The G choice sets in an experiment with corresponding choice pairs

Marley et al. (2008) and Street and Knox (2012) gave the best-worst choice probability for profile x; to be:

blaiy)
b(z;r)
BI/I/Ii(l‘ij-, :l:ijl) = - b(zij) ’
b(zx. .,
V(o4 )ECn st ) ()

in which x;; is chosen as the best attribute-level and xij0 is the worst, and b is some positive scale function or
impact of attribute forj, j' =1,2,...K, j #j andi=1,2,...,G.
Thus, the following assumptions hold:

BW,, (xyj,xij0) 2 0,¥5j, and Xy(ex)ecy jojr BWa (i i) = 1.
With such assumptions, the decision maker is expected to select choices with higher BWxi values, and authors
have taken advantage of selecting a subset from all possible cases.
Under random utility theory, the probability an alternative is based on the utility is defined in Equation (1).
Lancsar et al. (2013) provided the utility for Case 2 BWS models and the definition of the probability as given in
Equation (2) under the conditional logit model. Lipovetsky and Conklin (2014) and Marley et al. (2016)

described other measures of utility of parameters as a function of log of odds. Here we consider the choice set Cy;,
(xx;,x;”) to be the chosen pair, and the utility for choosing this pair within set C,; is then given by:

Ugjjr = Vijjr + €50, )

in which V; ris the error term, j, j' = 1,2,...,.K,j # j', andi=1,2,...,G.

ijJj ijj
The systematic component can be expressed as,
!
Vijjo = Vij = Vigr = (a5 = xi) B
for x;; and x;;» as in Equation (1) and B parameter vector of best and worst choice. The data x;; are
indicators of the i” attribute x; ; € 4jand its j™ attribute-level x; ;- The systematic component V;; is written as:

Vij = ﬁAi + BAixij-

r 1is the systematic component, €
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Under the conditional logit, the probability that (x;; — x;;r), also denoted x;;;+ is chosen as

exp(V; ;1)

sl
pP..., = i

ijj )

Zv(xi,xj)ecxi,jxj’ exp(Vyj;1)

“4)

Equation (2), with the choice of the scale function b(x;;) = exp(B4;+ Baix;j) = exp(V;;) becomes Equation (4). This
is easily seen by:

b(x;;)
b(xl-;r) - exp(Vij - Vij’) = eXP(VL-jjr).

We assume the error terms come from a Type I extreme value distribution and use the conditional logit to
estimate the parameter vector:

B' = (Bay Bayy - Bags Basor Bags - Bayty—10 - Baos -» Baig-1)-

To estimate these parameters, the following identifiability condition defined on the parameters of the
attribute-levels must be met:

1 ;-1
Ziil pi=0 or BIK = —Z,Ll ﬁj %)
for all k=1,2,...,K (Street & Burgess, 2007; Flynn et al., 2008; Grasshoff et al., 2003).

The log-likelihood for estimating the model parameters based on a random sample of n decision makers is given

as:
L(B) = ii Z Yij InPyjj0

s=1i=1 j#j'

in which the response variable representing the choices within each of the choice sets for the experiment are
donated as:

1,if st respondent chooses j*" alternative in the i*" choice set,
Yisj =
0, otherwise,
fori=1,2,..,G,s=12,..,nandj=1,2,...,7
Lancsar et al. (2017) suggested connecting models, their parameters in estimating analysis and producing
measures that are related to policy and practice. We include the time feature in Case 2 BWS model structure.
2.2 Functional Form of Attribute-Level Best-Worst Discrete Choice Model

Van Der Pol et al. (2014) presented the systematic components of the utility defined as linear functions, quadratic
functions, or as stepwise functions of the attributes. Grasshoff et al. (2013) defined the functions as regression
functions of the attributes and attribute-levels in the model.

In the attribute-level best-worst DCEs, the utility of the pairs is composed of the utility corresponding to the best
attribute-level and the worst attribute-level. The regression functions presented in Grasshoff et al. (2003) are
applied to the attributes and attribute-levels within the respective systematic components. Let f be the set of
regression functions for the best attribute-levels in the pairs and g the set of regression functions for the worst
attribute-levels in the pairs. The p X 1 parameter vector B still must satisfy the identifiability condition given
in Equation (5).

Taking the systematic component defined in Equation (3), the functional systematic component for the pair
(x5, x;j7) 1s defined as:

Vijjr = Viy = Viyr = (f(xij) - g(xij’)) B, (6)
inwhichyj, j' =1,2,..,K, j#j,andi=1,2,..,G

The probability that an alternative is chosen depends on the definition of the utility and the distribution of the
error terms. Referring back to Equation (4) under the conditional logit, the probability is:

eXp(Vijj’)
€C; eXp(Viqq’)

BW,, (xij, xyj1) =

("iq"‘iq’)
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exp(Vy; — Vi)
Z("iq"‘i )ECi eXp(VifI - Viq’)

ql

exp((£(xi))-8(x;;))'B)
exp((£(xiq)-8(x;q)'B)

(7
(xl-q,xiq,)eci
inwhichi=1.2,..,G,j,j ' =12,..,K,and j #j'.

In the traditional attribute-level best-worst DCE, the regression functions f and g are defined as indicator
functions. The indicator functions are p X 1 vectors. For the attributes, they are defined as,

1, lf Xii € Ak,
I i) = J 8
Ak (x”) {0, otherwise, ®)
and for the attribute-levels as,
1, lf x,:]' = Xk fOT xl-]- € Ak'
lajexi (xij ) - {0, otherwise ©)

in whichjk=12,.,Kandi=1,2,...,G.

By rewriting the indicator functions of the A, and A,x;, a more general form of the regression functions can be
defined. Let by and b4x, be constants corresponding to the best attribute and attribute-levels in a pair, and wy;
and wx; be constants corresponding to the worst attribute and attribute-levels in a pair, in which x;= 1,2,...,1;
and k= 1,2,...,K. The regression functions f and g are given as,

£(xi)) = Zhor [Bacdag (i) + 2 bag, Lar, (3)) (10)

and

8(xij7) = = Zhr [Walay (xi7) + Dy Wiy, Lage (1) (1
in whichj, j' =1,2,..K, j # j',and i=12,...,G.

The regression functions defined in this way provide flexibility for the traditional attribute-level best-worst
DCEs. Since consumer preference for products are constantly evaluated, the data collected on a product may be
dynamic. The addition of these constants to the regression functions provides researchers the ability to scale the
data to reflect current trends or changes in the products. For example, let us consider that the products being
modeled are pharmaceuticals such as the contraceptives proposed in Knox et al. (2012) and Knox et al. (2013). If
new information about a brand of contraceptives posing a health risk was discovered, then using regression
functions, it is possible to update the model to reflect this change. Assuming the change is to remove the brand,
the attribute-level associated with the brand may have b= w= 0, in which x,= 1,2,...,[kand k = 1,2,..,.K
represent its removal from the market. For all the pairs this attribute-level was in, the information the choice pair
provides in terms of the other attributes and attribute-levels would remain intact. The model would be estimated
again and the parameter vector, B, would provide the updated impact of the attributes and attribute-levels in the
experiment.

3. Time Dependent Modelling Under Markov Decision Processes

Markov decision processes (MDPs) are sequential decisions-making processes. MDPs seek to determine the
policy or set of decision rules, under which maximum reward over time is obtained. MDPs are defined by the set
(S,R,D), in which S is the finite set of states, R the set of rewards, and D the set of decisions. These
processes may be discrete or continuous in time with a finite or infinite horizon, respectively. Our interest is with
discrete time finite horizon MDPs, that is in which T is a fixed number of time periods. The rewards (or
expected rewards) are maximized by the best sequential decisions over time, making MDPs a dynamic
optimization tool as used in Blanchet et al. (2016) to identify the right choices of substitution behaviors of the
decision makers.

Let s; € S be the states occupied at time t,71:(s;) be the reward associated with s;, and d;(7;,s;) be the
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decision based on the possible rewards and states at time t. The decision process maps the movement from one
state to another over time t based on rewards received and on an optimal decision set. As the decision process is
Markovian, the transition probability to the next state, s;,; is based solely on the decision made at the current
state, S; 1S p(Sgy1/Se), in whicht = 0,1, ...,T (Puterman, 2014). There is a decision rule that governs the
action the decision maker makes and rewards the results from the action. The decision of choices is made such
that it maximizes their rewards. Rust (1994) and Arcidiacono and Ellickson (2011) applied MDPs to DCMs.
Chades et al. (2014) applied them to solve problems in an ecological setting. As they mentioned, to suggest
guidance would require running several cases. To our knowledge, such a technique has not yet been applied to
decision maker choice experiments with attribute and attribute-level best-worst experiments.

For DCMs, the reward is defined by the utility function, r(s¢, d;) = U(ss, d;), in which d; = §(t) is the
decision rule at time t that maximizes the utility, and the decision rule § is the one that maximizes the expected
discount utility given as the value function.

xt, EC) )

in which the discount utility rate is given by y € (0, 1). The steps for determining the value function follow.

The value function for DCMs comes from Bellman’s equation and is given as:

T
Vt(x. €) = maxE (Z yt'=t U(x,r,dyr) + €(d})
d¢€D

t'=t

The decision rule used by a decision maker is the one under which the utility is maximized, but assuming that a
person’s perceived utility is impacted by time. Frederick et al. (2002) reviewed the work done on the discount
utility including the decision makers’ discount time factor step. The discount utility rate weights the utility a
person gains from an option at some ulterior time based on their current state at time t and guarantees the
convergence in the infinite sum of rewards.

MDPs model the sequence of decisions based on expected rewards and transition probabilities. We defined state
transition as,

P(S¢s1l5e) = P(Seyq = S'|s¢ =5) = Py

and the corresponding transition probability of the decision can be written as P(d;,|d;, x;) with the decision
dt made at time t that satisfies

g}gg( E(U(xt, et)),

for t = 1,2,...,T.

Since no closed form expression for this dynamic optimization problem is available, the value functions are
computed recursively via dynamic programming under backwards recursion algorithm. First, we compute,

Vi) = ) Uler dr)P(dy),
dreD
with P(d;) as the probability that dr was made. We denote P(d]- |dj_1) as the transition probability of
decision d; given previous decision d;_; for j = 1,..,T. Next, we move one-time step back and compute,

VI (roy, drog) = U(xr_g, dry) + Z YV (xr)P(drldr—q),
dr€D
and another,

VT2 (xXr_p,dr_y) = Ulxp_p,dr_p) + Z YT (xroq, dr—1)P(dr_q|dr_y).
dr€eD
Following this pattern, we get:

VE(xp, d) = Ulxp, de) + Z YW (X1, A1) P(desa|dy),
dr€D
for t = 1,... t — 1. For these experiments, we considered discrete time finite horizon MDPs where:

e (G choice sets are modeled across time of length T.

® X are the attributes and attribute-levels corresponding to the choices in Cy, for g = 1,...,G.
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e The decision set depends on the choice set evaluated d; € D; in which i = 1,...,G, and t =
1..,T.

e Transition probabilities depend on a set of parameters 6 that are assumed to be known or data
estimable. 6 is a function of an attribute and attribute level not necessarily identical to f , as
described in Arcidiacono and Ellickson (2011).

e Transition probability matrices are dependent on time and on the choice set being evaluated.

There are G choice sets with 7 = K(K — 1) choice pairs in each set. To compute the transition probabilities,
the parameters are assumed known (Arcidiacono & Ellickson, 2011). Let 64,,,,q, be the parameter vector for
the transition probability from choice d;to d., that captures a decision maker’s behavior or preference.

Let the choice pair (x;,x;r) denote the qt" best-worst choice pair. Compute

!
Tar = exp((xj = %) eqlr)'
for j,j’ = 1,...,], where ] is the total possible choices for experiment, and 6, are the parameters
estimating the transition from choice r to choice q.

In Case 2 BWS models, a set of G choice sets are considered in the experiment. Applied MDPs, there exists a
set of states s; € S and possible decisions in d; € D for ¢ = 1,...,T. For Case 2 BWS MDPs, the possible
states in each choice set are the alternatives, and the decision made at each time point will also be one of the
alternatives. For choice set C; the state s; and decision d; are such that 1 < s;,dy; < T in which
i=1.,6Gand t = 1,..,T.

Let Si¢41) = §'; and s;; =s;, where s;,s;,€S; for i = 1,...,6 and t = 1,...,T. The transition
probability is denoted as

P{ s = Pt(s]|s; Hstl.),

lss

in which

0L, = (05,0 s 08 a0 0810 oo O, agety)
is the set of parameters guiding the transition from s; to sj, for i = 1,...,G. In Case 2 BWS models, the
parameters would be the measure of relative impact/preference associated with the attributes and attribute-levels
corresponding to the different choice pairs, or states, given the current state is s;, in which i = 1,...,G. Rust
(2008) and Arcidiacono and Ellickson (2011) stated that BSti is an assumed known under some rationale with
regards to decision maker behavior or preferences.

The parameter estimates determined by fitting the conditional logit model, as described in Section 2, produce f
a p=K+YK_ l, length vector. These parameter estimates measure the relative impact of each attribute and
attribute-level in the decisions made by the decision makers. The parameters Bstl. are the assumed impacts of the
attributes and attribute-levels in the decision maker’s decisions, given they currently occupy state s;. We define
these parameters as functions of the parameter estimates 3, in which there is a rate of change in the impacts over
time, as follows:

egi = (aSiAl (t)ﬁAli R aSiAK (t)BAK,
aSiAll (t)ﬂAlli R aSiAKlk (t)ﬂAKlK)'

in which a;s are the time factor change and ﬁAkand ,[?Aklkare fixed for i = 1,...,G, 1< 5,51t , k =
1,..,K,and t = 1,...,T. The definition of

a5,(8) = (@5, (0), o, By (6, gty 1 (), oy Bgag, (1)),
depends on the state s; and time ¢t = 1,..,T. We have considered ag;;(t) = a; j »in which if |asl. j| < 1 the
impact of the attribute or attribute-level would be lessening with time, in which i = 1,...,G and j = 1, ..., K.
Also, if a4 ®fs = a§i aBa > 0, then the attribute or attribute-level has a positive impact evolving at the rate at
agl.A over time for AA= Ay, Ak, i = 1,..,G,and t = 1,...,T. A static, or non-time dependent, system is
considered if a;4(t)Bs =1, where i = 1,..,G, A = Ay, .., Ag,and t = 1,..,T.

These ag4(t) are rates of change that guide the dynamic transition of the decision process. We can easily
consider them to be non-time dependent, a,,4(t) = as 4, defining the transition probabilities as stationary over
time. As was mentioned earlier, there are infinite possibilities in how we define the transitions. Rust (2008)
stated that when using rational observation to define the transitions, many possible choice behaviors by the
decision makers are possible. Chades et al. (2014) recommended running many cases to determine the transition
probabilities that will maximize the expected reward. Our definition also offers infinite possibilities in terms of
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the definition; however, we defined a rate of change to consider an evolving system. In this way, the researcher
can determine what they consider feasible rates and see if the system eventually evolves to the decision they
desire and how long it would take to get there.

Given Qt the transition probabilities may be determined using random utility theory or inverse random utility
theory 1n the case attribute-level best-worst models as shown in Section 2.1. Let sl i (xl i Xij ), in
whichj #j',j,j'=1,..,T and i =1, ...,G. The probability that SU J' is the chosen state means that given 9
the utility for s; ;;¢ 1s the maximum util1ty The transition probability is given as,
t
Pt( U}’ls“ 5) Pt Ugjjr > Ujer Yk # k' € Cils, 2)
— pt(yt t
=P Vl}] U]r>ka/+Ekar,Vk¢k’€C|SL,e
— pt(t t
=P EL”I <Elkk’+VL]] lkki,Vkik’EClSl, i)
in which j#j',j,j’=1,..,1, i=1,..,6 and t=1,..,T. If we assume the random error terms are
independently and identically distributed as type I extreme value distribution, the probability would then be
found using the conditional logit, and is given as:

Pt (sp;r158%,) = PE (U0 > Ufr, VK # K € Cils;, 65,)
exp(V;;)
Zkk ec; exp(V, kk')
_ exp((F(xi;) — 8¢ (x;;7))'05)
 Ywrec; exp((Fe(xip) — 8 (X)) 05,
inwhich j #j k#k',j,j'=1,..,t,i=1,..,G, and t =1,...,T

The transition matrix is then a 7 X 7 matrix of the form,

t t t

])ill [)il2 o PilT
t t

]Di‘.Zl ‘IDI” o 127

¢ . . P . B y
137' - - (])i%")rxr

t t t

Pz‘rl ])iT2 R ])ITT

=1.

The transition matrix may be either stationary or dynamic in nature. In our definition of Hstl., this is determined
by the rate aSiA(t), in which i = 1,...,6G,1< j< p, and t = 1,...,T. In the next section, we provide
simulations under stationary and dynamic transition probabilities and make comparisons.

inwhich i =1,...,G, s,s"=1,...,7, and where Y5/_, fss

The decision at time t as denoted by d; are the choice pairs and are the different states within a choice set. In
Case 2 BES experiments, the di = (x;;,x;,), in which i = 1,..,G,j,j' = 1,..,K, and j # j'. Then the
parameter vector 8y, is a known vector relating the decision made at time ¢ given the decision made at time
t—1 for t = 1,..,T. Different assumptions about the parameters 6, yield different results and value
functions within the experiments. However, this variability in constructing these parameters allows us to view a
hypothetical future and the values they offer to decision makers.

We look at the effect of varying hyper-parameters over time to compute the transition probabilities; that is, we
use the previous parameter estimates as inputs into determining 6y, .

For simplicity, we will first consider stationary transition matrices. That is, 6,4,,, = a6 in which a, is
independent of time and will extend to dynamic version.

In practical applications, decisions on how to act or proceed would be dictated under some expected utility. To
that end, a backward recursive method is then used and a dynamic planning system with the process from its
starting values/stages to its goal stage is provided.
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4. Computations
4.1 Data Simulation

In the simulated example, an empirical setup is considered. We assume K = 3 attributes with /=2, L, =3, and ;=
4 attribute-levels in an unbalanced design. There are 2 x 3 x 4 = 24 possible profiles, or products, in this
experiment. The total number of attribute-levels is L =YX, [; =9, and the total number of choice pairs is
J =Zk=1be(L = 1) = 52.

Louviere and Woodworth (1983), Street and Knox (2012), and Grasshoff et al. (2004) discussed the benefits in
using orthogonal arrays. Generally, orthogonal experimental designs are utilized in attribute-level best-worst
DCE:s due to the large number of profiles in a full factorial design. There is a package in R called DoE.design
that creates full factorial and orthogonal designs for a given set of attributes and attribute-levels. To obtain an
orthogonal design, the oa.design function is used. For this experiment, the orthogonal design returned the full
factorial design, so we used the full set of 24 profiles when simulating this data.

We simulated data for n = 300 respondents for 24 profiles. Each choice set has 7 = K(K — 1) = 6 choices to
choose from. Using the parameters given in Table 1, we simulated data in R. The data was then exported from R
into the SAS ® environment. Using the SAS ® procedure called MDC (multinomial discrete choice), the
conditional logit model was fitted to the data. The parameter estimates for the generated data are given in Table 1.
The parameter estimates are close to the original parameters for this example. Using the parameter estimates, the
choice utilities were computed and are used to determine the expected utility/value function. The best and worst
3 choice pairs along with their utilities are presented in Table 2 and Table 3, respectively. As expected, the
opposite of the pairs with the highest utilities have the lowest utilities. We Also consider an example where the
model is built on the regression functions f and g of the data. We define f and g as given in Equations (10) and
(11). The weights used in the regression functions are given as: bA1 = wAl =5, bA2 =wA2 =-2,b4A3 =wA3 =1,
bA11 =wAll = bA12 =wAl12 =5, bA21 = wA21 = bA22 = wA22 = bA23 = wA23 = -2 and bA31 = wA31 = bA32
=wA32 = bA33 = wA33 = bA34 =wA34 = 1.

The conditional logit model is fit to the data and the resulting parameter estimates are given in Table 1. The
parameter estimates provide the adjusted attribute and attribute-level impacts.

Table 1. Parameters and parameter estimates for simulated example

Estimates Functional Form
Parameters B B SE B SE
BA; -2.0000 -2.0711 0.0621 -0.3915 0.0289
BA, 1.5000 1.5248 0.0438 -0.7604 0.0082
ﬂA3 * * * * *
pA1 -2.0000 -2.0308 0.0619 -0.3935 0.0288
BA2 2.0000 2.0308 * 0.3935 *
BA>1 1.9900 2.0970 0.0804 -0.9660 0.0148
pA2 -0.2900 -0.3567 0.0482 0.1370 0.0092
BA3 -1.7000 -1.7403 * 0.8290 *
BA;1 -0.9200 -0.8914 0.0407 -0.8867 0.0410
PA32 -0.1800 -0.1805 0.0368 -0.1806 0.0368
A3 0.5000 0.4911 0.0369 0.4966 0.0366
BAz4 0.6000 0.5808 * 0.5707 *

Table 2. Choice pairs with the highest utility in the experiment

Best Attribute  Level ~ Worst Attribute Level Utility

2 1 1 1 12.3633
2 2 1 1 8.8012
3 4 1 1 7.6931

Table 3. Choice pairs with the lowest utility in the experiment

Best Attribute Level Worst Attribute ~ Level Utility

1 1 2 1 -9.2594
1 1 2 2 -6.5358
1 1 3 4 -5.7929
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To build preference choices over time, we next extend the Case 2 BWS experiment of choice pairs and
describing the optimal variation over 7 = 5 time periods. Under that experiment, the decision maker chooses an
alternative that provides maximum utility of attributes and attribute-levels over time. Numerical maximization to
find the expected utility under Bellman’s equation of the MDPs will be used under two cases. Under Case 1,
stationary transition probabilities are considered while dynamic transition probabilities are presented under Case
2.

4.2 Case 1: Stationary Transition Probabilities

We ran the simulation under this case with an advantageous proposed structure. The intent is to validate/justify
our relative performance over time under stationary sparsity.

In this example, respondents are assumed to make similar decisions at each decision epoch that they made at the
previous time point. The transition parameters Bgi where sf = (x; j»X;j1), are defined as for the attributes as,

L7|Bay |, if xij € A,
BgiAk = _1.7|ﬁAk|, ifol E Ak’ (12)
[)’Ak, otherwise,

and for the attribute-levels,
1'7|BAkxik|’ if xij = xy where xy € Ay,
O5aixs, = —1.7|Bayey | if Xij1 = Xie where xy € Ay, (13)
Bayxye otherwise,

where j#j',j, j k=12,..,K, 1 <x; <[, and i = 1,2,...,G. The transition parameters do not change with time, so
the transition matrix is stationary. The goal of this case was to design the transition probabilities in a way that the
choice made at ¢ is most likely to be made at ¢ + 1. If we considered agm(f) = S, fori=1,2,...,G,and m=1,2,...,p,
then the system would remain static and every row of the transition matrix would be the same. Recall that
p=K+YK_, 1, =12 is the number of parameters. We consider 1.7|3,| when a state or choice pair at time #+1
has the same best attribute and attribute-level as the state occupied at time ¢, and —1.7|6,,| when a state or choice
pair at time #+1 has the same worst attribute and attribute-level as the state occupied at time ¢£. We consider |5,,| to
control the direction of the impact making sure it is positive for the best attribute and attribute-level of s5;and use
—|B.| to make sure its negative for the worst attribute and attribute-level of s5;. We use 1.7 to increase the impact
of the best and worst attributes and attribute-levels of s;. The definition of a,m(f) in this way insures that states
with common best and worst attributes and attribute levels as the present state occupied, sf = (x; j»Xij7), have a
greater probability of being transitioned to, where i = 1,2,...,G, j#j',j j' = 1,2,..,K, and ¢t = 1,2,...,T. The
weights associated to the attributes and attribute levels are selected as above.

Referring back to Section 3, the systematic component as a function of the best and worst attribute-level in the
pair, is:

Vijjr = (ft(xij) - gt(xij’))’ﬁ;

where f,and g, are given as:

fe(xij) = Zlk(=1[bﬁk1,4k(xij) + Z;’;l bﬁkkuAkxk(xij)], (14)

and

gt(xij’) =- Ik(=1[W£k1Ak(xij’) + Zikzl WﬁkkuAkxk(xij’)]: (15)

wherej, j'=12,..,K, j#j',andi=12,..,G.

Table 4. Stationary transition matrix in Case 1 for Profile 1

(x12,x22) 0.9837 0.0000 0.0136 0.0000 0.0000 0.0027
(x22,x12) 0.0000 0.8924 0.0000 0.1074 0.0003 0.0000
(x12,X34) 0.0038 0.0000 0.9932 0.0000 0.0030 0.0000
(x34,X12) 0.0000 0.0038 0.0000 0.9613 0.0000 0.0003
(x22,X34) 0.0000 0.4289 0.0004 0.0002 0.5705 0.0000
(x34,X22) 0.0001 0.0004 0.0000 0.7113 0.0000 0.2882

10
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The difference in the value functions over time for Profile 1 are displayed in Figure 2. Choice pair (x3,X12),
where x,, s the 2" level of attribute 2 is the best and x;, is the 2" level of attribute 1 is the worst, is the choice
with the highest expected utility. The opposite pair (x;,,x,) is the worst choice pair. However, (x1,,x2,)’s utility
increases significantly between time ¢ = 3 and ¢ = 4 because of the change in the weights applied to the attributes
and attribute-levels.

The model applied here views the attribute-level best-worst DCEs as sequential leading to a partial separation
best-worst choices over time. Validity is guided by the transition probabilities under Case 1, the participants
follow the same choice preferences. In Table 4, the transition probabilities are generally highest on the diagonal
and the same at each time period as we would expect in this setup. As expected the trend in the utility is kept.

Profile 1: Difference in Value Function

20 2 4 6 8
|

Time

Figure 2. Expected discounted utility and their differences over time for Profile 1

4.3 Case 2: Dynamic Transition Probabilities

In this case, respondents are allowed to make similar decisions at each time epoch with a different rate of change,
making the transition probabilities dynamic. The transition parameters Bstl. where s;= (x;,x;0) are defined as for
the attributes as,

L.7%|Ba, | if xij € A
05, = § —1.7%|Ba,| if x;r € Ay, (16)
Bay otherwise,
and for the attribute-levels,

1'7t|ﬁAkxik| lf xl-j = Xik where Xik € Ak!
t — .
Osimexie = ~ L7 Bagxye | if Xijr = Xux where xy, € Ay, (17)
Bawxyer otherwise,

where j #j',j, j k=12,...K,1<x<[,andi=12,..,G.

We ran the simulation under this case with advantageous proposed hybrid structure as shown above using the
functional form as described in Case 1. The transition matrix at time ¢# = 1 is kept the same as it was Case 1 in
Table 4, and subsequent transition probabilities at time = 2,3, and 4 are given in Tables 5, 6, and 7, respectively.
The transition probabilities are highest on the diagonal verifying the direction we wanted in the transitions. The
difference in value functions for Profile 1 are displayed in Figure 3. Choice pair (x,,x1,), where x, is the 2" evel
of attribute 2 is the best and x,, is the 2" level of attribute 1 is the worst, still remains the choice with the highest
expected utility as in Case 1. The opposite pair (x;5,x,,) is the worst choice pair. We also notice more shifts in
expected utility than in previous cases for Profile 1. Scaling the data makes the utilities shift in much more
extreme values.

11
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Table 5. Dynamic transition matrix in Case 2 at time ¢ = 2 for Profile 1

(x12,%22) 0.9985 0.0000 0.0015 0.0000 0.0000 0.0000
(x22,x12) 0.0000 0.9873 0.0000 0.0127 0.0000 0.0000
(x12,X34) 0.0002 0.0000 0.9998 0.0000 0.0000 0.0000
(x34,X12) 0.0000 0.0019 0.0000 0.9981 0.0000 0.0000
(x22,X34) 0.0000 0.0337 0.0001 0.0000 0.9663 0.0000
(x34,x22) 0.0000 0.0000 0.0000 0.2082 0.0000 0.7918
Table 6. Dynamic transition matrix in Case 2 at time ¢ = 3 for Profile 1
(x12,X22) 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(x22,X12) 0.0000 0.9997 0.0000 0.0003 0.0000 0.0000
(x12,x34) 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
(x34,x12) 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
(x22,x34) 0.0000 0.0002 0.0000 0.0000 0.9998 0.0000
(x34,X22) 0.0000 0.0000 0.0000 0.0058 0.0000 0.9942
Table 7. Dynamic transition matrix in Case 2 at time ¢ = 4 for Profile 1
(x12,%22) 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(x22,x12) 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
(x12,X34) 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
(x34,X12) 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
(x22,X34) 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
(x34,x22) 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
Profile 1: Difference in Value Function
o
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Figure 3. Expected discounted utility and their differences over time for Profile 1

5. Conclusion

In this paper, we have presented methodology and analysis for DCMs have applications in many areas. We
adapted our simulations to match the Flynn et al. (2008) setup and extend the idea of stationarity process to a
dynamic model with evaluation under random utility analysis. By encompassing the idea of choices into time
dependent and with transition probabilities process, we presented a time dependent Case 2 BWS model with
evaluation under random utility analysis. Our study showed that clustering can be captured, and the design can
predict time stages needed to reach a target. With the simulated examples, dynamic programming algorithms
reveals the highest and lowest utility trends.

A potential area of concern in the application of MDPs for attribute-level best worst DCMs is the “curse of
dimensionality” as mentioned in Rust (2008). As the number of attributes, attribute-levels, and profiles grow in
the experiment, the estimation process becomes exponentially more difficult. DCMs with larger number of
attributes and attribute-levels have more choice sets and pairs to model across time.

12
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