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Abstract 

Dynamic modelling of decision maker choice behavior of best and worst in discrete choice experiments (DCEs) 
has numerous applications. Such models are proposed under utility function of decision maker and are used in 
many areas including social sciences, health economics, transportation research, and health systems research. 
After reviewing references on the study of such experiments, we present example in DCE with emphasis on time 
dependent best-worst choice and discrimination between choice attributes. Numerical examples of the dynamic 
DCEs are simulated, and the associated expected utilities over time of the choice models are derived using 
Markov decision processes. The estimates are computationally consistent with decision choices over time. 

Keywords: discrete choice models, best-worst scaling, Markov decision processes 

1. Introduction and Motivation 

Discrete choice experiments (DCEs) are applied in social sciences, health economics, transportation research, 
and health systems (see Potoglou et al., 2011; Lancsar & Louviere, 2008; Greene & Hensher, 2003). DCEs and 
their models (Discrete choice models, DCMs) focus on predicting a decision maker’s choices in products or 
services. In many cases, they are time dependent. Such research has not been practically implemented in 
attribute-level best-worst DCE, in which the decision maker’s task is to choose the best option and the worst 
option from a choice set instead of just the best option, as in traditional DCEs. This class of experiments falls 
under best-worst scaling (BWS) experiments (Louviere et al., 2015). Here, we apply the BWS models over a 
time sequence to quantify and measure decision maker behavior and derive the utilities using Markov decision 
processes (MDPs). The change in utilities from one time to the next is described in the form of gain or loss. The 
utility is composed of a systematic component that is dependent on the key attributes of the product and a 
random component. Train (2009) presents multiple models based on different assumptions about the distribution 
of the random component. In his suggested model, the error terms are assumed to be homogeneous and 
uncorrelated (Train, 2009). By assuming the covariates are generated under a normal distribution and the error 
terms under a generalized extreme value distribution, the output data is then modeled as binary and conditional 
logit. Our focus is on the conditional logit assumption but add a dependence structure through time and transition 
probabilities under MDPs. 

Lancsar et al. (2013) and Louviere et al. (2015) provide three cases of the BWS experiments: 1) best-worst 
object scaling, 2) best-worst attribute-level scaling or profile case, and 3) best-worst discrete choice experiments 
(BWDCEs) or multi-profile case. We are interested in the profile case, also referred to as Case 2 (BWS). It is 
also of interest to us to extend the model built on a function of the data, as presented in Grasshoff et al. (2003), 
Grasshoff et al. (2004) and Grossmann et al. (2009), to the attribute-level best-worst DCEs. In extending this 
work to these experiments, we provided an additional way to define the systematic component that provides 
flexibility that is not seen in traditional methods.  

By scaling the attributes and the attribute-levels, it is possible to determine the impact the variables have on 
decision maker behavior. We simulated data and computed the associated parameter estimates. The results of this 
simulation were used to project the expected discounted utility over time using MDPs.  

The manuscript is organized as follows. In Section 2, we present the model design and properties for 
attribute-level best-worst experiments. Extensions of MDPs for Case 2 BWS with time dependent factor are 
provided in Section 3. Simulated data example of Case 2 BWS models over time and results are described in 
Section 4. A conclusion is provided in Section 5. 
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2. Attribute-Level Best-Worst Designs 

In traditional DCE, we have a sample of n decision makers with J alternate choices. The utility function for the 
ith individual selecting the jth choice is given as: = + ,                                     (1) 

in which  is the systematic component and  is the unobserved component, or error term, where = 1,… ,  and = 1,… , . 

In McFadden (1974), a common distribution for the error terms was proposed, which was the Type I extreme 
value distribution or Gumbel distribution. That assumption leads to the conditional logit for modelling the data. 
Train (2009) presented other models and associated assumptions in modelling the choice made by the decision 
makers. As stated in Train (2009), the most important criterion is not so much about the shape of the error terms 
but that the errors are correlated and possibly also the utilities. To allow for dependence in choices, the error 
terms may be distributed as normal, and that assumption allows the outcomes to be modelled under the probit or 
the generalized extreme value distribution. 

Let  denote ith subject choosing the jth alternative, in which 

= 1, 	 	 ℎ 	 ℎ 	 ,00, ℎ .																																																											 
A model that describes the behavior is described through the conditional logit, and the utility associated to the 
various products are then estimated, with the error term of the utility from the Type I extreme value distribution. 
The systematic component is given as: = , 
with  describing the ith subject’s covariates on the jth alternative, and  isdefined as the subject specific 
covariate estimates. 

The utility is then given as in Equation (1). Hence, the probability of the jth alternative being chosen by ith 
subject is: = = 1 = exp	( )∑ exp	( )∈ = exp	( )∑ exp	( )∈ 	, 
with ∑ = 1 and for  the set of all possible choices. 

The above can be seen as a special approach at the intersection of information theory (e.g., entropy function) and 
the multinomial logit (Anas, 1983). Such model can be enhanced by adding attributes associated with 
alternatives. 

2.1 Attribute-Level Best-Worst DCE  

Attribute-level best-worst scaling (or BWS) are modified DCEs designed to elicit the impact the attributes and 
attribute-levels have on the utility of a product. As mentioned by Louviere and Timmermans (1990), an 
experiment must be designed in a way to evaluate combinations of attribute-levels to obtain information about 
attribute impacts on utility. Best-worst attribute-level DCEs provide such an experimental design to attain these 
impacts. 

Following the setup as described by Street and Knox (2012), there are K attributes that describe the products 
denoted as Ai with each attribute consisting of  levels for 	 = 	1, … , . In the study done by Knox et al. 
(2012) and Knox et al. (2013) for contraceptive data, there were 	 = 	7 attributes, with attribute levels 	= 	8, 	= 	3, 	= 	4, 	= 	4, 	= 	8, 	= 	9, and 	= 	6. One of the attributes is the contraceptive’s 
effect on acne, and the levels associated with that attribute are no effect, improves, or worsens acne symptoms. 
Each product is represented by a profile 	 = 	 ( , … , )  in which  is the attribute level for  that makes 
up the product where the attribute-levels take values from 1 to  for 	 = 	1, … , . The choice task considered 
here is to look at the pairs of attribute-levels and build a utility function over time. For every profile, the choice 
set (pairs of attribute levels) is then given as: = ( , ), … , ( , ), ( , ), … , ( , ), ( , ), … , ( , ) , 
where the first attribute-level is considered to be the best and the second is the worst. From the profile , the 
decision maker evaluates the choice set and determines from the 	 = 	 ( 	 − 	1) choices given which is the 
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Under the conditional logit, the probability that ( − ), also denoted  is chosen as 																																																		 = 	( )∑ 	( )∀ , ∈ , .                             (4) 

Equation (2), with the choice of the scale function b( ) = exp(βAi + βAixij) = exp( ) becomes Equation (4). This 
is easily seen by: ( )( ) = exp − = exp . 
We assume the error terms come from a Type I extreme value distribution and use the conditional logit to 
estimate the parameter vector: = , , … , , , , … , , … , , … , . 
To estimate these parameters, the following identifiability condition defined on the parameters of the 
attribute-levels must be met: ∑ = 0   or   = −∑                           (5) 

for all k = 1,2,...,K (Street & Burgess, 2007; Flynn et al., 2008; Grasshoff et al., 2003). 

The log-likelihood for estimating the model parameters based on a random sample of n decision makers is given 
as: 

( ) =  

in which the response variable representing the choices within each of the choice sets for the experiment are 
donated as: 

= 1, 	 	 	 ℎ 	 	 	 	 ℎ 	 	 ℎ 	 ,10, ℎ ,																																																																																																							 
for i = 1,2,...,G, s = 1,2,...,n and j = 1,2,...,τ. 

Lancsar et al. (2017) suggested connecting models, their parameters in estimating analysis and producing 
measures that are related to policy and practice. We include the time feature in Case 2 BWS model structure. 

2.2 Functional Form of Attribute-Level Best-Worst Discrete Choice Model 

Van Der Pol et al. (2014) presented the systematic components of the utility defined as linear functions, quadratic 
functions, or as stepwise functions of the attributes. Grasshoff et al. (2013) defined the functions as regression 
functions of the attributes and attribute-levels in the model.  

In the attribute-level best-worst DCEs, the utility of the pairs is composed of the utility corresponding to the best 
attribute-level and the worst attribute-level. The regression functions presented in Grasshoff et al. (2003) are 
applied to the attributes and attribute-levels within the respective systematic components. Let f be the set of 
regression functions for the best attribute-levels in the pairs and g the set of regression functions for the worst 
attribute-levels in the pairs. The × 1 parameter vector 	still must satisfy the identifiability condition given 
in Equation (5). 

Taking the systematic component defined in Equation (3), the functional systematic component for the pair 
( ,	 ) is defined as: 	 = − = − ,                          (6) 

in which j,	  = 1,2,...,K, ≠ , and i = 1,2,...,G 

The probability that an alternative is chosen depends on the definition of the utility and the distribution of the 
error terms. Referring back to Equation (4) under the conditional logit, the probability is: 

, = exp∑ exp, ∈  
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																																				= exp −∑ exp −, ∈  

																																			= ( ( ))∑ ( ( )), ∈ ,                    (7) 

in which i = 1,2,...,G, j,	  = 1,2,...,K, and ≠ . 

In the traditional attribute-level best-worst DCE, the regression functions f and g are defined as indicator 
functions. The indicator functions are × 1 vectors. For the attributes, they are defined as, = 1, 	 ∈ ,0, ℎ ,                                 (8) 

and for the attribute-levels as, = 1, 	 = 	 	 ∈ ,0,					 ℎ 																						                       (9) 

 

in which j,k = 1,2,...,K and i = 1,2,...,G. 

By rewriting the indicator functions of the Ak and Akxk, a more general form of the regression functions can be 
defined. Let bAk and bAkxk be constants corresponding to the best attribute and attribute-levels in a pair, and wAk 

and wAkxk be constants corresponding to the worst attribute and attribute-levels in a pair, in which xk = 1,2,...,lk 

and k = 1,2,...,K. The regression functions f and g are given as, = ∑ + ∑                    (10) 

and = −∑ + ∑                 (11) 

in which j,	  = 1,2,...,K, ≠ , and i = 1,2,...,G. 

The regression functions defined in this way provide flexibility for the traditional attribute-level best-worst 
DCEs. Since consumer preference for products are constantly evaluated, the data collected on a product may be 
dynamic. The addition of these constants to the regression functions provides researchers the ability to scale the 
data to reflect current trends or changes in the products. For example, let us consider that the products being 
modeled are pharmaceuticals such as the contraceptives proposed in Knox et al. (2012) and Knox et al. (2013). If 
new information about a brand of contraceptives posing a health risk was discovered, then using regression 
functions, it is possible to update the model to reflect this change. Assuming the change is to remove the brand, 
the attribute-level associated with the brand may have bkxk = wkxk = 0, in which xk = 1,2,...,lk and k = 1,2,...,K 
represent its removal from the market. For all the pairs this attribute-level was in, the information the choice pair 
provides in terms of the other attributes and attribute-levels would remain intact. The model would be estimated 
again and the parameter vector, , would provide the updated impact of the attributes and attribute-levels in the 
experiment. 

3. Time Dependent Modelling Under Markov Decision Processes 

Markov decision processes (MDPs) are sequential decisions-making processes. MDPs seek to determine the 
policy or set of decision rules, under which maximum reward over time is obtained. MDPs are defined by the set ( , , ), in which  is the finite set of states,  the set of rewards, and  the set of decisions. These 
processes may be discrete or continuous in time with a finite or infinite horizon, respectively. Our interest is with 
discrete time finite horizon MDPs, that is in which  is a fixed number of time periods. The rewards (or 
expected rewards) are maximized by the best sequential decisions over time, making MDPs a dynamic 
optimization tool as used in Blanchet et al. (2016) to identify the right choices of substitution behaviors of the 
decision makers. 

Let ∈ 	  be the states occupied at time , ( ) be the reward associated with , and ( , ) be the 
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decision based on the possible rewards and states at time . The decision process maps the movement from one 
state to another over time  based on rewards received and on an optimal decision set. As the decision process is 
Markovian, the transition probability to the next state,  is based solely on the decision made at the current 
state,  is ( | ), in which	 	 = 	0,1, … ,  (Puterman, 2014). There is a decision rule that governs the 
action the decision maker makes and rewards the results from the action. The decision of choices is made such 
that it maximizes their rewards. Rust (1994) and Arcidiacono and Ellickson (2011) applied MDPs to DCMs. 
Chades et al. (2014) applied them to solve problems in an ecological setting. As they mentioned, to suggest 
guidance would require running several cases. To our knowledge, such a technique has not yet been applied to 
decision maker choice experiments with attribute and attribute-level best-worst experiments. 

For DCMs, the reward is defined by the utility function, ( , ) 	= 	 ( , ), in which 	= ( ) is the 
decision rule at time t that maximizes the utility, and the decision rule  is the one that maximizes the expected 
discount utility given as the value function. 

The value function for DCMs comes from Bellman’s equation and is given as: 

( , ) = max∈ ( , ) + ( ) , , 
in which the discount utility rate is given by ∈ 	 (0, 1). The steps for determining the value function follow. 

The decision rule used by a decision maker is the one under which the utility is maximized, but assuming that a 
person’s perceived utility is impacted by time. Frederick et al. (2002) reviewed the work done on the discount 
utility including the decision makers’ discount time factor step. The discount utility rate weights the utility a 
person gains from an option at some ulterior time based on their current state at time t and guarantees the 
convergence in the infinite sum of rewards.  

MDPs model the sequence of decisions based on expected rewards and transition probabilities. We defined state 
transition as, ( | ) = ( = | = ) =  

and the corresponding transition probability of the decision can be written as ( | , ) with the decision 
dt made at time  that satisfies max∈ ( , ) , 
for 	 = 	1,2, . . . , . 

Since no closed form expression for this dynamic optimization problem is available, the value functions are 
computed recursively via dynamic programming under backwards recursion algorithm. First, we compute, ( ) = ( , ) ( )∈ , 
with ( )	as the probability that  was made. We denote 	  as the transition probability of 
decision  given previous decision  for 	 = 	1, … , . Next, we move one-time step back and compute, ( , ) = ( , ) + ( ) ( | )∈ , 
and another, ( , ) = ( , ) + ( , ) ( | )∈ . 
Following this pattern, we get: ( , ) = ( , ) + ( , ) ( | )∈ , 
for 	 = 	1, … 	 − 	1. For these experiments, we considered discrete time finite horizon MDPs where: 

•  choice sets are modeled across time of length . 

•  are the attributes and attribute-levels corresponding to the choices in , for 	 = 	1, … , . 
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• The decision set depends on the choice set evaluated ∈ 	  in which 	 = 	1, … , , and 	 =	1, … , . 
• Transition probabilities depend on a set of parameters  that are assumed to be known or data 

estimable.  is a function of an attribute and attribute level not necessarily identical to  , as 
described in Arcidiacono and Ellickson (2011). 

• Transition probability matrices are dependent on time and on the choice set being evaluated. 

There are  choice sets with 	 = 	 ( − 	1) choice pairs in each set. To compute the transition probabilities, 
the parameters are assumed known (Arcidiacono & Ellickson, 2011). Let |  be the parameter vector for 
the transition probability from choice to that captures a decision maker’s behavior or preference. 

Let the choice pair ( 	, ) denote the  best-worst choice pair. Compute = − | , 
for , 	= 	1, . . . , , where  is the total possible choices for experiment, and |  are the parameters 
estimating the transition from choice  to choice . 

In Case 2 BWS models, a set of  choice sets are considered in the experiment. Applied MDPs, there exists a 
set of states ∈ 	  and possible decisions in ∈ 	  for 	 = 	1, … , . For Case 2 BWS MDPs, the possible 
states in each choice set are the alternatives, and the decision made at each time point will also be one of the 
alternatives. For choice set  the state  and decision  are such that 1 ≤ 	 , ≤  in which 	 = 	1, … ,  and 	 = 	1, … , . 

Let ( ) 	= 	 ′  and = , where , ∈  for 	 = 	1, . . . ,  and 	 = 	1, . . . , .  The transition 
probability is denoted as = | , , 
in which = ,… , , , … ,  

is the set of parameters guiding the transition from  to , for 	 = 	1, … , . In Case 2 BWS models, the 
parameters would be the measure of relative impact/preference associated with the attributes and attribute-levels 
corresponding to the different choice pairs, or states, given the current state is , in which 	 = 	1, … , . Rust 
(2008) and Arcidiacono and Ellickson (2011) stated that  is an assumed known under some rationale with 
regards to decision maker behavior or preferences. 

The parameter estimates determined by fitting the conditional logit model, as described in Section 2, produce  
a = +∑  length vector. These parameter estimates measure the relative impact of each attribute and 
attribute-level in the decisions made by the decision makers. The parameters  are the assumed impacts of the 
attributes and attribute-levels in the decision maker’s decisions, given they currently occupy state . We define 
these parameters as functions of the parameter estimates , in which there is a rate of change in the impacts over 
time, as follows: = ( ( ) , … , ( ) , 																						 ( ) , … , ( ) ), 
in which  are the time factor change and and are fixed for 	 = 	1, … , , 1 ≤ 	 ≤  , 	 =	1, … , , and 	 = 	1, … , . The definition of ( ) = ( ),… , ( ), ( ), … , ( ) , 
depends on the state  and time 	 = 	1, … , . We have considered ( ) 	=  , in which if < 1	the 
impact of the attribute or attribute-level would be lessening with time, in which 	 = 	1,… ,  and 	 = 	1, … , . 

Also, if ( ) = > 0, then the attribute or attribute-level has a positive impact evolving at the rate at 
 over time for 	 = 	 , … , , 	 = 	1, … , , and 	 = 	1, … , . A static, or non-time dependent, system is 

considered if ( ) = 1, where 	 = 	1, … , , 	 = 	 , … , , and 	 = 	1, … , . 

These ( ) are rates of change that guide the dynamic transition of the decision process. We can easily 
consider them to be non-time dependent, ( ) = , defining the transition probabilities as stationary over 
time. As was mentioned earlier, there are infinite possibilities in how we define the transitions. Rust (2008) 
stated that when using rational observation to define the transitions, many possible choice behaviors by the 
decision makers are possible. Chades et al. (2014) recommended running many cases to determine the transition 
probabilities that will maximize the expected reward. Our definition also offers infinite possibilities in terms of 
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4. Computations 

4.1 Data Simulation 

In the simulated example, an empirical setup is considered. We assume K = 3 attributes with l1 = 2, l2 = 3, and l3 = 
4 attribute-levels in an unbalanced design. There are 2 × 3 × 4 = 24 possible profiles, or products, in this 
experiment. The total number of attribute-levels is = ∑ = 9, and the total number of choice pairs is = ∑ ( − ) = 52. 

Louviere and Woodworth (1983), Street and Knox (2012), and Grasshoff et al. (2004) discussed the benefits in 
using orthogonal arrays. Generally, orthogonal experimental designs are utilized in attribute-level best-worst 
DCEs due to the large number of profiles in a full factorial design. There is a package in R called DoE.design 
that creates full factorial and orthogonal designs for a given set of attributes and attribute-levels. To obtain an 
orthogonal design, the oa.design function is used. For this experiment, the orthogonal design returned the full 
factorial design, so we used the full set of 24 profiles when simulating this data. 

We simulated data for n = 300 respondents for 24 profiles. Each choice set has τ = K(K − 1) = 6 choices to 
choose from. Using the parameters given in Table 1, we simulated data in R. The data was then exported from R 
into the SAS R environment. Using the SAS R procedure called MDC (multinomial discrete choice), the 
conditional logit model was fitted to the data. The parameter estimates for the generated data are given in Table 1. 
The parameter estimates are close to the original parameters for this example. Using the parameter estimates, the 
choice utilities were computed and are used to determine the expected utility/value function. The best and worst 
3 choice pairs along with their utilities are presented in Table 2 and Table 3, respectively. As expected, the 
opposite of the pairs with the highest utilities have the lowest utilities. We Also consider an example where the 
model is built on the regression functions f and g of the data. We define f and g as given in Equations (10) and 
(11). The weights used in the regression functions are given as: bA1 = wA1 = 5, bA2 = wA2 = −2, bA3 = wA3 = 1, 
bA11 = wA11 = bA12 = wA12 = 5, bA21 = wA21 = bA22 = wA22 = bA23 = wA23 = −2 and bA31 = wA31 = bA32 
= wA32 = bA33 = wA33 = bA34 = wA34 = 1. 

The conditional logit model is fit to the data and the resulting parameter estimates are given in Table 1. The 
parameter estimates provide the adjusted attribute and attribute-level impacts. 

 

Table 1. Parameters and parameter estimates for simulated example 

  Estimates Functional Form
Parameters β SE SE
βA1 -2.0000 -2.0711 0.0621 -0.3915 0.0289 
βA2 1.5000 1.5248 0.0438 -0.7604 0.0082 
βA3 * * * * *
βA11 -2.0000 -2.0308 0.0619 -0.3935 0.0288 
βA12 2.0000 2.0308 * 0.3935 *
βA21 1.9900 2.0970 0.0804 -0.9660 0.0148 
βA22 -0.2900 -0.3567 0.0482 0.1370 0.0092 
βA23 -1.7000 -1.7403 * 0.8290 *
βA31 -0.9200 -0.8914 0.0407 -0.8867 0.0410 
βA32 -0.1800 -0.1805 0.0368 -0.1806 0.0368 
βA33 0.5000 0.4911 0.0369 0.4966 0.0366 
βA34 0.6000 0.5808 * 0.5707 *

 

Table 2. Choice pairs with the highest utility in the experiment 

Best Attribute Level Worst Attribute Level Utility 

2 1 1 1 12.3633 

2 2 1 1 8.8012 

3 4 1 1 7.6931 

 

Table 3. Choice pairs with the lowest utility in the experiment 

Best Attribute Level Worst Attribute Level Utility 

1 1 2 1 -9.2594 

1 1 2 2 -6.5358 

1 1 3 4 -5.7929 
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To build preference choices over time, we next extend the Case 2 BWS experiment of choice pairs and 
describing the optimal variation over T = 5 time periods. Under that experiment, the decision maker chooses an 
alternative that provides maximum utility of attributes and attribute-levels over time. Numerical maximization to 
find the expected utility under Bellman’s equation of the MDPs will be used under two cases. Under Case 1, 
stationary transition probabilities are considered while dynamic transition probabilities are presented under Case 
2. 

4.2 Case 1: Stationary Transition Probabilities 

We ran the simulation under this case with an advantageous proposed structure. The intent is to validate/justify 
our relative performance over time under stationary sparsity. 

In this example, respondents are assumed to make similar decisions at each decision epoch that they made at the 
previous time point. The transition parameters  where = ( , ), are defined as for the attributes as, 

																																			 = 1.7 , 	 ∈ 	 ,−1.7 , 	 ∈ 	 ,,												 ℎ ,                           (12) 

and for the attribute-levels, 

																				 = 1.7 , 	 = 	 ℎ 	 ∈ 	 ,−1.7 , 	 = 	 ℎ 	 ∈ 	 ,,																																		 ℎ ,              (13) 

where ≠ , j,	 ,k = 1,2,...,K, 1 ≤ xk ≤ lk, and i = 1,2,...,G. The transition parameters do not change with time, so 
the transition matrix is stationary. The goal of this case was to design the transition probabilities in a way that the 
choice made at t is most likely to be made at t + 1. If we considered asim(t) = βm for i = 1,2,...,G, and m = 1,2,...,p, 
then the system would remain static and every row of the transition matrix would be the same. Recall that = +∑ = 12 is the number of parameters. We consider 1.7|βm| when a state or choice pair at time t+1 
has the same best attribute and attribute-level as the state occupied at time t, and −1.7|βm| when a state or choice 
pair at time t+1 has the same worst attribute and attribute-level as the state occupied at time t. We consider |βm| to 
control the direction of the impact making sure it is positive for the best attribute and attribute-level of si and use 
−|βm| to make sure its negative for the worst attribute and attribute-level of si. We use 1.7 to increase the impact 
of the best and worst attributes and attribute-levels of si. The definition of asim(t) in this way insures that states 
with common best and worst attributes and attribute levels as the present state occupied, = ( , ), have a 
greater probability of being transitioned to, where i = 1,2,...,G, ≠ , j,	  = 1,2,...,K, and t = 1,2,...,T. The 
weights associated to the attributes and attribute levels are selected as above. 

Referring back to Section 3, the systematic component as a function of the best and worst attribute-level in the 
pair, is: = ( − ) , 
where ft and gt, are given as: 																								 = ∑ + ∑ ,                    (14) 

and  																			 = −∑ + ∑ ,                (15) 

where j,	  = 1,2,...,K, ≠ , and i = 1,2,...,G. 

 

Table 4. Stationary transition matrix in Case 1 for Profile 1 (x12,x22) 0.9837 0.0000 0.0136 0.0000 0.0000 0.0027 (x22,x12) 0.0000 0.8924 0.0000 0.1074 0.0003 0.0000 (x12,x34) 0.0038 0.0000 0.9932 0.0000 0.0030 0.0000 (x34,x12) 0.0000 0.0038 0.0000 0.9613 0.0000 0.0003 (x22,x34) 0.0000 0.4289 0.0004 0.0002 0.5705 0.0000 (x34,x22) 0.0001 0.0004 0.0000 0.7113 0.0000 0.2882 
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