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Abstract

Many previous studies researched the influence of external cues on speech perception, yet little is known
pertaining to the role of intrinsic cues in categorical perception of Mandarin vowels and tones by children with
cochlear implants (CI). This study investigated the effects of intrinsic acoustic cues on categorical perception in
children with Cls, compared to normal-hearing (NH) children. Categorical perception experiment paradigm was
applied to evaluate their identification and discrimination abilities in perceiving /i/~/u/ with static intrinsic
formants and Tone 1 (T1)-Tone 2 (T2) with dynamic intrinsic fundamental frequency (F0) contours. Results for
the NH group showed that vowel continuum of /i/-/u/ was less categorically perceived than T1-T2 continuum
with significantly wider boundary width and less alignment between the discrimination peak and the boundary
position. However, a different categorical perception pattern was depicted for the CI group. Specifically, the CI
group exhibited less categoricalness in both /i/-/u/ and T1-T2. It suggested that the effects of intrinsic acoustic
cues on categorical perception was proved for the normal-hearing children, while not for the hearing-impaired
children with cochlear implants. In conclusion, acoustically dynamic cues can facilitate categorical perception of
speech in NH children, whereas this effect will be inhibited by difficulties in processing spectral FO information
as in the CI users.
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1. Introduction

Categorical perception (CP) in speech sounds refers to the phenomenon that the acoustic stimuli which vary
along a physical continuum of equal intervals are perceived as discrete categories, and the differences between
categories are more discriminable than within categories (Harnad, 2003; Reetz & Jongman, 2009; Zhang et al.,
2016). To date, categorical perception has extended from stop consonants to vowels, and to tones, and has
extended from speech to non-speech. Categorical perception research started its way at Haskins Laboratories.
Dating back to Liberman, Harris, Hoffman and Griffith (1957), we found people perceived sounds that varied
along a continuum abruptly not gradually. Accordingly, Liberman proposed that perception of stop consonants
was “categorical”. The essential indicators of CP were summarized as follows: 1) the identification boundary
position and boundary width of one category shifts to another category sharply; 2) the peak of the discrimination
curve and its alignment with the categorical boundary; 3) the between-category accuracy is higher than that of
the within-category (Liberman et al., 1957; Zhang et al., 2016). Quite a few conclusions have been made:
perception of consonants is universally believed as categorical (Liberman et al., 1957; Miller & Eimas, 1977);
for contour tones, it is concluded they are categorically perceived (e.g., Abramson, 1979; Francis et al., 2003; Xu
et al.,, 2006; Hallé¢ et al., 2004; Peng et al., 2010 etc.), while the perception of level tones is continuous
(Abramson, 1979; Francis, Ciocca, & Ng, 2003); vowels chiefly are considered as being less categorical or even
continuous (Fry et al., 1962).

Although extensive research has been carried out on categorical perception of consonants and tones, far too little
attention has been paid to vowels. In contrast with the “continuous” view, Hallé (2004) believed perception of
vowels was quasi-categorical, in line with the results in Zhang et al. (2016) and in Zhang and Shi (2014). In
comparison, as a reference, the perception of vowels and consonants was reported to be categorical for the
cochlear implanted children (Bouton, Serniclaes, Bertoncin, & Colé, 2012; Gu et al., 2016). As regards Mandarin
tones, the study of Chen et al. (2017) on normal children uncovered that the perception of T1-T2 continuum
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became categorical by the age of 4 yr old. Instead, children with severe hearing impairment have considerable
difficulty in learning the tone system. In contrast to regular hearing-aids, cochlear implants bypassed the
damaged hair cells and directly stimulated the auditory nerve by converting the mechanical sound energy into an
electrical stimulus (Lee, van Hasselt, & Tong, 2010). Gu, Yin and Mahshie (2016) investigated the manner of
categorical perception of T1-T2 and T1-T4 by the CI children, obtaining that both groups showed categorical
effects. Nevertheless, some scholars argued that the gain in tone perception was not satisfactory (Wong & Wong,
2004; Aisha, 2000).

Despite the studies on categorical perception were abundant, previous studies mostly focused on the extrinsic
factors of categorical perception, such as language experience, speech complexity, signal duration, and aging
effect (e.g., Chen, Peng, Yan, & Wang, 2017; Francis et al., 2003; Hall¢ et al., 2004; Peng et al., 2010; Pisoni,
1975; Repp, Healy, & Crowder, 1979; Wang et al., 2017; Xu, Gandour, & Francis, 2006; Zhang et al., 2016). To
compare categorical perception of vowels with tones is thus a good attempt to test the effects of intrinsic acoustic
cues on categorical perception. Formants and fundamental frequency (F0) both are spectral/frequency
information. FO is a highly attributable cue to tones, whereas F1 and F2 are important for vowels. They are in
contrast in their states.

In consideration of formant, it is inherently steady-state property as in monophthongs. Contrastively for
diphthongs, the direction of lower formants will change continuously or even sharply, thus being a dynamic cue
(Chen, Zhang, Wang, & Peng, 2019). Nearey (1989) has hypothesized that vowels’ inherent static cue (i.c.,
formants of monophthongs) was crucial for the identification and discrimination, and dynamic changes within
the inherent cue, like formants of diphthongs, would affect the manner of vowel perceptions. Differences
between categorical perception patterns of monophthongs and vowels carried in a CVC construction
supportively illustrate the foregoing statement. Being carried in CVC syllables, the original steady-state formant
would generate a transition part due to the surrounding consonants. Therefore, in the study of Studdert-Kennedy
(1976), he found stronger categoricalness in the CVC syllable than in the V carrier syllable. Chen et al. (2019)
addressed the intrinsic factors in the categorical perception of vowels, implying that the lack of categoricalness
of monophthongs was factually due to the steady-state of formant. In the same way, FO contours are treated as a
dynamic-state cue (Chen et al., 2019; Wang, 1967). With these regards, it is understandable that the perception of
tones with different FO contours are categorical (e.g., Wang, 1976; Xu et al., 2006; Peng et al., 2010; Chen et al.,
2017), while the perception of level tones is continuous (e.g., Abramson, 1979; Francis et al., 2003). The former
is dynamically changed in its intrinsic FO contour, while the latter remains steady.

Regarding children with cochlear implants, studies stated that current implant systems didn’t provide fine
spectral or temporal information (Mckay, 2005). For hearing-impaired children, even with the help of Cls, the
gain in tone perception remained unsatisfactory (Cheung, Wong, Lam, Lee, & van Hasset, 2002; Ciocca, Aisha,
Francis, & Wong, 2002; Lee, van Hasselt, Chiu, & Cheung, 2002; Aisha, 2000; Wong & Wong, 2004). Lee at al.
(2010) explained the pitch information essential for tonal languages seemed not to be explicitly represented in
the electrical stimulation via current cochlear implant systems. For the CI users, spectral information is degraded
(Chatterjee & Peng, 2008), along with difficulty in processing spectral information (Friesen et al., 2001; Lee et
al., 2010; Petersen et al., 2015). Luo, Fu, Wu and Hsu (2009) brought additional evidences, in which the CI users
performed better on vowel recognition than tone recognition, but were still able to score above 60% on average
on tone recognition in quiet. In brief, conditions in the CI group are more complex.

Amid the existing literature, the studies of CP of tones and vowels if not most examined extrinsic factors, and
adults were their priority. Yet, studies concerning how the intrinsic cues (static and dynamic) affect the
categorical perception are nearly blank. Worse still, the effects in children, especially in the hearing-impaired
children, are also less discovered. Originally, using the traditional paradigm of CP, the present study aims to
address how the CI group, compared to the NH group, perceive /i/~/u/ and T1-T2, and thus to examine how the
intrinsic acoustic cues affect categorical perception.

2. Mandarin Vowels and Tones
2.1 Mandarin Vowels

Acoustically, vowels are specified by intensity, formant and duration. Formant is a concentration of acoustic
energy, reflecting the way air from the lungs vibrates in the vocal tract. It appears as a peak in the frequency
spectrum, and is closely related to vowel quality. The first three formants are the primary basis for vowels, i.e.,
F1, F2 and F3. Here, F1 and F2 will be used as two cues to select the most natural vowel token.

In Lin’s (2007) opinion, a 5-vowel system was more acceptably to define and describe the Mandarin vowel
system, namely, /i/, /y/, /u/, /o/ and /a/. Alternatively, in Mandarin Chinese, Lin and Wang (2013) believed there
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are mainly 7 monophthongs, namely [i], [u], [y], [¥], [a], and two apical vowels: front // and back /)/. Table 1
gives averaged values of the first three formants from the recordings of 16 Beijing dialect speaking women. /i/
and /u/ are two of the most frequent vowel phonemes in the world (Zee & Lee, 2007). Mandarin /i/ is a front
unrounded vowel with a higher value of F2 while a lower value of F1. On the contrary, /u/ is a back rounded
vowel with both lower F1 and F2 values. They are primarily distinct from each other in F2.

Table 1. Formant values of the 7 Mandarin vowels from Lin and Wang (2013)

Formant (Hz) [i] [u] vl [x] [a] [l [
F1 320 420 320 750 1280 420 370
F2 2800 650 2580 1220 1350 1630 2180
F3 3780 3120 3700 3030 2830 3130 3210

Note. F1 = the first formant; F2 = the second formant; F3 = the third formant.

2.2 Mandarin Lexical Tones

Tone is a term used in phonology and phonetics referring to the distinctive pitch level of a syllable. Difference in
tone is caused by pitch variations, which are produced by changes in the tension of the glottal folds that cause
variations in fundamental frequency (FO) during voiced intervals of speech. Almost 60%—70% of the world’s
languages are tone languages (Yip, 2002), and over half of the world’s people speak a tone language (Fromkin,
1978).

In Mandarin tone system, there are four lexical tones, carried by monosyllables. The four tones in terms of their
contours are, respectively, level tone, rising tone, dipping tone and falling tone. According to Chao (1948), the
relative pitch values of these four tones can be represented through a 1-5 scale, specifically indicating the
relative starting and ending pitch of each tone. 1 refers to the lowest pitch, and 5 refers to the highest pitch. The
four tones are corresponding to 55, 35, 214 and 51 respectively. To illustrate the relationship between the tone
pitch and its meaning, an example of /ba/ is presented in the following table.

Table 2. Descriptive features of Mandarin tones

Tone type Pinyin Meaning FO contour Pitch Value
Tone 1 /ba/ J\(eight) high level 55

Tone 2 /ba/ #(to pull out) mid rising 35

Tone 3 /ba/ 4(a handful of) low dipping 214

Tone 4 /ba/ & (father) high falling 51

In the present study, the perceptual performance for two continua, i.e., /i/~/u/ with static cue and T1-T2 with
dynamic cue, are compared across two children groups: normal-hearing children listeners and cochlear
implanted children listeners. In view of previous findings, the following hypotheses are made: 1) The NH group
will perceive T1-T2 in a more categorical manner than vowels due to their different state of intrinsic acoustic
cues (i.e., static versus dynamic); 2) Potential discrepancies are expected within the CI group, where they will
perform both vowels and tones continua in a less categorical fashion due to their hearing disability.

3. Methodology

Before the beginning of the formal tests, a pilot study was done to detect problems during the whole
experimental design, and then to make timely revision. Afterwards, also prior to the formal experiment
procedure, an experimenter was responsible for giving a subject prescreening to avoid any individual who is
unable to fulfill the basic cognitive development criteria. To minimize unexpected errors, the experimenter
together with the teacher gave an extra lesson on /i/, /u/, T1 and T2, and at the same time an illustration session
was ready to further their understanding of the procedure.

3.1 Participants

Two groups of children (i.e., NH and CI) were recruited for this study. The NH group consisted of 10 native
Mandarin-speaking children (5M, 5F) with age range from 4;0 to 7;10 recruited from either kindergarten or
primary school in Changsha. They had no reported history of speech, hearing or cognitive disorders, nor any
music learning experience according to school and parental reports. In the CI group, 10 native
Mandarin-speaking children (8M, 2F) between the ages of 4;9 and 8;8 were recruited from a local hearing
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rehabilitation center in Changsha. Their duration of use was from 1;8 to 3;7 with a mean duration of 2;2. They
were reported to be prelingually and congenitally impaired with profound hearing losses (> 90 dB HL) in either
the right or the left ear, and had no reported history of other cognitive or physical disabilities. All of them were
unimodal technology users, with only cochlear implant in the impaired ear. Moreover, they were all implanted
before the age of 7 yr old, and the duration of their CI usage was at least 8 months. For more information see
Table 3.

A background questionnaire was collected to gather information about their use of dialects and musical training
experience. The questionnaire was written in Chinese, and was prepared for their parents or teachers to fill out
before the children started their test. Parents’ Notice was designed to make sure that they know what the
experiment was about and how it would be proceeded, as well as any other details they deserved to know. If
holding no disagreement, they would sign their names on it. We received informed consent. Every child was paid
for their participation.

Table 3. Background information of the CI group

1D Gender Age Age of activation Duration of use Implant device Averaged hearing loss
1 M 4,9 1;2 3,7 MED-ELSonata Profoundly
2 F 5;8 3;1 2;7 AB (Harmony) Profoundly
3 M 5;1 1;7 3;6 MED-ELSonata Profoundly
4 M 7,6 6;3 1;3 AB Profoundly
5 M 5;10 4,9 1;1 AB (Meirenyu) Profoundly
6 M 8:8 7;0 1;8 AB Profoundly
7 M 6;2 4;7 1;8 AB (Meirenyu) Q90 Profoundly
8 M 5;7 3;6 2;1 AB (Meirenyu) Profoundly
9 M 6;10 4,7 2;6 AB Profoundly
10 F 5,6 3.9 1,9 CochlearCP802 Profoundly

Note. CI = cochlear implant.

3.2 Materials

Stimuli along the vowel and tone continuum in the present study was synthesized from the recorded samples of
tone produced by a female native Mandarin speaker who is from northern mainland China.

For the /i/-/u/ continuum, /i/ was firstly produced in high level, and a set of 9 vowel stimuli were arranged in
equal Fl(i.e., 12 Hz) and F2 (i.e., 296 Hz) acoustic intervals from /i/ to /u/. The frequency of F1 was from 317
Hz to 414 Hz, and from 2901Hz to 536 Hz in F2. Owing to that the formant was a level property, the ending
frequency was kept the same to the starting frequency. /i/-/u/ continuum was constructed based on the natural
samples of /i/. The stimulus duration was interpolated to be 350 ms, with amplitude fixed at 70 dB. The third,
fourth and fifth formants were fixed at 3957 Hz, 4766 Hz, and 4914 Hz respectively, which were derived from
recorded samples. The major steps of synthesizing the stimuli with a formant synthesizer in Praat were listed as
follows:1) Sound normalization. In order to minimize the potentially confounding effects of duration, the
duration of stimuli was normalized to 350 ms; 2) Synthesizing speech continuum based on a Praat script. Using
/i/ as the basis for manipulation, a 9-step continuum was created by setting the designated values, regarding /i/ as
Number 1 stimulus (the onset of the continuum) and /u/ as Number 9 stimulus (the end of the continuum). Figure
1 shows the schematic diagram of these stimuli.
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Figure 1. Schematic diagram of the vowel continuum

Stimuli along the tone continuum were synthesized from the recorded samples of Mandarin syllable /ba/ (T1,
means “eight”), and /ba/ (T2, means “to pull out”) produced by the same speaker. Out of the five tokens recorded,
only the best one was selected as the source and target sound. The /ba/ was set as the target sound, and /ba/ as the
source sound. A set of 9 tone stimuli were arranged in equal FO acoustic steps (i.e., 9 Hz) from /bé/ to /ba/. The
starting frequency of FO was from 210 Hz to 282 Hz, and the ending frequency was always 282 Hz. T1-T2
continuum was constructed based on the natural speech templates of two tones. After duration normalization, it
was re-synthesized by applying the pitch-synchronous overlap and add (PSOLA) method (Moulines & Laroche,
1995) implemented in Praat (Boersma & Weenink, 2019). The normalization process of duration (i.e., 350ms)
and intensity (70 dB) was the same as in the /i/-/u/ continuum. The synthesizing procedure was: 1) Fixing the
pitch contour of Tone 1 to the level frequency of 282 Hz and the starting frequency of Tone 2 to 210 Hz; 2)
Setting the number of pitch points to three, with the first one at the starting position, the second one at the 0 ms
position, and the third one at the ending position; 3) Synthesizing the continuum using a Praat script based on the
formula 210 Hz + 9 Hz * (Stimulus Number - 1). The schematic diagram is presented in Figure 2. All these
manipulations were done on Praat (Boersma & Weenink, 2019).

Starting frequency of FO (In Hz) Ending frequency

9 282

8 273
7 264

6 255 l

5 246

4 237 AF=9 Hz

3 228 T

2 219

QNN sninwng

1 210

N

Figure 2. The schematic diagram of T1-T2 continuum

3.3 Procedure

All the participants were individually tested in a soundproof room by an experienced experimenter. They were
instructed to complete two tasks including identification task and discrimination task. Each task had two separate
blocks: one for the /i/-/u/ continuum and one for the T1-T2 continuum. They were required to respond as
correctly and quickly as possible. In both tasks, stimuli were presented through a laptop running the software of
E-prime (Schneider, Eschman, & Zuccolotto, 2002). Prior to the recording, all participants were given a brief
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introduction of the experiment again to ensure that each participant knew how to make response in this
experiment.

3.3.1 Identification Task

Before the experimental blocks, 9 tokens (Number 1 to 9) in each continuum were used as practicing trails. It
aimed to familiarize participants with the experimental procedure and the labels used in the tasks, thus obtaining
a stabilized performance in the formal experiments. The results from the practice session were not included in
the following statistical analyses.

In the formal task, a 2AFC (two-alternative forced choice) test was used, during which the participants were
instructed to identify each stimulus with labels on the screen (see Figure 3). The experimenter clicked the
corresponding keys for them: “1” for “/i/” in the vowel continuum, “T1” in the tone continuum, and “2” for “/u/”
and “T2” respectively. Vowel /i/-/u/ and T1-T2 were separated into two different blocks, which were randomly
presented to the participants. In the testing blocks, each stimulus was repeated 6 times, yielding a total of 54
experimental trials for each continuum. All the stimuli were randomly and automatically presented to the
participants, without limitation on reaction time. Feedback was provided for the practicing trails, while no
feedback was given during the testing blocks. It took each participant approximately 60 minutes to finish.

o
i

Figure 3. Picture for /i/ and /u/ (one the left) and T1 and T2 (on the right) on the screen

3.3.2 Discrimination Task

Similarly, prior to the testing procedure, a practicing session consisted of 23 stimuli (1-1, ..., 9-9, 1-3, ..., 7-9
and 3-1, ..., 9-7) was set.

The AX test design was used in the discrimination task. Stimuli were presented in pairs with a fixed
inter-stimulus interval (ISI = 600 ms), and the participants were required to tell whether the two stimuli in each
pair are the “same” or “different” by pointing to the pictures (see Figure 3). The experimenter helped to press the
corresponding keys (“1” for “same” and “2” for “different”). Vowel /i/-/u/ and T1-T2 were separated into two
different blocks. Since AX test paradigm was applied, there were 7 units paired by two steps, and each unit had
four types, i.e., AA, BB, AB, BA. Thus, a total of 23 stimuli pairs in each continuum were presented to the
participants in a random order. More specifically, there were 14 pairs consisted of two different stimuli (different
pairs) either in forward order (1-3, 2-4, ... , 6-8, 7-9) or in reverse order (3-1, 4-2, ... , 8-6, 9-7), and 9 pairs
consisted of stimuli paired with themselves (same pairs) (following Chen et al., 2016). Each pair was repeated 4
times, yielding a total of 92 experimental trials in each block for each participant. The order of the two blocks
was also randomized for each subject. Considering the particularity of the targeted participants, reaction time
was not limited. Feedback was given in the practice session but not in the testing blocks. In order to arrange
some rest for participants to avoid fatigue, they had a 20s’ rest after each time they finished a block. The entire
session lasted about 90 minutes.
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Figure 4. Picture for “same” (smiling face) and “different” (sad face) on the screen

3.4 Data Analysis

To investigate the difference between the categorical perception of /i/-/u/ and T1-T2, 3 essential parameters of
CP function were obtained by E-prime, Excel and SPSS: boundary position, boundary width, and overall
discrimination accuracy, as well as between- and within-category discrimination accuracies (Peng et al., 2010;
Zhang et al., 2016; Chen et al., 2017).

The identification score was defined as the percentage of which the participants identified a certain stimulus as
/i/ or /u/, or T1 or T2. In the study, the categorical boundary positions were obtained from the crossover points of
identification curves of /i/-/u/ and T1-T2. The width of the categorical boundary was the linear distance between
25% and 75% of identification scores, which indicated the sharpness of this curve (Hallé et al., 2004). Probit
analysis of the identification function was applied to assess and count each individual’s boundary position and
boundary width (Finney, 1971). The narrower the boundary width was, the faster the change rate from one
phoneme category to another was.

The discrimination score (P value) was the accuracy rate of responses, which was calculated according to
formula (1) (Xu et al., 2006). Discrimination pairs in the present study were divided into 7 comparison units that
consisted of four types each (i.e., AB, BA, AA, and BB). The 7 comparison units were further divided into
between-category comparisons (Pbc) and within-category comparisons (Pwc) based on the positions of
categorical boundaries (Chen et al., 2017). For example, if for a participant’s identification boundary position
was 4.5, then the between-category pairs would be any unit that covered this point, namely 3-5 and 4-6 units,
while the remaining 5 units belonged to the within-category pairs. The averaged accuracy rate of these pairs was
the between- and within-category accuracy rate respectively. Here was the formula:

P=P('S/S)xP(S)+P('D/D)xP (D) (1)

LT3

P (°S’S) represented the percentage of participants’ “same” responses to all the same (S) trails (AA or BB) and P
(‘D’/D) represented the percentage of participants’ “different” responses to all the different (D) trails (AB or BA).
P(S) and P(D) were the percentages of “same” (AA or BB) and “different” (AB or BA) pairs in each unit,
respectively. In this experiment, both P(S) and P(D) were equal to 50%.

4. Results
4.1 Identification and Discrimination Curves

Identification and discrimination curves for /i/-/u/ and T1-T2 continua are shown in Figure 5. In terms of
sharpness of the identification curves, the NH group exhibits steep slopes in tones continuum, while a less steep
slope is shown in the vowels continuum. On the contrary, gentler slopes are seen in both vowels and tones
continua for the CI group. As also presented in Figure 6, peaks are clearly shown in T1-T2 discrimination curves
for both groups, but no clear peaks are observed in /i/-/u/ discrimination curves. Besides, the peak of the
discrimination curve of T1-T2 corresponds well to the crossover position of the identification curves for the NH
group. That is, for the NH group, the maximum accuracy appears around at the stimulus pair 5-7, and the
boundary position is approximately at No.6 stimulus. As for the CI group, though with a peak in the
discrimination curve, it doesn’t align with the boundary position in a fair way. In conclusion, clear alignment is
found in the T1-T2 identification only for the NH group, while no salient peaks are found in vowels
discrimination curves.
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Figure 5. Identification and discrimination curves of both continuum for each group

Note. The left y-axis represents the percentage scores of /i/ or /u/, or T1 or T2 response, while the right y-axis represents the overall
discrimination accuracy.

4.2 Positions and Widths of Categorical Boundary

The mean boundary positions and widths of the two continua are shown in Table 4, and are further depicted in
Figure 6. Two two-way mixed design ANOVAs were conducted to examine the differences.

A two-way mixed design ANOVA was conducted, with the continua type (/i/-/u/ and T1-T2 continua) as the
within-subject factors and group as a between-subject factor. Greenhouse-geisser correction method was used
when appropriate to correct violations of sphericity following Zhang et al. (2016). Results of the two-way mixed
design ANOVA revealed no significant main effect of group (F (1,18) =2.177, p = 0.157), nor significant main
effect of continuum type (F (1,18) = 0.958 , p = 0.341), but unveiled significant interactions of continuum type
by group (F (1,18) = 4.9, p = 0.04). Post hoc analyses reveal that for the NH group, the boundary width in
vowels was significantly wider than that in tones (p < 0.05), while for the CI group, boundary width in vowels
was not significantly differed from that in tones (p > 0.05). And boundary width of vowels was not significantly
different between groups (p > 0.05), while significant difference was shown in width of tones between the two
groups (p < 0.05).

Another two-way mixed design ANOVA was assumed to examine the difference in boundary position. Results
suggested no significant main effect of type (F (1,18) = 3.301, p = 0.086), nor no significant interactions (F (1,18)
=1.397, p = 0.123), and also showed nonsignificant main effect of group (F (1,18) = 0.01, p = 0.923).

Results indicated that the two groups differed not significantly either in the boundary positions, or in the
boundary width of /i/-/u/, but they differed significantly in the boundary width of T1-T2. And for the NH group,
the vowel width was significantly wider than that of tones, whereas for the CI group, no such significant effect
was observed. Therefore, these results induce that the CI group performs similarly in /i/-/u/ and TI-T2
identification tasks, whereas the NH group exhibits a significantly sharper slope in the T1-T2 identification
curve than in the /i/-/u/ identification curve.

Table 4. Derived categorical boundary positions and widths of /i/~/u/ and T1-T2 for each group

Group Position Width

i-u T1-T2 i-u T1-T2
NH 5.9084 5.9546 1.3845 0.7959
CI 5.5052 6.2989 1.5224 1.75
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4.3 Discrimination Accuracy

The overall discrimination accuracies of /i/-/u/ and T1-T2 discrimination are depicted in Figure 7, and
discrimination accuracies of between-category and within-category for the two groups are demonstrated in
Figure 8. The mean overall discrimination accuracies are 68% (/i/-/u/) and 64% (T1-T2) for the NH group, and
68% (/i/-/u/) and 63% (T1-T2) for the CI group.
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Figure 6. Derived boundary position and width in /i/-/u/ and T1-T2 continua for the NH and CI groups

A two-way mixed design ANOVA was conducted to examine the differences in their overall discrimination
accuracies, with the continua type (/i/-/u/ and T1-T2 continua) as the within-subject factor and group as the
between-subject factor. In the same way, Greenhouse-geisser correction method was used when appropriate to
correct violations of sphericity. Results of the two-way mixed design ANOVA revealed significant main effect of
continuum type (F (1,18) = 16.978, p = 0.001), but showed no significant main effect of group (F (1,18) = 0.048,
p = 0.829), nor significant interactions of continuum type by group (F (1,18) = 0.047, p = 0.831). These
suggested that for both groups, they performed significantly more accurately in /i/-/u/ than in T1-T2.

Since better discrimination performance across category boundaries than within the same category is an
important parameter of categorical perception, these 7 stimulus pairs were further divided into between-category
pairs and within-category pairs. The peakedness was calculated by the difference between Pbc and Pwc. And as
shown in Figure 8, the mean between-category accuracies in vowels and tones for the NH group are 83% and 76%
respectively, and for the CI group are 79% and 70% respectively. The mean within-category accuracies in vowels
and tones for the NH group are 62% and 59%, and for the CI group are 64% and 61%.

Further Paired Samples T-tests were done to detect their difference in the between- and within-category
accuracies. Results for the NH group demonstrated significant difference between Pbc and Pwc in /i/-/u/ and in
T1-T2 [(t(9) = 5.306, p < 0.001) and (t(9) = 3.329, p = 0.009), respectively]. For the CI group, statistical analysis
presented significant difference between Pbc and Pwc in /i/-/u/ but only marginally significant difference was
found in T1-T2 [(t(9) = 4.601, p = 0.001) and (t(9) = 2.167, p = 0.058), respectively]. Conclusively, for both
groups, the between-category accuracy is strongly and significantly higher than that of the within-category
accuracy no matter in the /i/-/u/ or in the T1-T2 discrimination, except for the CI group in perceiving T1-T2.
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Figure 7. The overall discrimination accuracies in /i/-/u/ and T1-T2 continua for the NH and CI groups
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Figure 8. Within-category and between-category discrimination accuracies in /i/-/u/ and T1-T2 continua for the
NH and CI groups

5. Discussion

This study investigated the effects of intrinsic acoustic cues on categorical perception in children with cochlear
implants, compared with normal-hearing children. Results for the NH group unveiled that vowels /i/-/u/
continuum exhibited wider boundary width, ambiguous peak, and unclear correspondence between the
identification boundary and the discrimination peak. Therefore, though showing some categorical effects (i.e.,
significant peakedness), vowels /i/-/u/ was still less categorically perceived than T1-T2 continuum, which was in
line with the hypothesis previously stated. Contrastively, within the CI group, there was no significant difference
between their boundary widths of /i/-/u/ and T1-T2 continua. Worse still, the vowel continuum showed neither
clear peaks nor indisputable correspondences, while in the tone perception tasks, a peak in the discrimination
curve was shown but it didn’t correspond to the boundary position. Difference in the peakedness was only
significant for the /i/-/u/ discrimination rather than for the T1-T2 discrimination. Results for the CI group
illustrated that the CI children behaved in a less categorical manner both in perceiving /i/-/u/ and T1-T2, which
also paralleled the hypothesis.

5.1 Static VS Dynamic Cues

Formants of vowels are static cues compared with FO of contour tones, although they both belong to the spectral
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information (Chen et al., 2019; Chen, Zhu, & Wayland, 2017; Zhang et al., 2017). Formants are steady-state
properties, with few inflections with time going (Chen et al., 2019; Nearey, 1989). However, the FO feature of
contour tones is a dynamic-state property (Aramson, 1978; Chen et al., 2017; Wang, 1967). In Chen et al. (2017),
they viewed that steady vs. dynamic acoustic may be responsible for the contrasting effects of stimulus duration
on vowel and pitch direction perception.

The results of this experimental study depict that when the internal acoustic cue, i.e. formants, between
monophthongs is in a relatively steady state, the categoricalness of perception decreases accordingly; on the
contrary, when the internal cue, i.e., FO contours, between tones dynamically change, the categoricalness of
perception will be significantly improved. The current findings also echo the previous study (Chen et al., 2019).
In Chen et al. (2019), the perception of monophthongs with static formants was significantly more categorical
than that of monophthong-diphthong continuum with dynamic formants changes. Moreover, studies of level
tones and contour tones provide supplementary evidences for this effect (e.g., Abramson, 1979; Francis et al.,
2003; Xu et al., 2006; Hallé et al., 2004; Peng et al., 2010 etc.). These studies altogether discover that perception
of tones with different contours is categorical (Peng et al., 2010; Xu et al., 2006; Hallé et al., 2004), while
perception of level tones was continuous (Abramson, 1979; Francis et al., 2003).

It’s worth noting that significant differences in positions amid tasks of /i/-/u/ and T1-T2 identification were not
present in this study, whereas both groups manifested significant differences between between-category and
within-category accuracies in /i/-/u/ and in T1-T2 discrimination. For the NH group, significant difference in
widths between the two continua was displayed. These results might imply that the effects of intrinsic acoustic
cues on categorical perception is in operation, and it plays its role mostly in the boundary width. Boundary width
is closely related to the rate of detecting the changes between each sound pair. Therefore, it means that this effect
influences the normal-hearing children’s rate of perceiving the acoustic changes between sound stimuli. Chen et
al. (2019) compared the indicators of categorical perception, and concluded that boundary width was the one of
the decisive indicators to evaluate categoricalness in perception. Accordingly, the significantly narrower width in
T1-T2 means more categorical, which effectively signals the presence of the effects of intrinsic acoustic cues on
categorical perception.

5.2 Spectral Information Processing

In addition, in the current study, the conditions in the CI group was, to some extent, different from those in the
NH group. That is, categoricalness in the perception of either vowels or tones was not significantly different and
not satisfactory enough. To be specific, they showed significantly wider widths in both vowels and tones
identification than the control group in T1-T2, and no significant differences in their boundary widths and
positions were seen between the identification of /i/~/u/ and T1-T2; the identification boundary and the
discrimination peak didn’t align well in the two continua. And worse still, strongly significant difference in the
peakedness was observed in discriminating /i/-/u/, but not found in T1-T2; overall discrimination accuracy in
/i/-lu/ was significantly higher than that in T1-T2. The analyses of boundary widths then suggested that the CI
group perceived the changes of /i/-/u/ and T1-T2 at a significantly lower rate compared to the NH group, but
they performed with similar boundary widths in /i/-/u/ compared to T1-T2.

Previously, studies observed that for hearing-impaired children, improvements were seen in perception of
consonants and vowels (Lee et al., 2005). /i/-/u/ by the CI group in this study was perceived in a similar manner
with the NH group, which mirrored the results in Munson and Nelson (2005). The current findings of vowels
perception by CI children testified the improvement of cochlear implants in processing formants information.

Nevertheless, the coding strategies of Cls have focused on conveying speech envelope information, while the
fine structure of sounds (e.g., FO) has not been coded due to technological constraints (Gu et al., 2017). Results
in this study are compatible with previous studies that the gain in tone perception tends to be unsatisfactory for
those hearing-impaired children irrespective of the aid given by CIs (Wong & Wong, 2004; Cheung et al., 2002;
Ciocca et al., 2002; Lee et al., 2002; Aisha, 2000). Significant reduction in performance in T1-T2 by the CI
group in this study is also similar to the results of Luo et al. (2009). In their study, results indicated that CI users
performed better on vowel recognition than tone recognition. More importantly, spectral information is degraded
in Cls (Chatterjee & Peng, 2008), with CI users having a limited number of spectral channels available when
compared to NH listeners (Friesen et al., 2001). In their study, CI recipients reportedly had difficulty with the
recognition of some prosodic cues, especially those features closely related to fundamental frequency (F0). As
cited in Lee at al. (2010), the pitch information was not explicitly represented in the electrical stimulation via Cls.
In addition, evidence from MMN response verified that CI users were not sensitive to pitch deviants (Petersen et
al., 2015). Therefore, worse performance in T1-T2 could be ascribed to their difficulty in processing fundamental
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frequency information. It is likely that their difficulty in processing FO information affects the way in which the
intrinsic dynamic acoustic cue functions in the categorical perception of T1-T2. In a word, this effect is not
manifested well in the CI group due to their difficulty in processing spectral information, especially in
processing FO.

5.3 Acoustic Difference Detection

Intriguingly, /i/-/u/ exhibited higher discrimination accuracy for both groups. For one reason, this might be due to
the relative larger step size difference in formants within each vowel sound pair, namely around 296 Hz in F2
and 12 Hz in F1, but only 9 Hz in FO in T1-T2 continuum. As illuminated in Liu (2013), the just-noticeable
difference (JND) of lexical pitch perception was 4-8 Hz. Chen et al. (2018) employed tonal comparisons with
varying acoustic intervals as 3-step and 4-step stimuli in categorical perception of lexical tones, because 2-step
pairs might be too small to perceive for amusics who were impaired in musical pitch perception. Petersen et al.
(2015) discovered that weaker brain responses and poorer behavioral performance were true for CI users’
discrimination of small changes in pitch. And, the lower-level acoustics underlies higher-level phonological
categories (Chen et al., 2018). With these regards, in the current study, the results of the better discriminability
on the vowel continuum might be attributable to the larger step size. T1-T2, due to the smaller changes in pitch,
exhibits poorer performance in discrimination. Besides, Zhang et al. (2016) reported that vowel perception might
be strongly influenced by pitch properties of lexical tones. The perception of /i/-/u/ continuum in the current
study, therefore, might be posed as a result of the impacts from the original high-level tone as recorded prior to
the identification and discrimination tasks. The flattened pitch remains steady in high level tone, which is
congruous with the static formant in vowels. The overlaps of that kind of property could subserve the perception
of the vowel stimuli synthesized under the condition of the high-level tone, hence the higher scores of
discrimination could be graded for the vowel continuum instead of the tonal continuum. In addition, cochlear
implants can detect higher frequency information moderately better, while worse in the detection of lower
frequency information. In this study, F2 of /i/ and /u/ is much higher than the FO of T1 and T2, along with the
fact that the current processing schemes in CI do not provide optimum information about FO compared to
formants (Mckay, 2005), which in some way explains the discrepancy between them.

Importantly, though the discrimination accuracy was higher in /i/-/u/ than that in T1-T2, it was still lower than
the accuracy for adults in the study of Chen et al. (2019). In addition, for the CI group, although they performed
similarly in discrimination accuracy and boundary width in /i/~/u/ and T1-T2, they differed in the correspondence
between discrimination peaks and boundary positions. Altogether, the categoricalness of /i/-/u/ and T1-T2 by the
CI group is not as strong as the perception of TI-T2 by the NH group.

6. Conclusion

This study investigated the effects of intrinsic acoustic cues on categorical perception in children with cochlear
implants, compared to normal-hearing children. Results showed that vowels /i/-/u/ continuum was less
categorically perceived than T1-T2 continuum for the NH group. However, the CI group perceived T1-T2 and
/i/-lu/ in a similarly less categorical way. In conclusion, the effects of intrinsic acoustic cues on categorical
perception is proved to be true for normal-hearing children, while not for the hearing-impaired children due to
the interference of their difficulty in processing spectral information. In a nutshell, dynamic acoustic cues can
facilitate categorical perception of speech, which however might be hindered by difficulties in processing FO
information.

The present study is a good attempt to investigate the effects of intrinsic acoustic properties on categorical
perception. It helps to decide whether categorical perception is affected differently by different states of inherent
cues (i.e., static or dynamic) for the CI users compared to normal children. This will generate important
theoretical contributions to further understanding of the relationship between acoustic property and perceptual
mechanism. Drawing upon two stands of research into perception of speech, it can generate some pedagogical
implications for children with special educational needs. By comparing their performances, we can find out
which acoustic property causes greater difficulty for hearing-impaired children with cochlear implants and to
what extent the hearing-impaired group differs from normal children. Clinically, it can exert suggestions for the
research and development of cochlear implants. In the future work, attention should be paid to the comparison
between the categorical perception of monophthong and diphthong, where different states of formant are
exhibited. It is also possible to take other influential factors into consideration, such as the duration of use of Cls
and the complexity of speech signals (i.e., speech versus non-speech). To compare categorical perception of
spectral information (e.g., vowels or tones) with temporal information (e.g., consonants) by children with Cls is
another concern to be addressed in the future. Furthermore, attempts should turn into the Event-related Potentials
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(ERPs) experiments to make up for the shortage of behavioral experiments.
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