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Abstract

In this paper, we introduce a new approach to modeling dependence between international financial returns over
time, combining timevarying copulas and the Markov switching model. We apply these copula models and also
those proposely Patton (2006), Jondeau and Rockinger (2006) and Silva Filho, ZiegelamehBueker (2012)

to the return data of the FTSID0, CAG40 and DAX indexes. We are particularly interested in comparing these
methodologies in terms of the resulting dynamicslgbendence and the modesilities to forecast possible

capital losses. Because risks related to extreme events are important for risk management, we compare and select
the models based on VaR forecasts. Interestingly, all the models identify a léod pehigh dependence

between the returns beginning in 2007, when the subprime crisis was evolving. Surprisingly, the elliptical
copulas perform best in forecasting the extreme quantiles of the portfolios returns.

Keywords: copulaGARCH, IFM method, Mar&v switching model, time&arying copulasyalue at risk
1. Introduction

In portfolio theory, multivariate financial returns are often assumed to be normally distributed, but, in practice,
this assumption does not hold (Sancetta & Satchell, 2001). Finaetiats are found to be leptokurtic and they

also show skewness in univariate distributions. Additionally, a number of studies have also reported asymmetry
in the dependence amongst international financial returns, in the sense that they exhibit gpestéercte

during market downturns than during market upturns (see, for example, Longin & Solnik, 2001, Ang & Bekaert,
2002, Campbell, Forbes, Koedij& Kofman, 2008, Stave, Tjgsthej& Hufthammer, 2014). Therefore, it is
necessary to find a different appch to modeling multivariate distributions of asset returns and measuring their
dependence to reach optimum portfolio construction. Modern risk management requires a measure of
dependence that goes beyond simple linear correlation (Embrechts, M&¢ihumann, 2002), since it is no
longer sufficient to describe the dependence among the variables of interest when their joint distribution is not
elliptical.

A theorem due to Sklar (1959) introduced the copula functions. According to this theorem, ssilslgoto
decompose ang-dimensional joint distribution function into itsmarginal distributions and a copula, where the
latter completely describes the dependence amongst the variables. This decomposition allows for more flexibility
in the constructiorof multivariate distributions, which explains the major role that copulas have played in
multivariate modeling lately.

Patton (2006) extended Skimitheorem to the conditional case, defining the conditional copula, and rendered the
dependence parametesnditional and time varying. Allowing for time variation in the conditional dependence
among financial returns is imperative, given the evidence found in the literature that dependence among returns
is not constant over time (see, for example, Patton,,20B@stoffersen, Errunza, JacoBsLanglois, 2012).

As already mentioned above, several studies investigated the asymmetry in dependence structures in
international equity markets, observing that dependence tends to be high in both highly volatile amatketar
markets. These findings suggest the existence of two regimes in international equity markets: a high dependence
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regime, with low and volatile returns, and a low dependence one, with high and stable returns.

Following this conjecture, a modesteliature combines the theory of conditional copulas and the Markov
switching model, resulting in a sufficiently flexible framework which enables one to introduce further
asymmetries in a very natural way. Jondeau and Rockinger (2006) and Silva FilhdmZiegend Dueker

(2012) adopt copulas with Markov switching dependence parameters. The latter allows the dependence
parameter to vary according to a restricted ARMA(1,10) process, as in Patton (2006), plus an intercept term that
follows a first order Marke chain with two regimes. The former accepts that the dependence parameter assumes
only two different values according to the regime. Okimoto (2008) considers more general models with Markov
switching copulas, i.e., different copula functions in each regith is assumed therein that the copulas
dependence parameters are static.

Other recent empirical investigations using Markov switching copulas include Fei, Faente&alotychou

(2017), who model the dependence between credit default swap (CDS) sreéamtpiity prices using bivariate
copula models whose dependence parameters follow an ARMA(1,10) process with all coefficients changing
according to a first order Markov chain, and also Stober and Czado (2014), who find evidence of asymmetric
dependenceniforeign exchange markets using regime switching vine copulas.

One of the aims of this paper is to introduce an approach to modeling dependence between international financial
returns over time, combining the conditional copula theory and the Markowhgwgtmodel in a way that, to our
knowledge, has not been explored yet. We assume different copula functions across the two regimes
characterizing international equity markets, with observation drivenuangng dependence parameters. We
employ these copa models and also those proposed by Patton (2006), Jondeau and Rockinger (2006) and Silva
Filho et al. (2012) to model the dependence structures between thellBUSEturns and the CA@0 and DAX

returns, respectively. We are particularly interestedoimgaring these methodologies in terms of the resulting
dynamics of dependence and the moiletslities to forecast possible capital losses. Because risks related to
extreme events are important for portfolio construction and risk management, we conmpaeteahthe best

model based on VaR forecasts for equalbighted portfolios composed by the returns of the @8Gind DAX

indexes in pairs with the FTSEO returns.

The remainder of the paper is as follows. In the next section, we briefly introducenititional copula theory

by Patton (2006) and present the competing methodologies under consideration in this study. Following, in
Section 3, we describe the estimation procedure in copula modeling in general as well as the particularities of the
inferertial procedures of each methodology we adopt. In Section 4, we describe the gadditassts based

on VaR forecasts. In Section 5, we first analyze the univariate return data, then, we present the estimation results
and investigate the dynamics of tihependence structures, finishing with the presentation of the goeafrfitss

tests and the selection of the best models. We bring some concluding remarks in Section 6.

2. Methodology: Conditional Copulas

The models analyzed in this paper are based oar®K1959) Theorem, extended to the conditional case in
Patton (2006). According to this theoremFif is the conditional distribution ofx, |w, F; is the conditional
distribution of X,|W, andH is the joint conlitional distribution of (X, X,)|W, where w is the conditioning
variable, then there exists a conditional cofisuch that

HOw e W= CROLIW, BOs [ W w. 1)
where the copula contains all anfnation about the dependence betwe¥n and X,. It means that we can
decompose a (conditional) joint distribution into marginal distributions and a copula. According to Patton, it is
the converse of the Ski& theorem that is most interesting from a modeling perspective, since we can construct
a joint distribution by linking together any univariate distributions with any copula.

The conditional density function corresponding to the distribution functiongiraten (1) can be easily
recovered, provided th&t, andF, are differentiable andl andC are twice differentiable:

2
h(>(1,X2|V\/)1 [ H(X]_’X2|W)

W K
_HR (W) C‘Ez(X2|W) zde:(Fl()HV\), FCARIRY) (2)
Wy K W Ut

= fi(x W) BOeIW d@, k| W,
where u, = F(x|w and u, = F,(x|w). This result is useful for mémum likelihood analysis, as we will see
later on Section 3.
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2.1 Observation Driven Tim&arying Copulas

The first model we adopt is due to Patton (2006), henceforth denoted by AP copulas. Patton allows for
time-variation in the conditional copula by assuomthat the dependence parametgr,evolves through time
according to an equation that follows a restricted ARMA(1,10) process, with an autoregressive component, to
capture any persistence in the dependence parameter, and a forcing variable, toargptumeation in
dependence. The evolution equation of the dependence parameter may be written as

Q= K w+lqg +B (3)
where L is a logistic transformation used to keep the parameter intés/al at all times ang, is the forcing
variable, defined by Patton as the mean absolute difference between the transformed roargimails, over
the past ten observations (Note 1). The idea is to use this measure as an indication of how far the data were from
comonotonidiy: if X; andX; are comonotonic,| W - Uy, | is close to zero.

We use the following copulas to analyze the dependence between the indexes considered: the elliptical copulas
Normal and Studertt and a few Archimedean copulas, namely GumbRbtatedGumbel, Clayton,
Symmetrized Jo€layton and BB1 (Note 2). The Normal and Stueleate the copulas most frequently used in
financial literature. A drawback regarding them, however, is that they describe only symmetric dependence, and
it has beenwidely reported in literature that asymmetries are expected in financial returns, meaning that
dependence in lower tail can be larger than dependence in upper tail anvdrgeeFor this reason, it is also
important to adopt asymmetric copulas, suchhes Symmetrized Je€layton and the BB1 (with lower tail
dependence different from upper tail dependence), the Gumbel copula (with only upper tail dependence), and the
RotatedGumbel and Clayton copulas (with only lower tail dependence).

2.2 Copulas with M&kov Switching

We also adopt other three models, which combine copula theory with regime switching. In Markov switching
models, introduced into econometrics by Hamilton (1989), the evolution of a time series is influenced by the
different states of the wiaok or the economy. Numerous empirical studies have found evidences that financial
returns tend to exhibit different patterns of dependence according to the different states characterizing the
international equity markets. More precisely, such returns terte more dependent during crisis periods and
periods of high volatility in international equity markets than otherwise. This behavior may be described by the
specification of a copula model with switching regimes.

It is possible to assume that the depmmmd structure of international financial returns is influenced by a hidden
Markov chain with two states. For simplicity, it is assumed that this Markov chain is homogeneous and of first
order such that it can be completely characterized by its transiatix Pr(§ =i|S.; =j) #,with i,j=0,1,
where$S denotes the unobserved regime at tim#éondeau and Rockinger (2006) consider that the paradieter
pertaining to the dependence structure, i.e., to the copula, is drivenfolldiréng equation:

G = oL S) 8, )
Whered, is the value assumed by the dependence parameter duringvaldility/low-dependence regime and
d; is the value assumed during a highlatility/high-dependene regime ands is as defined above. We will
denote Jondeau and Rockingemodel by J&R copulas.

Besides the stochastic influence on the dependence parameter, it may also be conditioned on past observations as
in Silva Filho et al. (2012). The authorsaall the dependence parameter to follow an ARMA(1,10) process, with

the intercept term changing according to a Markov chain of first order and with two regimes, as described
following:

= Wl 8) #8) ®a ¢ ©)
where§ is the regme at timet andy;, is the forcing variable according to Patton (2006). Hereafter, this model
will be denoted by SFZ&D copulas.

We now introduce a more general approach combining-tanging copulas and regime switching, which we

will denote by TZ&SF coplas. We assume here that not only the degree of dependence changes according to the
regimes characterizing international equity markets, as the type of dependence also changes, which is not the
case for the two aforementioned models. It means that wenasdifferent copula functions across the two
regimes. Additionally, we allow for timeariation in the dependence parameter following Patton (2006), which
differentiates our model from the one proposed by Okimoto (2008), for example, where the coplylatiaten
dependent.

The Markov switching copula model, in this case, is specified as follows:
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1

Cq, (U Uy | §.9c,0= a s g G vy Y4 G (6)
k=0
with
Qext = K /4 +kbckg_L T( a (7)

C.(® is the copula foction characterizing regimék, with time-varying dependence paramete,, , k =0,1.

Because dependence in tails is one of the properties that discriminates between the different cojmilas and
relevant for both the phenomenon of asymmetric dependence and risk management, we assume copulas with
different tail behaviors in each regime. Particularly, we assume that the Normal copula, which has no tail
dependence, characterizes one regime, wiseag asymmetric copula prevails in the other one.

3. Estimation Procedure: The CopulaGARCH Model

In a time series context, we can rewrite the joint density function given in eq(@tiam Sectior2, as
(% % [Wg)= hOs TW e GO lw & 04, | we ®)

where u, =R, (% |wg),i 4,2 and g=g g ,q. is the vector of all parameters of bahe marginals and the

copula.
The expression for the ldikelihood function is as follows:

T T T T
Q logh (%, % [Wg)= Qlogf (% 1w @)+ Soaf O IW A + 8ac(y .4 | w
t=1 tz t = t 1=
(@)= (g ¥, 27 &( ) 9)

with the maximum likelihood estimator defined ¢ = maxt (4.

Maximum likelihood of the joint logdikelihood function ¢(qg) is possible, but this is computationally very
intensive and time&onsuming, especially when introducing dynamics and stochastic dependency in the model.
The joint loglikelihood function(9) can be decomposed into two parts, one part involving the marginals and
their parameters, and the other one involving the copula deitsifyarameters and also the parameters of the
marginals. When the dependence is not too strong, the Inference Function for Margins (IFM) metBoX{Joe
1996) can efficiently estimate the model parameters.

3.1The Models for the Marginal Distributions

The estimation procedure in copula modeling begins with the identification of the marginal distributions and the
estimation of their parameters via maximum likelihood. For financial return data, a univariate
ARMA(p,q)-GARCH(m,n) specification is usually eben to model the marginal distributigiidote 3) It can be
described by the following equations:

p q
x =fo 4@ i & a;a; ~m (10)
i=1 i 4
g =h%, (11)
h=a, @ aa @ ith; (12)
i=1 i 2

whereg, andh, are the conditional mean and variance given past information, respectivisithe innovation
process and, in this paper, we assume that it may have a standard Normal distrigutiNnormal(0,1), a
Studentt distribution, g ~Student ¢ », or a Skewed distribution,e ~ Skewed ¢4 ). We choose the best

model using the AIC and BIC and verify the goodref§t using standard tests describedSiection 5.2
3.2Establishing a Funiional Form for the Copula and Estimating the Dependence Parameter

In the second step of the estimation procedure, the joidikelihood function, 4(g) , can be reduced to the
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copula loglikelihood, 7.(q.), sincethe loglikelinoods related to the marginal distributions,(¢) and /,(g,),

are fixed. The problem now is to maximize the copulalikgihood over the copula parameter, taking the

parameters of the marginalsfa®d at the estimated values from the first step.

The models under analysis in this paper differ in terms of their hypotheses about the dependence structure
between the financial returns, therefore, they have distinct copulikéditioods. For the AP quulas, ¢, may
be written as

T
gc(qct) = a IOgCt(L‘iU L‘bt | g Zq ct)q (13)
t=1
where (% and zg are the estimates of the parameters from step ggejs & defined in equatioB, and the
log-likelihood function can be maximized directly over the dependence parameter.

For the opulas with Markov switching, J&R, SFZ&D and &3BF copulas, the logikelihoods cannot be
maximized directly overg. . In order to draw inference for copula models with Markov switching, we need to
overcome the challenge of having unobserved latent variables. To do so, we decompose the copula density of
U; . Uy and tle unobserved variables into the product of conditional and marginal densities:

G (U Ux, S0 1)= (4, 4 | Swy) Or(S| wy)
where ¥ is all information available up to timeé- 1. And, then, integrate th& variable out of the joint
density by summing over all possible values 9t

1 1
Glug Uy 1) =8 ¢(u. ., SIwy) =AY ylSw)PO$ W
§=0 $9

Thus, the copula letikelihoods can be written as (Note 4)

T a1 i
le= QL 100% G (U 1§ W) ON(S i) ! (14)
t=1 C 9 .

To compute the conditional probabilitieBr§ |w.;), $= 0,1, we apply Kings filter, described in Kim and
Nelson (1999). Being able to calculate these probabilities, can evaluate and maximize the copula
log-likelihood, obtaining the estimates of the copula parameters.

4. Goodnessof-Fit Based on VaR Forecasts

Because risks associated with rare (or extraordinary) events are important for the composition afspaveoli

choose to compare and select the best model based on VaR (Value at Risk) forecasts. The VaR over the time
horizon h with probability &, 0<a <, can be defined a&/aR, ,, = inf{x:F,(x) 2a}, where F, is the
cumulative distribution function of the portfolio returns aMaR, |, is theé' 104 -th quantile of K, (Note 5)

In other words, the VaR ithe maximal loss associated with the portfolio, during a certain time period (in our
case, we choose a oeday period), for a given significance level . Although F, can be theoretically
computed from the nmginal conditional distributions, it is not easy to reach a closed analytical form for the joint
distribution. For this reason, we obtain the parametric distributions of egquaigihted portfolio returns of the

form X, =0.5X; +0.5X; via Monte Calo simulations and find the extreme quantiles, using the following
algorithm:

For each pointin timet=1,....T :
1) Simulate K samples of uniforms from the fitted copula modell,u) k=1,..,K, using the
conditional sampling method.
2) For k=1,...,K, convert ui(tk) to q&k), i=12, using the inverse of the marginal distributidg
with the estimated parameseirom the first step of the IFM methodg® = F; *(y{).
3) For k=1,..K, convert g9 to the logreturn x =4 «/h @& , where g and h, are the
conditional mean and variance values, as obtained in the first step of the IFM method.
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4) For k=1,...,K, compute the portfolio return axp) =0.5%1 +O.5>é[k).

5) Calculate the onday 100a -th percentile of xp'?, k=1,...,K, which corresponds to &Y. If the
observed value ofx,, for day tis less tham &Y, then we say that a violation (or exceedance) occurs.

To evaluate the VaR foredag(and their underlying models), we initially use the likelihood ratio tests proposed

by Kupiec (1995) and Christoffersen (1998). Based on the previous algorithm, it is possible to construct an
indicator sequence of violations,,t =1,...T . The unconditional coverage test, introduced by Kupiec, is a test

of the null hypothesis that the indicator functidp, which is assumed to follow an i.i.d. Bernoulli process, has a
constantsuccessprobability equal to the signifamce level of thew & 'Y where success corresponds to the
portfolio losing more than the VaR model may pass the unconditional coverage test, i.e., the observed number

of violations is close to the expected number, but we can still reject the @aRl i the violations are not
independent. Christoffersen (1998) proposed a combined test for both unconditional coverage and independence,
with Ho being serial independence and a violation rateaof

According to Lopez (1999), ¢éhstatistical tests proposed by Kupiec and Christoffersen to evaluate the accuracy
of VaR models can have relatively low power against inaccurate VaR models. For this reason, he proposed an
alternative methodology based not on a statistical testing frarketuat instead on standard forecast evaluation
techniques: the accuracy of the VaR forecasts is determined by how well they minimize a certain regulatory loss
function. Simulation results indicated that this methodology is less susceptible to modessifisatoon and

there is also the advantage of specifying the loss function according to particular interests. In light of these facts,
we implement this additional procedure proposed by Lopez and we apply a test for superior predictive ability
(SPA) propsed by Hansen (2005) to determine which model significantly minimizes the expected loss function.

The Basel Il Accord, still in process of implementation by several countries, proposed that the capital
requirements for barfk credit risk exposure were deténed according to its daily VaR estimates witi%
significance level. The capital requirement loss function (CR) is based on the larger out of the current VaR
estimate and a multiple of the average estimate over the past 60 days as(fottme)

€0, ifz ¢ 4,
A03+012 -4), if5 ¢z @
CR = maxé—— (3 a VaR,.;, VaR, w’ :I,O 65, itz =7, (15)
e ° 'oeamnz -7), if8 &z 4
[1 ifz 2 10.

where d is a multiplicative factor that depends on the number of violations of the VaR in the previous 250
trading days £ ). We adopt this regulatory loss furariito evaluate the VaR forecasts.

To compare the models performances in minimizing the CR loss function, we use the SPA test statistic proposed
by Hansen. A superior predictive ability test is applied whenever the interest is to test whether a particular
forecasting procedure is outperformed by alternative forecasts. We are interested to know whether any of the
models, k =1,...,m, are better than a benchmalkh in terms of minimizing the expected loss function. So we

test the null hypothss that the best model is not better than the benchmark. The relative performance of a model
to the benchmark may be defined dg; = CR,¢,; -CR ;. Provided thatE(d, ;) =/, is well defined, we can
formulate the null hypothesis afterest as

.....

whereas the alternative hypothesis is that the best model is superior to the benchiknadded is better than
the benchmark if and only ifE(d, ;) > 0. The test statistic is given by

T”zd

) ¢
TSPAL maxé max 0¢
¢

T
where d, 1 T8 d,, and ¢ is some consistent estimator off * var(T¥?d,). The test is implemented
t=1

via stationary bootstrap of Politis and Romano (1994).
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5. Data Description, Estimations and Brecasts

In this section, we model the dependence between the returns of thelBUSkdex and the returns of the
CAC-40 and DAX indexes, respectively, according to the methodologies presented in Recti@lyze the
dependence time dynamics and vetifg goodnessf-fit on the basis of the accuracy of the VaR forecasts.

5.1 Return Data and Descriptive Statistics

To perform our comparative study, we use 3017 observations of daifgtimms of the stock indexes FTSBO,

CAC-40 and DAX from January 04,999, to April 28, 2011. We use cleg®close returns, meaning that the

daily returns are those observed for trading days occurring simultaneously in all the three stock markets
considered. The rationale for using only European indexes is to guaraattéeethrading times overlap the most
possible in order to obtain a synchronism of the returns.

The period covered by our data sample comprises two main stock market crashes wortmeiidreed: the

one of 200Quntil 2002, which was a ramification ofeliidot-com bubblé, which burst on March 2000, and the
subprime crisis, fronfiall 2007 to June 2009. These are periods when the markets were in a downturn trend, so
we expect that the copula models capture greater dependence then. The period 2003 sac@i€iflered a
period when the markets performed well.

A few descriptive statistics of the returns are providedable B1.We can notice that data usually shows
negative asymmetry, except for CAC logfurns, suggesting that the presence of negativeregtivalues is

more common, i.e., the left tail of the distribution is heavier. Data also presents excess kurtosis, especially the
FTSE logreturns. Also, according to the Jarefera test statistics, it is possible to reject the null hypothesis of
normality of the returns for all indexes. All these statistics are in accordance with what is reported in the
financial literature.

5.2 Modeling the Marginal Distributions

Here we parameterize the marginal distributions of the returns according to the &RAREH nodel, as
described n Section 3.1 Taking into account the information criteria AIC and BIC, the diagnostic
(autocorrelation) tests of the residuals and the gooebfefitstest that the PIT of the residuals are uniforms, we
choose as the best specificagofor the marginals the following models: ARGBARCH(1,1) with Skewed
errors for the FTSHO00 and CA®A0 returns, and AR[4B5ARCH(1,1) with Skewed errors for the DAX
returns.

The estimates from the ARMGSARCH fits (Note 7) the diagnostic checks attte results of the goodnes§fit

test are presented ihable B2 If the ARMA-GARCH specifications are successful at modeling the serial
correlation in the conditional mean and variance, there should be no autocorrelation left in the standardized
residuat and squared standardized residudisble B2 provides thep-values of the LjungBox test of
autocorrelation in the standardized and squared standardized residuals with 18)([E®)s,and Q?(15),
respectively. Forll series, the null hypothesis of no autocorrelatieit ¢annot be rejected at th&sSevel.
Additionally, if the marginal distributions are well specified, the probability integral transforms of the
standardized residuals should kHO,1]. The p-values of the Kolmogore®mirnov test, reported ifiable B2

suggest that the PIT of the standardized residuals have the correct distribution.

5.3Modeling the Dependence Structure and Analyzing its Dynamics

Having estimated the marginal dibtitions, the next step is the modeling of the dependence structures between
the FTSEL00 returns and the returns of CAO and DAX. In this subsection, we pres#m copulas estimates

(Note 8 and we are interested in investigating the dynamics of themt#tence structures. For this purpose, we
analyze the estimates of the dependence parameters and make an initial selection of the copula model that may
be a good choice to represent the dependence structure of each pair of indexes based on the maximum
log-likelihood (LogL) (Note 9, observing the statistical significance of the estimated coefficients of the models.
Additionally, we compare the different evolutions of the dependence measured by the &d¢addll) and the

tail depadence ( ) (Note 10, computed based on the different copulas, to provide further insight on the
dependence dynamics through time.

5.3.1AP copulas

We begin analyzing the estimates of the AP copuldsiole B3 For the pair FTSECAC, the Student copula is
the best one out of these copulas based on the LogL and taking into account the fact that the BB1 copula does not
have all estimated coefficients considered statistically significant. The estimathg o#.8885, indicates a high
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persistence in the linear correlation between FTSE and CAC. Notice that the LoglLs of the-Stumiette
RotatedGumbel copulas are very close, 2059.6 and 2058.8, respectively, so we should not just discard the
RotatedGumbel copla. Analyzing the estimates for FTSEAX, we choose the Rotatg@umbel as the best
copula, according to the same criterion of highestlikgjihood amongst the models with all coefficients
considered statistically significant. The Normal copula, in¢hise, also captures a significant persistence in the
estimate of the correlation coefficient, with the estimateg equal to 3.5251.

To observe the dependence time dynamics captured by these copulas, we focus on the evolutions of th
Kendalls tau and the tail dependence. The evolution of the dependence measured by thé& Kaundal the

pair FTSECAC is shownin Figure C1.We have the time path of the dependence obtained from the Student
copula in panel (a), and we also show time paths obtained from the other copulas with all coefficients
statistically significant. It is possible to notice that, from both the Studend the Normal copulas, the
Kendalls tau evolves through time following a path that oscillates arouncbtistant values estimated from the

static versions of such copulas (0.6557 and 0.6496, respectively) all along the sample. From thé&SRothetd

in panel (b), the Kendd tau remains under the estbed constant value, 0.637ntil the end of 2001, ken it

reaches another level and begins oscillating around this value, and, finally, it osegtab baseline from 2007

until the second semester of 2010. We expected to observe this increase in dependence after 2007 because of the
subprime crisis. Theubtle increase in dependence by the end of 2001 may be associated with the market crash
due to thefidotcom bubblé, but notice that its influence on dependence is much weaker than the effect of the
subprime crisis. The evolution of the tail dependeincdtfis same pair of indexes can be observdelgare C2

The tail dependence path calculated based on the Studeptula (panel (a)) is quite erratic and not very
informative, remaining a little under the constant value, 0.4763, most of the timebnight jumps in 2008 and

2010 associated with sudden disturbances in the estimated degrees of freedom. The lower tail dependence
measured based on the Rotatgimbel copula, in panel (b), is greater than the one measured by the $tudent
probably becausef the symmetry imposed by the elliptical functional forms, and it increases after 2007,
corroborating again the expectations of greater dependence during crisis periods.

The Kendalls tau paths computed based on all statistically significant copulasi€fopair FTSEDAX are
presented irFigure C3 From the Rotate@umbel copula, in panel (a), the Kendaltau remains under the
estimated constant value, 0.5744, almost all the time from 1999 to the end of 2003, oscillates around this value in
the period 204 to 2006, and, from 2007 to the end of 2010, it rises above it. The same behavior is captured by
the Symmetrized Je€layton copula (panel (b)). In panel (c), the time path of Ke@dtdu captured by the
Normal copula is always oscillating around tlomstant value, 0.5891. The time evolution of the tail dependence

in Figure Cdis rather similar to the Kend@l tau evolution in the sense that it begins lower than its constant
value, oscillates around it in the period 2004 to 2006 and finally riseedab@om 2007 on. The lower talil
dependence computed based on the Rofatedbel is quite the same as if computed from the SJC, as can be
seen from their time evolutions in panels (a) and (b), respectively. About the dependence in the upper tail
computedbased on the SJC, its constant value is 0.5747, lower than the constant value for the lower tall
dependence, as expected due to the typical behavior of higher dependence in lower tails than upper tails in
financial markets. However, the evolution of thgeptail dependence, in panel (c), is more volatile.

From the estimation of the AP copulas, we find strong evidences of dependence between extreme values (tail
dependence) for the pairs FTSRAC and FTSEDAX, since the Normal copula has the lowest valuetfe
log-likelihood amongst all copulas. These models also capture an increase in dependence beginning in 2007,
when the subprime crisis was evolving, and it reaches the highest level during this period.

5.3.2J&R and SF&D copulas

Table B4reports the dBnates of the &R copulas. We denote the probabilitid2r(§ =1|$.; =) by p and

Pr(§ =0|$,; =0) by g. Examining the table, we select the Normal copula as the best model for the pair
FTSECAC, noting that, though the Studdenhas a higher LogL, the estimate of the degrees of freedom in
regime 1 is not significant. The increase in the estimated correlation coefficient from 0.7659 in regime O to
0.9253 in regime 1 is strongly significarit is also possible to conclude that the regimes are rather balanced,
with very close expected durations, ¢f- p)* 98 days for the high dependence regime afied q) * =83

days for the low dependence regime, suggestinghbibidt of them are relevant to capture the dynamics in the
dependence structure between FTSE and CAC. In fact, all the estimated copulas with significant coefficients
present this same persistence in the regimes and strong significance of the dependeretersaior the pair
FTSEDAX, we choose the Studehtopula as the best model, although with some reservations, ginead

g are significant only at the 20 level. The estimated linear correlation irases from 0.7093 to 0.8818, and
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the degrees of freedom do not change much, they go from 13.4763 to 14.5128. The regimes here are very
persistent, regime 1 lasts about 270 days, whereas regime 0 lasts 244.

We analyze now the evolutions of the dependencesunest and / through time to provide further insight

on the dynamics of the dependence captured by these copulas with regime dependent parameters. As in Jondeau
and Rockinger (2006), the paths are caledatbased on the ente probabilities and defined as

t,= dPq +1(& Ppg) and /, = fpy +,Q4 Pg), Where py, =Pr(§ =0|w.,). In Figure C5,we plot ¢,

for FTSECAC and it reveals that the dependence between thdeges is characterized essentially by three
subperiods The first one, that goes from 1999 to the first semester of 2001, is mainly associated with the low
dependence regime, with two shtasting increases in dependence in 1999 and 2001. In the spednd,
beginning ly the end of 2001 and goinmtil 2006, the two regimes are intercalated. From the second semester

of 2001 to the end of 2002, the higher dependence can be explained by the market crash digotodire

bubble, besides of the terrist attack to the Twin Towers on September, 11, 2001. Unexpectedly, these copulas
capture increases in dependence during the period 2003 to 2006. This is a surprise because it is a period when the
international financial markets performed well. Finallye tihird period, from 2007 on, is associated with the

high dependence regime, when the two markets are strongly dependent. This period of high dependence
coincides with the subprime crisimtil the first semestesf 2009 and goes beyonduntil the end 02010, and

then the dependence decreases in the beginning of 2011. During this period, there i#astisigodecrease in
dependence in the first semester of 2008, probably associated with an increase in the economic activity of the US
identified by theBusiness Cycle Dating Committee of the National Bureau of Economic ResEgyate C6

displays the evolution of the tail dependence, whose pattern is similar to the one described above for the
Kendals tau. From the BB1 copula, in panel (&), is lower than /, during regime 0, and higher than this

during regime 1. This behavior is reverted when the tail dependence is computed based on the Symmetrized
JoeClayton copula (panel (c)).

In Figure C7 we have thKendall® tau evolution for the pair FTSBAX. There we can identify two long
subperiodscharacterizing the dependence between these two indexes. From 1999 to January, 2004, the
dependence is mainly low, with a significant increase by the end of 200Begirthing of 2003. The second
subperiod, from 2004 on, is essentially associated with the high dependence regime. During this period, an
important decrease in dependence occurs in the second semester of 2005 and it rises again from 2006 to the end
of 2010.Just as it happened for FTSEAC, the dependence between FTSE and DAX increased during the crises

of 2002 and 2002009. Tail dependence through time is displayedrigure C8 The lower and upper tail
dependence parameters calculated based on the Studgntia (panel (a)), assume the value 0.1389 in regime 0

and 0.3367 in regime 1, suggesting that both the dependence between extreme negative values and the
dependence between extreme positive values increase during turbulent periods such as 2002tarDQ00

The asymmetric copulas indicate much higher extreme dependence, ranging from 0.4 to 0.55 in regime 0 and 0.6
to 0.75 in regime 1. Based on the BB1 copula (panel (b)),is lower than /|, in regime0, and higher than

this in regime 1. Based on the Symmetrized-Gtag/ton (panel (d)),/, is higher than/, all along their

paths.

The estimated SFZ&D copulas are providedable B5 According to the lodikelihood criterion, we choose

the Student copula as the best model for both the pairs FC3E and FTSEDAX. Note that, differently from

the other copulas with two parameters, we assume, in the case of the -§ttlusnthe degrees of freedom are

only regime dependent, they do not follow an ARMA(1,10) process. The reason is that the estimation of the
Studenit copula is very timeonsuming and, with this assumption, we intend to make this task a little easier.
The estimates of the correlation coeffididor both pairs are very persistent, with the estimatgd equal to

3.3971 and 2.3508 for FTSEAC and FTSEDAX, respectively. The intercept term of the estimated correlation
coefficient and the estimated degrees of freedom inersigsificantly from regime 0 to regime 1 for both pairs

of indexes. The regimes are balanced and very persistent: regime 1 lasts 128 days and regime 0 lasts 122, for
FTSECAC, whereas the expected durations are 555 and 500 days for regimes 1 and @Oyelyspec
FTSEDAX.

To scrutinize the dynamics of the dependence structure between FTSE and CAC captured by these models, we
look atFigure C9 Interestingly, we notice that the Kendsltau path estimated based on the Stutlenpula

(panel (a)) dis@lys a rather similar pattern to the Ken@athu pattcomputed based on the Normé&lRJ copula

(Figure C5 panel (a)). This corroborates the close values of the LogLs obtained for the two models (2147.4 and
2128.8, respectively). The StuderBFZ&D copuladoes not indicate some shdaisting increases in dependence

in 1999, beginning of 2001 and secondnsster of 2003, as the Norma&R copula does, but the models do
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coincide in determining the regimes for the rest of the sample. Still exanfimguge C9 ¢, in panel (c),

related to the Symmetrized JGéayton copula, behaves similarly to the in panel (a), related to the Student

but the evolution of the dependence measured based on the Ratedtl, in panel (b), suggests more
unbalanced regimes. The patterns of evolution of the tail dependence parameters from the copulas Student
RotatedGumbel and SJC iRrigure C10mimic their counterparts iRigure C9 Once again, the tail dependence
captured byhe asymmetric copulas is higher than that captured by the Studewt /, is higher than/, in

the regime of high dependence, based on the SJC copula.

For FTSE and DAX, the evolution of the Kendsltau omputed based on the Studémopula, inFigure C11

panel (a), suggests that the dependence between these indexes is characterizeslibyeiaals one of low
dependence, from 1999 to January, 2004, and another of high dependenceQ(doom 2just ashe Student

J&R copula, inFigure C7 panel (a), indicates. Although, this time, the regimes are even more persistent: the
current copula does not indicate a significant increase in dependence by the end of 2002 and beginning of 2003,
besides of otherh®rtlasting increases during the period 1999 to 2004, and it does not capture a decrease in
dependence in the first semester of 2005, as the other model does. This behavior of the dependence confirms the
close values of the LogLs of the two maxlel683.8for the Student SFZ&D copula, and 1671.1 for the
Studentt J&R copula. Differently from the results obtained from the elliptical copulas, the asymmetric copulas
BB1 and Rotatedsumbel inFigure Cllsuggest that regime 0 is more persistent than regimehé.tail
dependence computed based on the current Studepula,Figure C12 panel (a), does not differ substantially

from that based on theutentt J&R copula: on average, it measures 0.1490 in regime 0 and 0.3285 in regime 1.
Curiously, the tail deendence parameters based on the BB1 copula, panel (b), are more volatile in the low
dependence regime than in the high dependence one.

The estimation results of the J&R and S8fX copulas indicate, for both pairs of indexes, the prevalence of a
long periodof high dependence beginning in 2007, for FIG&C, and 2006, for FTSIDAX, until the end of

2010. This period coincides with or slightly precedes the beginning of the subprime crisis and goes beyond it.
For FTSE and CAC, these copulas also capture gignifincreases in dependence by the end of 2001 and 2002,
wherea for FTSE and DAX, not all SRD copulas capture increases in dependence during the crash of 2000 to
2002. Surprisingly, these copulas also suggest increases in dependence during ti20@1tio®006, when the
conditions in the international financial markets were favorable. In addition, we can notice that, for these models,
the elliptical copulas have a better fit to the data. The tail dependence, when it exists, is probably symmetrical,
given the better fit of the Studentopula.

5.3.3TZ&SF Copulas

Finally, Table B6presents the estimates of the&F copulas. For the pair FTSEAC, the only model with all
coefficients statistically significant is the combination Normal and Claytonthi estimation of the
combinations with the SJC, Rotat€&limbel and Gumbel copulas, all coefficients related to the asymmetric
copulas are statistically not significant, except for the estimateygf. For the model Normal and BBihe
estimates of b,,; and ay,, are not significant, indicating lack of autocorrelation in the paraméteand no
influence of the combined movement of the marginal probability transforntise path of g. For the pair
FTSEDAX, none of the combinations has all coefficients statistically significant: for the NeZragton and

the NormalSJC, coefficients related to the Normal copula are not significant, wherelsrioal and Gumbel

and Normal and Rotate@umbel, coefficients related to the asymmetric copula have no statistical significance.
The NormalBB1 combination has almost all coefficients statistically not significant.

Figure C13displays, in panel (a), thevalution of the Kendads tau for the pair FTSEAC, computed based on

the NormalClayton Markov switching copula, and the smoothed probabilities of the high and low dependence
regimes, in panels (b) and (c), respectively. As before, we can identifyhneeesubperiods characterizing the
depenénce between FTSE and CAQntil the first semester of 2001, we have mainly low dependence between

the indexes. From the end of 2001 to the second semester of 2006, the regimes are intercalated, however, now,
the lov dependence periods are much shorter than before. The low dependence regime has expected duration of
20 days, in contrast with the expected duration of 98 days of the high dependence regime. From 2007 onwards,
high dependence prevails. Notice that the tegimes are characterized by different tail behaviors, with no tail
dependence at all in the high dependence regime, and lower tail dependence in the low dependence one, which is,
actually, opposite to what we expected to find.

5.4 Forecasting VaR for Gatnessof-Fit Check and Model Selection
We proceed now to the evaluation of the VaR forecasts based on the estimated copula models. For the VaR
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computation, we simulate 1000 replications of the portfolio returns for each point in time from the estimated
copulas with all coefficients statistically significant. We first evaluate the forecasts by applying the likelihood
ratio tests proposed by Kupiec and Christoffersen. Then, we compute the (capit@meat) losses based on

the % daily VaR forecasts fromhbse models that passed the first tests, and apply the SPA test to determine
which model has a superior predictive ability.

We first analyze the forecasts from the AP copulable B7 presents the results of the Kupiec and
Christoffersen tests for the dlaMaR forecasts. One can see from this table that, for both pairs of indexes, the AP
copulas have good performances in teraf forecasting, since their 1% an@&5vaR forecasts pass both
likelihood ratio tests of unconditional coverage and combinatiatoeérage and independence. Notice that the

VaR forecasts at the 1% significance level are aggressive, meaning that the forecasted quantile is more extreme
than thetheoretical VaR, and, at theé¥blevel, they are more conservative, except for the Rotatedbel
forecasts for the pair FTSEAC. The average losses computed based on the 1% daily VaR forecasts and the
results of the SPA te¢Note 1) are presented ifiable B8 We implement the SPA test considering each copula

at a time as the benchmark and temaining ones as the competing alternatives. For the AP copulas, for both
pairs of indexes, it is not possible to reject the null hypothesis that the best competing copula cannot outperform
the Normal copula.

Table B7also reports the results of the likedod ratio tests for the VaR forecasts from the J&R copulas. In this
case, with the exception of the BB1 copula, with too aggressive 1% daily VaR forecasts, the other copulas pass
the Kupiec and Christoffersen tests of the VaR forecasts accuracy. Aldws$er models, the 1% VaR forecasts

are more aggressive than the 5% VaR forecasts, considered quite conservative, except for th&Robakd
forecasts. In terms of minimizing the regulatory loss function, the resulfakite B8for the &R copulas

suggest that no alternative copula can outperform the Normal copula for both theGAGENd FTSEDAX

pairs.

Finally, from the results of the likelihood ratio tests floe forecasts based on the S8fEX.copulas, presented in
Table B7 it is possible to statthat the BB1 copula is the only one that cannot appropriately approximate the
joint distribution of the FTSE and DAX returns, at least, not in its tails. The results of the SPA test for the
SFZ&D copulas, provided imable B8 indicate that the Studenhperforms best in terms of forecasting for the
pair FTSECAC, whereas the Normal copula is the best choice for FTSE and DAX.

Having selected, for both pairs of indexes, the models with the best performances in forecasting out of each
methodology, we now applthe SPA test to them, to finally find the one that has the best fit to the data in the
lower tail of the joint distribution of the returns. In the case of FC3, we also consider the Norm@layton

Markov switching copula, since it is the only modehmaining from the TZ&SF copulas, and it passes the
Kupiec and Christoffersen tests, withvalues 0.6048 and 0.5848, respectivédy,the VaR forecasts at thésdl

level, and 0.3483 and 0.5506, for thé6s5VaR forecastsTable B9displays the results of thiwst. It is not

possible to reject the null hypothesis that the best alternative model cannot outperform the Normal J&R copula in
the forecasting of the first percentile of the FTSEC portfolio returns. At the same time, one should notice

that, at a lowr significance level, of 1%, it is not possible to reject the null that the best alternative model is not
better than the Normal AP copula, when this one is assumed as the benchmark. In this case, we could assert that
both models provide statistically siar predictions of the extreme (negative) quantiles of the FCBE

portfolio. However, the last result is not robust to alternative choices of the block length for the bootstrap. So
conclude that the Norma&R copula provides the best VaR forecdststhe portfolio composed by FTSE and

CAC, noticing that, amongst the best forecasts, these are the most aggressive ones. For the portfolio formed by
FTSE and DAX, the SPA test indicates that no alternative model has a better performance in termestififprec

the extreme quantiles than the Normal AP copula. Although, at the 1% significance level, we could accept that
the Normal SFZ&D copula provides similar forecasts. Nevertheless, this result changes when we assume
different block lengths. Hence, accorg to our results, the Normal AP copula performs best in forecasting the
VaR for the portfolio composed by FTSE and DAX, with less aggressive predictions.

6. Concluding Remarks

In this paper, we introduce a new approach to modeling dependence betweeialfireturn data over time,
combining timevarying copulas and the Markov switching model, and we employ this methodology and also
those proposed by Patton (2006), Jondeau and Rockinger (2006) and Silva Filho et al. (2012) to model the
dependence struces between the FTSHO returns and the returns of the indexes @WCand DAX,
respectively, over the period 1999 to April 2011. We also use the copula estimates to carry out tail inferences and
find out the copula model with the best performance in fatew the extreme quantiles for each portfolio

165



ijef.ccsenet.org International Journal of Economics and Finance Vol. 9, No. 10, 2017

composed by the pairs of indexes aforementioned.

Based on the lotikelihood criterion, we find strong evidences of tail dependence for the pairs-EASEand
FTSEDAX from the estimation of the AP copulasnse the Normal copula has the lowest value for the
log-likelihood amongst all copulas. For FTSE and DAX, the tail dependence is asymmetric, with stronger lower
tail. On the other hand, analyzitige estimation results of the J&R and SEY copulas, the elfitical copulas

have a better fit to the data according to the same criterion, suggesting that, the tail dependence, when it exists, is
probably symmetrical, given the better fit of the Studecbpula. We barely can find empirical evidences of
time-varying copulas with distinct tail behaviors characterizing the dependence between the returns according to
the international equity markets regimes. The combination of a high dependence regime characterized by the
time-varying Normal copula and a low dependenegime associated with the timvarying Clayton copula for

FTSE and CAC, though statistically significant, does not show a good fit to the data.

The AP copulas as well as the J&R and SFZ&D copulas identify a long period of high dependence from 2007 to
theend of 2010, for both the pairs FTERAC and FTSEDAX. This period coincides with or slightly precedes

the beginning of the subprime crisis and goes beyond it. The copula models with regime switching also capture
significant increases in dependence dutimg period 2001 to 2002, especially between FTSE and CAC, which
can be explained by the market crash due tdidleecom bubblé, besides of the so called September 11 effect.
Unexpectedly, these models also indicate increases in dependence duringothe2@@8 to 2006, when the
financial markets did well.

Because in risk management the main concern has to do with tail risks, we compare and select the copula models
based on VaR forecasts. To evaluate the accuracy of these predictions, we apply theatr&dipiec and
Christoffersen tests, besides of an alternative methodology based on standard forecast evaluation techniques, i.e,
the accuracy of the VaR forecasts is determined by how well they minimize a certain regulatory function. We
also apply the BA test by Hansen (2005) to determine which copula model significantly minimizes the expected
loss function. Based on the results of the SPA test, we cannot reject the null hypothesis that the best alternative
model cannot outperform the Norma&R copulain the forecasting of the extreme (negative) quantiles of the
FTSECAC portfolio returns. This result suggests that the high persistence in the linear correlation coefficient
between FTSE and CAC captured by the Stutleabd Normal AP copulas is inapprage, and the
longmemory feature of this dependence parameter is, in fact, a consequence of a model with large but
infrequent breaks, as the Markov switching model. Also according to the results of the SPA test, no alternative
copula model can outperfortihe Normal AP copula in the forecasting of the VaR losses for the portfolio
composed by FTSE and DAX returns. Surprisingly, the Normal copula has the best fit to the tails of the joint
distributions of the returns, which is in contrast to the evidencesxpected to find for financial return data and

also to the evidences found in the literature of static copulas, where usually copulas that feature tail dependence
and asymmetry show better fits. It seems that part of the asymmetry may be generated-vayytirge
parameters. Also, the lack of tail dependence may be partially compensated by the possibility of large overall
dependence, which would explain why the Gaussian copula fits the data so well.
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Notes

Note 1 This is the definition for nowlliptical copulas. For the elliptical ones, the forcing variable is defined as
the mean of the productF'l(w’t_ i) o) I%(u21 j) . for the Gaudan copula, and the mean of
T, M(wy )Wy ), for the Student, over the previous 10 lags, whefe" is the inverse of the standard
Normal c.d.f. and T,;1 is the inverse of the Student.d.f. with n» degrees of freedom. If data is positively
dependent, the inverse of the marginal transforms of both variables will have the same sighisteMpected

to be positive.
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Note 2. Their functional forms as well as the evolutioruations of their dependence parameters following
Paton (2006) are described Appendix A

Note 3.Extensions of the GARCH model, such as EGARCH, TARCH, among others, are also fitted to data in
order to find out the best model for the marginals.

Note 4.Just to keep the notation in accordance with the one used up to this point, note that, in the case that the
functional form of the copula density changes according to the regime, the copula density function should be

denoted by cq (.

Note 5.Since the VaR is calculated here from the distribution of the portfolio daiyelagns, it is expressed in
percentage.

Note 6.Note that, since the VaR is a negative value, to compute the loss function, it will be calculated here as
minus the (0Qz -th percentile) of the c.d.f. of the returns.

Note 7.All marginals were estimated using the Oxford MFE Toolbox by Kevin Shepard.

Note 8.The copula models were estimated using the Copula Toolbox provided by Andrew Patton and some
functions written by the authors for the Matl@b software. The standard errors were computed numerically
using the functiondi ldssian2side and iMyFuncScored from Dynamic Copula Toolbox 3.0 provided by
Manthos Vogiatzoglou.

Note 9.Since our data sampig quite long, the information criteria AIC and BIC choose the same model as the
LogL. For lack of space, these information criteria are not presented here, but they are available from the authors
upon request.

Note 10.The Kendals tau measures a pattiar dependence known as concordance. The tail dependence
measures the dependence in extreme values: the lower tail deperaefgpper tail dependencey) is the
probability that one variable takes an extremely large negative (positive) value, igavéimet other variable took

an extremely large negative (positive) value.

Note 11.For the stationary block bootstrap, we use 1006€araples and select the optimum block length in
accordance with Politis and White (2004). We use the Matlab fmoleblodk length REV_dec0d compiled
by Andrew Patton to implement the automatic block length selection.

Appendix A
Copula Functions
Normal copula: the Normal copula, extracted from the bivariate Normal distribution, is defined as follows:

_Fw Fiw) 1 £-(r2 -2rrs &)
Cvwwlr)=n_ n @ 2)eXT 2(1- r?)

Eﬂrds, ri(41
Y

where the dependence paramaters the linear correlation coefficient. Its dynamic equation may be written as

Q

a 1 }'0 1 1/, (
TR v f R gs8 TR T(WR)
¢ j=1 :

L(X and I:(I', which appear hereafter, are logistic transfoiomstto keep the parameters in their intervals.
The Normal copula is symmetric and has no tail dependence, thaf s, §y 9. The Kendals tau may be
computed based on the correlation coefficientras(2/ parcsin .

Studentt copula: it is associated with the bivariate Studéristribution and has the following functional form:

n+2
M) tHw) 1 & r?-2rrs & 02

Crlwwlr. A= -szl- ;ég e

where the parameterg and s are the linear correlation coefficient and the degrees of freedom, tigepedn
addition, their evolution equations are given by

drds,

a 10 .
ry= ng o 'fral?)a Tnl(ul,t ) Tnl(@t i)
(9 j=
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and

Q

A&
m = Lg'éf R "ZTa_aT (Un 3D Ty (@1 i)
G

The Student copula has symmetrical tail dependence, with= ;=21 . ( f(”*ll)(l’)) where T is the
+r

Studentt c.d.fwith (n+1) degrees of freedom. The Kendsltau is given byr =(2/ parcsin .
Gumbel copula it has the form of

. .
Ce(ul,uzlq)=exp§e{( logu ) (+Iogtb)1? i g gL .

The dynamics is given by the following equation governing the depengaremeter evolution:

LATAL A

o

G = Laeﬂ/ td g ta‘alult] Uy £l
9

The Gumbel copula exhibits only upper tail dependence, wjth=2 -2/7. It can be shown that the Kendall
tau is given byt =1 - ¢.

Rotated-Gumbel copula or Survival Gunbel copula, which is the complemerit P r o b afbsurvivat) of
the Gumbel copula. It has the following form:

Cro(W Lk |@)=u #p F GI yd 4|9
where ¢, corresponds to the Gumbel copula.

-O:0: O

The dependence parametey, follows the process

)

G = L$WG +hs o +R&a|ultjuzt,|
G

The Rotatedsumbel copula has only lower tail dependence, giverf py2 27 and the Kendal tau may be
computed ast =1 - ¢.

Clayton copula: or Kimeldorf-Sampson apula, has the following distribution function:

Ccu )= w?HY 7 d (0 )

The evolution equation of the dependence parameter is

1-O"0: O

o

a
a = Lae@/ tdhd E 15*"a_|u1t1 Uy 7l
Q
This copula exhibits only lower tail dependengg,=2"Y“. The Kendalls tau fas the formz = #( ).

Symmetrized JoeClayton copula: this copula was defined by Patton (2006) and takes the form of
Corclt 17y, =05 | . ) &1yl ydiy/) 4 4 R

where C,. is the JoeClayton copula, also called BB7 copula (Joe, 7)98iven by

OO O

é ex k '5 \ Kk ~9 _l’_]llg -(.J).Jk
Cac (W, 17y, ():1? ‘::81 (3 wy ] 13'1 W) " - 819 g

with k=1/log,(2 - ), g=1tlog( . )/and, / {0,

The SJC copula has upper and lower tail dependence and its dependence parameters are the upper and lower tail
dependence parameters,, and {, respectively. Furthenore, /, and { range freely and are not dependent

on each other. Since this copula nests symmetry as a special case, it is a more interesting specification than the
BB7 copula.The evolution equations for the parametéfs and { are
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2

a 1 0
Ty = I—zt}’ Wuh 6 %%1|U11 i Uy gl

¢
and
& 10 <:
Iy = '—Zag'ﬂ/ ot ?Bja;_an i Uy gl :

The Kendalls tau, in this case, has no closed form, so we compute it numerically.
BB1 copula (Joe, 1997)it has the following functional form:

Com (U, ok, 9= KU B2 (5 “D 93 ¥, “k0, 1), @ )i
The dynanic equations of the dependence parameters are

4 11 ¢

ki = Lg%bl ol K 'ﬁbbﬁma [Uggj Uy gl 8

c j=1 =

.4 12 ¢

g = Lg%bl tolly o O *ibbﬁf)awn-j Uy gl :

¢ i= -

The BB1 copula has upper and lower tail dependence given,by2 -2“9 and /=219, respectively. The
Kendalls taumay be calculated based on and g as ¢t =1 (2/( § &)).

Appendix B
Table B1.Summary statistics of the FTSEAC-40 and DAX daily logreturns
FTSE CAC-40 DAX
Mean 1.1098E-05 1.2715E-05 1.3427E-14
Median 3.3640E-04 2.3667E-04 . T980E-04
Maximum 0.0938 0.1059 0.1080
Minimum -0.0926 -0.0047 -0.0958
Std. Deviation 0.0131 0.0157 0.0164
Asymmetry -0.0675 0.0509 -0.0048
Kurtosis 8.6249 7.9411 74391
Jarque-Bera 3968.9 (0.000) 3061.8 (0.000) 2470.1 (0.000)

Note JarqueBera corresponds to JargBera tesstatistics withp-values in parentheses.

Table B2 .Estimates fromhe univariate ARMAGARCH models

Conditional Mean and Variance Equations

Parameter FISE CAC-40 DAX
01 -0.0577 -0.03a9 .
(0.0002) (0.0013)
[3) -0.0637 -0.0440
(0.0005) (0.0002)
[} -0.0731 -0.0626
(0.0006) (0.0021) ..
o . .. 0.0444
L. e (0.0024)
o 1.158BE-06 1.5820E-06 1.7875E-06
{10, 00000 (0. 0000 (000000)
oy 0.0933 0.0761 00821
(0.0117) (0.0101) (0o114)
B 0.9012 0.9181 09127
(0.0119) (0.0102) (00112)
v 216701 13.2143 10,9277
{7.5025) (3.0347) (2.2477)
i -0.1430 -0.1229 -01112
(0.0247) (0.0258) (0.0225)
Q(15) 05504 0.5880 0.5372
0% (15) 0.2378 0.5044 04330
K-8 Test 0.8464 (.9835 0.2673

Note Standard errors in parentheseg(15), Q?(15)and kS Test arg-values.
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Table B3.Estimates from the APopulas

FTSE-CAC FTSE-DAX FTSE-CAC  FTSE-DAX
Coefficient Coe flicient
Normal Rotated-Gumbel
ay -1.3084 A.7882 AT 0.9170 0.6591
(0.3204) (0.0002) (0.0502) (0.0623)
B 4.2331 3.5251 Brc 0.2327 0.2872
(0.4508) (0.0001) (0.0080) (0.0138)
Oy 0.3189 0.2397 fere] -1.9806 -1.2652
(0.0768) (0.0017) (0.2421) (0.2145)
LogL 2013.5 1570.5 Logl. 20588 1594.3
FTSE-CAC  FTSE-DAX FTSE-CAC  FTSE-DAX FTSE-CAC  FTSE-DAX
Coefficient Coe fficient Coe flicient
BEI Sindeni-i Svmmetrized Joe-Clayton
Wpp 0.8677 0.9711% Wy -1.7873 J0.8011 wy 1.4412 15787
(0.1764) (0.9019) (0.2373) (0. 0008y (0.2052) (0.1787)
s 0.6240 0.5411% wr -3.0778 -1.2559 . 1.6559 0.7553
(0.0872) (0.3916) (0.4748) (04064 ) (0.5029) (0.2006)
Prsst 013607 0.2172% Bir 4. 8885 15476 il 0.0546% -2.2294
(0.1935) (0.6566) (0.3172) (00064 ) (1.6770) (0.5639)
Passt 0.2915 0.3194 or -0.0797 0.0475 i 0.4801% 0.8895
(0.0194) (0.1078) (0.0308) (0.0015) (0.8199) (0.1121)
e -1.1909%* 03940 oy 0.1858 0.1987 oy -7.1533 -14.4149
(0.7205) (3.5840) (0.0350) (0.0517) (0.664T) (1.2824)
el -1.5880 -1.5886*% oz 0.7947 -0.0273=* oy -9.4782 -5.4483
(0.4010) (1.4258) (0.2479) (0.2528) (2.7984) (1.5493)
LogL 21255 16433 Logl 2059 .6 1609.7 Logl 2032.0 1575.4

Note Standard errors in parentheses. (*) stands for statistically not significant, whereas (**) stands for significant ohPati¢kel. The

notation here is as presented in Section 2 and in Appendix A.

Table B4. Estimates from th&R copulas

FTSE-CAC  FTSE-DAX FISECAC  FTSE-DAX
Coefficient Coefficient
Normal Rovated-Gumbel
PO 0.7659 0.6928 - 21110 1.8827
(0.0186) (0.0385) (0.0938) (0.0737)
Pi 0.9253 (0.8988 =11 317159 3.1997
(0.0059) (0.0153) (0.1589) (0.2039)
P 0.9898 0.9785 P 0.9899 0.9887
(0.0733) (0.1045) (0.0771) (0.1535)
q 0.9880 0.9775 q 0.9871 0.9886
(0.0892) (0.1431) (0.0839) (0.1358)
LogL. 21288 1666.0 Logl. 2045.0 1601.2
FTSE-CAC  FTSE-DAX FTSE-CAC  FTSE-DAX FTSE-CAC  FTSE-DAX
Coefficient Coefficient Coefficient
BEI Studeni-i Symmeirized Joe-Clayion
®p 0.5547 04812 Po 07793 07093 Ao 0.5434 04673
(0.1038) (0.0837) (0.0192) (0.0252) (0.0278) (0.0381)
K 0.8168 0.8197 Pi 09275 0.8818 Aari 0.8011 0.6556
(0.1223) (0.1378) (0.0076) (0.0194) (0.0000) (0.0054)
o 17324 1.5566 Vo 11.5834 13.4763 Ao 0.6167 0.5031
(0.0819) (0.07T18) (3.6496) (6.1923) (0.0178) (0.0425)
T 2.6850 2.1590 vy 41.3768% 14.5128 At 0.7804 0.7539
(0.2337) (0.0862) (54.9352) (6.8262) (0.0001) (0.0743)
r 0.9910 0.9953 r 0.9906 0.9963%=* P 0.9868 0.9931
(0.0736) (0.2303) (0.0827) (0.5380) (0.0796) (0.1811)
q 0.9900 0.9948 q 0.9906 0.9950%= q 0.9883 0.9924
(0.0837) (0.2269) (0.0814) (0.5285) (0.0984) (0.1945)
Logl. 2102.8 1637.4 Logl. 21381 1671.7 Logl. 2003.8 1570.0

Note Standard errors in parentheses. (*) stands for statistically not significant, whereas (**) stands for significant oh}2ati¢hel. The

notation here is as presented in Section 2 and in Appendix A.
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Table B5. Estimates frote SF&D copulas

FTSE-CAC  FTSE-DAX FTSE-CAC  FTSE-DAX
Coefficient Coefhcent
Normal Rorared-Gumbe!

il 0.4226* 1.3001 iR -1.0715 04675
(0.6034) (0.1364) (0.0916) (0.0867)

iy 12766 23473 Wi 09764 23317
(0.7531) (0.1020) (0.0538) (0.07400

B 1.7286" 0.1549 Brci 0.2222 -0.3209
(0.9405) (D.D657) (0.0081) (0.0142)
thy 0.3493 0.3737 [ -2.0588 066564
(01084} (0.0921) (0.2819) (0.3521)

P 0.9922 0.9900 P 0.9978 0.9910
(0.0826) (0.2225) (0.0794) (0.1584)

q 0.9888 09864 g 09894 0.9945
(01076} (0.2034) (0.2109) (0.1605)

Logl 2145.1 1675.2 LogL 20797 1604.2

FTSE-CAC  FTSE-DAX FTISE-CAC  FTSE-DAX FTSE-CAC  FTSE-DAX
Coefficient Coefhcient Coefhcient

BRI Srudenr-t Symmerrized Joe- Clayion

@661 0.2880" -0.4544 g -.6644 -0.0229 g 1.1802 21219
(0 1668 (0.2262) (0.05%8) (0.0085) (0. 1087) (0.1156)

W 1pp1 0.5221 09414 i -0.0393* 05144 iy 1.7125 21413
(0.0482) (0.2045) (0.0236) (0.0526) (0.0045) (0.2027)
[ -1.4688 -0.4549 v 11.9186 121589 wrn 01471 00631
(0.2986) (0.1928) (3.7720) (4.0464) (0.0783) (0.1197)

@ e61 07128 1.5930 ¥ 15.0000 15.0000 apy 0.9387 0.6713
(00663} (0.2089) (2.4045) (3.7563) (0.0019) (0.0632)

Bz 04861 0.2808 Ber 13071 2.3508 Br -0.2633 06172
(0.040:4 ) (0.0849) (0.1194) (0.0561) (0.0001) (0.1901)

Pase 02714 -0.3478 wir 01114 0.1402 Br 06745 1.0390
(0.0153) (0.0609) (0.0271) (0.0351) (0.0008) (0.04800
ipbi 01265 -2.1677 [ -5.4357 -10.7196
(0.1232) (0.9771) (00214 (06474

Ozpp -21346 1.4201 - [ -1.6781 -27932
(0.3201) (0.5684) (0.0030) (0.0344)

P 0.9965 0.9952 r 0.9922 0.9982 r 0.9945 0.9931
(0.1681) (0.2316) (0.0793) (0.2217) (0.0614) (0.1428)

q 0.9780 0.9957 q 0.9918 0.9980 g 09914 0.9923
(0.3329) (0. 1968) (0.07T64) (0.2067) (0.0794) (016470

LogL 21432 1657.2 LogL. 21474 16838 Logl. 20374 1509.2

Note Standard errors in parentheses. (*) stands for statistically not significant, whereas (**) stands for significant oaPati¢kel. The
notation here is as presented in Section 2 and in Appendix A.

Table B6. Estimates from the &BF copulas

- - - 2 i -

Coefficient Coefficient Coefficient

NormalClayton Normal/Gumbel Normal/Rotared-Gumbel

ay -34314 1.5731* ay -3.4000 5.1152 y -3.6EEE 07360
{0.1345) (8.5125) (0L3598) (0. 2004} (01479 (0.0223)

o -0.559 -1.0128 g 1.0634% 03575+ g 10596 -La310
{0.0703) (L3583} (3.5451) (0.35357) (0.2923) (015100

i 6.9207 0.9382* By 6. 8881 -3.1589 By 7.2137 1.9599
{1616) (0.0745) (0L4340) (0.2044) (01739 (000391)

Be -0.4039 04156 B (L0730 0.2976 B 0.0524% (L4867
{0L02000 (0.0426) (21589) (00858} (0.0948) (004310

L 01779 0.2852** Ty 0.2403 0.3732% ity 0.2256 0.2995
{0.0252) (015400 (0.0482) (0.1919) (0.0300% (D.0598)
i -0.2491 -1.B&T3* g -1.3600* -2412* g 0710 -0.3152%
{0:1009) (L3211 (7.7933) (0.9439) (0.7403) (074710

jd (LOROR L9856 fd 09944 L9891 r 0.9937 (L9900
{00988} (LOZE9) (0.0635) (0.0915) (0.0930% {0L0655)

q 0.9512 0.9474 q 09876 0.9740 q 0.9873 09793
{0.2973) (L1948} (0101 2) (020200 (0. 1095} (01144

Logl 20957 1638.4 Logl. 2119.9 1634.7 Logl 21309 1659.9

FISE-CAC  FTSE-DAX FTSE-CAC FTSE-DAY
Coefficient Coefficient
Normal/BE! Normal/Symmerrized Joe-Clayon

ay -3.0135 L6238** oy -3.4095 1417
(014300 ((L8353) (1L.0GES) (04894)

@y 04021 1.2382 ayy -0L.0842* 0.2897
{0L0438) (0.4464) (3.1934) (0.1237)

[ 0.8370 0.3780* . 0.5731* 1.4937
(040113 (0.6279) (4£.2548) (D.0061)

i 74839 L3579 (i 6.9979 0.1849*
(D 1666) (1.4047) (1.2537) (0.5423)

PBrset 0.3597 01331 P 1.3566* 1.9657
{0.0597) (0.2992) (8.2579) {0.0392)

Bt 0.1587* 0.3600%* Br. -0.1108* -0LO0790
{0.1678) (L1857} (0.2036) {0.0258)

[ L2413 0.5031 iy 0.2389 (L4739
{0.0348) (0 1864) (0.0619) {0.2082)

b6 0.1784% -1.7946* wrr 36760 -8.0732
(0. 2448) (4.6244) {12.0692) (1.8708)

o -L6811 L7594 o, -LT2ET* -1.8739
{07918) (212700 (6. 5093) {0.0897)

jd (L9945 L9859 r 0.9945 0.9822
{0.0B05) {0L238T) (0.1822) {0.0598)

q 0.9923 0.9894 q 0.9887 0.9757
{0.1263) (0.2219) (013200 (D.0384)

Logl 21518 1667.4 Logl 2137.0 1633.5
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Table B7.Results of the Kupiec and Christoffersestsefor the daily VaR forecasts

FTSE-CAC
AP copulas 1&R copulas SFZ&D copulas
Copula W Mops K C o Tops K C O by K C
Normal 1% 0.0093 0.6931 0.7047 1% 00086 04387 0.5857
5% 0.0501 0.9767 0.9891 5% 00514 07174 0.8280
Student-t 1% 0.009 0.8351 07310 1% 0.0090 0.559% 0.4225
5% 0.0531 0.4389 0.5157 5% 0.0561 0.1321 0.2991
BH1 % 00036 00088 0.0293
o 00451 02134 03892
SIC v 00083 03332 0.5037 1% 0.0083 03332 0.5037
0.0531 04389 0.6097 5% 0.0538 03483 0.5506
Rotated-Gumbel 1% 0.0080 0.2446 0.4157 0.0090 05596 0.6348 1% 0.0080 0.2446 0.4157
5% 00475 0.5191 07318 v 00498 09566 0.9297 5% 0.0485 0691 0.4849
FTSE-DAX
AP copulas 1&R copulas SFZ&D copulas
Copula [ S K C € Toe K C O Taps K C
Normal 1% 0.0093 0.6931 0.7047 %o 0.0090 0.55% 0.4225 1% 0.0086 0.4387 0.3497
5% 0.0524 0.5420 (.8240 0.0518 06365 0.6772 5% 0.0508 0.8446 (.8400
Student-t 0.0076 01731 0.3287 1% 0.0103 0.8740 0.6067
00528 04889 0.4923 5% 0.0524 05420 07824
BBE1 o 0.0043 0.0004 0.0018 1% 0.0043 0.0004 0.0018
0465 03679 0.5328 5% 0.0455 0.2469 0.4643
SIC I"'x 0. []090 0.5596 (.6548 00003 0.6931 0.4899
5% 0.0521 0.5980 0.8229 5% 00511 07802 0.8893
Rotated-Gumbel 1% 0.0083 0.3332 0.2887 1% 0.0086 04387 0.3497 1% 0.0083 0.3332 0.2774
5% 0.0504 0.9103 0.9881 5% 00498 09566 0.8054 5% 0.0495 0.8901 07806

Note p.. isthe observed proportion of violations. K and C correspond to-tiadues of the Kupieand Christoffersen tests, respectively.

Table B8 Averagelosses computed based on thé daily VaR forecastand the results of the SPA test

FTSE-CAC
AP copulas J&R copulas SFZ&D copulas
Benchmark Average Loss (%) Average Loss (%) Average Loss ()
Normal 97856 97691
(1.0000) (1.0000)
Student-t 9.9577 . 9.8933
(0.0000) . (1.0000)
SIC . 9.9931 9.9952
(0.0000) (0.0012)
Rotated-Gumbel 10,0320 9.9397 0.9747
(0.0000) (0.0000) (0.0001)
FTSE-DAX
AP copulas J&R copulas SFZ&D copulas
Benchmark Average Loss (%) Average Loss (%) Average Loss (%)
Normal LRELM U761 99681
(1.0000) (1.0000) (1.0000)
Student-t 9.9250 10.0754
(0.0002) (0.0010)
SIC 10.2461 10.3284
(0.0000) (0.0000) .
Rotated-Gumbel 10.2728 10.1896 10.2184
(0.0000) (0.0000) (0.0000)

Note In parentheses, we have fhwwalue of the SPA test.

Table B9.Average losses computed based on #edhily VaR forecasts and the results of the SPA test for the
best models out of each methodologytfue pairs FTSECAC and FTSEDAX

FTSE-CAC FTSE-DAX
Benchmark Average Loss (%) Benchmark Average Loss (%)
Normal (AP copula) ENER Normal (AF copula) 9.9493
(0.0339) (10000}
Normal (J&R copula) 97601 Normal (J&R copula) 0.9814
(1.0000) (0.0000)
Student-t (SFZ&ID copula) 9.8933 Normal (SFZ&[D copula) 9.9681
(0.0000) (0.0338)
Normal-Clayton (TZ&SF copula) 0.9972 e res
(0.0000)

Note In parentheses, we have fhwalue of the SPA test.
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Appendix C
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Figure C1The evolution of the Kend& tau computed based on the ABpulas, for the FTSEAC pair

{a) Student-t
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Figure C2The evolutions of the tail dependence parameters computed based orctipuksi®, for the
FTSECAC pair
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Figure C3The evolution of the Kenda tau computed based on the &ubs, for the FTSIDAX pair
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(a) Rotated—-Gumbel
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Figure C4 The evolutions of the tail dependence parameters computed based orctimuksis, for the
FTSEDAX pair
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Figure C9 The evolution of the Kenda tau computed based on the &FEYcopulas, for the FTSEAC pair
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