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Abstract 

This paper studies a diversity of exchange rate models, applies both parametric and nonparametric techniques to 

them, and examines said models’ collective predictive performance. We shall choose the forecasting predictor 

with the smallest root mean square forecast error (RMSE); the empirical evidence for a better type of exchange 

rate model is in equation (34), although none of our evidence gives an optimal forecast. At the end, these models’ 

error correction versions will be fit so that plausible long-run elasticities can be imposed on each model’s 

fundamental variables. 

Keywords: efficiency, exchange rate determination, exchange rate policy, forecasting, foreign exchange 

1. Introduction 

Most economic time series exhibit phases of relative stability followed by periods of relatively high volatility, 

and thus do not display any constant mean. A brief examination of currency exchange rates (among other 

time-series data) imply that they are heteroscedastic because of the absence of a constant mean and variance, as 

opposed to being homoscedastic because of the presence of a stochastic variable with a constant variance. For 

any series with such volatility, the unconditional variance could be constant even though it may be unusually 

large at certain times.   

The trends of some variables may contain either stochastic or deterministic elements, with the analysis of such 

ingredients influencing the forecasted results of the time series in question.  

We can illustrate the behavior of different exchange rates by graphing them, noticing their fluctuation over time, 

and confirming first impressions through formal testing. For example, one notices that these series are not 

stationary, in that the sample means do not appear to be constant and there is a strong appearance of 

heteroscedasticity. This lack of a specific trend makes it difficult to prove that these series have a time-invariant 

mean. For example, the U.S. dollar-to-British pound exchange rate does not show any particular tendency 

towards either increasing or decreasing, with the dollar apparently going through long periods of appreciation 

and then depreciation without a reversion to the long-run average. This type of "random walk" behavior is quite 

typical of nonstationary time series. 

Any shock to such a series displays a high degree of persistence: the dollar/pound exchange rate experienced a 

tremendous upward surge in 1980, remained at this level into 1984, and was only returning to somewhat near its 

previous level in 1989. The volatility of these series is not constant and, in fact, some currency exchange rate 

series have at least a partial correlation with other series; such series are named conditionally heteroscedastic if 

the unconditional (long-run) variance is constant but with localized periods of a relatively high variance. For 

instance, large shocks in the U.S. appear at about the same time in both Canada and Great Britain, although these 

co-movements’ existence can be all but predicted because of the underlying forces affecting the economies of the 

U.S. and other countries. 
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The disturbance term’s variance is assumed to be constant in conventional econometric models, although our 

series alternates periods of unusually great volatility with spells of relative tranquility. Therefore, our assumption 

of a constant variance in such cases is incorrect. As an investor holding but one currency, though, one might wish 

to forecast both the exchange rate and its conditional variance over the life of the investment in such an asset. 

The unconditional variance -- namely, the long-run forecast of the variance -- would not be important if one 

plans to buy the asset at time period t and subsequently sell it at t+ 1. Taylor (1995) and Kallianiotis (1985) 

provide reviews of the literature on exchange rate economics and Chinn and Meese (1995) examine four 

structural exchange rate models’ performance. 

This paper is organized as follows. Different trend models are described in section 2. Other linear time-series 

models are presented in section 3 and multiequation time-series models are discussed in section 4. The empirical 

results are given in section 5 with a summary of the findings presented at the end of section 6. 

2. Time-Series Trends 

One way to predict the variance of a time series is to explicitly introduce an independent variable that helps 

forecast its volatility. Consider the simplest case, in which 

𝑠𝑡:1 =  휀𝑡:1𝑋𝑡                                     (1) 

where 𝑠𝑡:1 = the spot exchange rate (the variable of interest), 휀𝑡:1 = a white-noise disturbance term with 

variance 𝜎2, and 𝑋𝑡 = an independent variable that can be observed at time period t. (If 𝑋𝑡 = 𝑋𝑡;1 = 𝑋𝑡;2 = … 

= constant, then the {𝑠𝑡} sequence is a standard white-noise process with a constant variance.) 

If the realization of the {𝑋𝑡} sequence is not all equal, then the variance of 𝑠𝑡;1 that is conditional on the 

observable value of 𝑋𝑡   is 

Var (𝑠𝑡:1 𝑋𝑡) = 𝑋𝑡
2𝜎2                                (2) 

We can represent the general solution to a linear stochastic difference equation with these four components: 

𝑠𝑡 = trend + cyclical + seasonal + irregular 

Exchange rate series do not have an obvious tendency of reversion to any mean. One important function of 

econometricians is the formation of clear-cut stochastic difference equation models that can simulate trending 

variables’ behavior, with a trend defined by its permanent effect on a time series. Because the irregular 

component is stationary, its effects will diminish while the trending elements and their effects will persist in 

long-term forecasts. 

2.1 Deterministic Trends 

One of 𝑠𝑡’s basic characteristics is its long-term growth pattern despite its short-term volatility. In fact, 𝑠𝑡 may 

have a long-term trend that is quite apparent and clear-cut. According to Pindyck and Rubinfeld (1981), 

Chatfield (1985), and Enders (1995), there are eight models that describe this deterministic trend and can be used 

to extrapolate and forecast 𝑠𝑡. They are the following: 

Linear time trend: 

𝑆𝑡 = 𝛼0 + 𝛼1𝑡 + 휀𝑡                                 (3) 

Exponential growth curve: 

     𝑆𝑡 = A𝑒𝑟𝑡                                     (4) 

or 

  ln𝑆𝑡 = lnA + rt + 휀𝑡                                (5) 

or 

𝑠𝑡 = 𝛽0 + 𝛽1𝑡 + 휀𝑡                                 (6) 

Logarithmic (stochastic) autoregressive trend (the only function that can be applied for exchange rates): 

 𝑠𝑡 = 𝛾0 + 𝛾1𝑠𝑡;1 + 휀𝑡                               (7) 

Quadratic trend: 

𝑠𝑡 = 𝛿0 + 𝛿1 𝑡 + 𝛿2𝑡2 + 휀𝑡                            (8) 

Polynomial time trend: 

𝑠𝑡 = 휁0 + 휁1𝑡 + 휁2𝑡2 + ... + 휁𝑛𝑡𝑛  +   휀𝑡                         (9) 

Logarithmic growth curve: 
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  𝑠𝑡 = 1 / (𝜃0 + 𝜃1𝜃2
𝑡);  𝜃2>0                               (10) 

or a stochastic approximation: 

     (Δ𝑠𝑡/𝑠𝑡;1) = 𝑘0 - 𝑘1 𝑠𝑡;1 + 휀𝑡                              (11) 

Sales saturation pattern: 

          𝑆𝑡 = 𝑒𝜆0;(
𝜆1
𝑡

)
                                    (12) 

or 

𝑠𝑡 = 𝜆0  −  (𝜆1/𝑡) + 휀𝑡                                  (13) 

where 𝑆𝑡 = the spot exchange rate, t = time trend, and the lowercase letters are the natural logarithms of their 

uppercase counterparts. 

2.2 Models of Stochastic Trend 

We can supplement the deterministic trend models with the lagged values of the {𝑠𝑡} sequence and the 

{휀𝑡}sequence. These equations thus become models with their own stochastic trends. The models used here are: 

(i) The Random Walk Model 

The random walk model appears to imitate the exchange rates’ behavior as shown below. These series neither 

fluctuate over time nor revert to any given mean. (The random walk model is technically a special case of the 

AR(l) process). 

𝑠𝑡 = 𝛼0 + 𝛼1𝑠𝑡;1 + 휀𝑡                                (14) 

with 𝛼0 = 0 and 𝛼1 = 1, where 𝑠𝑡 - 𝑠𝑡;1 = Δ𝑠𝑡 = 휀𝑡 

𝑠𝑡 = 𝑠𝑡;1 + 휀𝑡                                   (15) 

The conditional mean of 𝑠𝑡:𝜆 for any 𝜆 > 0 is 

  𝐸𝑡𝑆𝑡:𝜆 = 𝑆𝑡 + E∑ 휀𝑡:𝑖
𝜆
𝑖<1  = 𝑠𝑡                              (16) 

The variance is time-dependent: 

  var (𝑠𝑡) = var (휀𝑡 + 휀𝑡;1+ . . . + 휀1) = t𝜎2                         (17) 

The random walk process is nonstationary because the variance is not constant. Therefore, as 

  t → ∞, var(𝑠𝑡) → ∞.                                (18) 

Therefore, the forecast function will be: 

𝐸𝑡𝑠𝑡:𝜆 = 𝑠𝑡                                    (19)  

(ii) The Random Walk plus Drift Model 

The random walk plus drift model adds a constant term 𝛼0 to the random walk model above such that 𝑠𝑡 

becomes simultaneously deterministic in part and stochastic in part. 

𝑠𝑡 = 𝑠𝑡;1 + 𝛼0  +   휀𝑡                                 (20) 

The general solution for 𝑠𝑡 is: 

  𝑠𝑡 = 𝑠0 + 𝛼0t + ∑ 휀𝑖
𝑡
𝑖<1                                (21) 

and 

𝐸𝑡𝑠𝑡:𝜆 =  𝑠0 + 𝛼0 (t + 𝜆)                               (22) 

The forecast function by 𝜆 periods yields 

𝐸𝑡𝑠𝑡:𝜆 = 𝑠𝑡 + 𝛼0𝜆                                 (23) 

(iii) The Random Walk plus Noise Model 

The 𝑠𝑡 here is the sum of a stochastic trend and a white-noise component 

  𝑠𝑡 = 𝜇𝑡 + 𝑛𝑡                                   (24) 

and 

𝜇𝑡 = 𝜇𝑡;1 + 휀𝑡                                  (25) 

where {𝑛𝑡} is a white-noise process with variance 𝜎𝑛
2 and 휀𝑡 and 𝑛𝑡 are both independently distributed for all t. 

E(휀𝑡 𝑛𝑡;𝜆) = 0; the {𝜇𝑡} sequence represents the stochastic trend, and this model’s solution can be written as: 
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  𝑠𝑡 = 𝑠0 - 𝑛0 + ∑ 휀𝑖
𝑡
𝑖<1  + 𝑛𝑡                            (26) 

The forecast function is 

𝐸𝑡𝑆𝑡:𝜆 = 𝑠𝑡 - 𝑛𝑡                                 (27) 

(iv) The General Trend plus Irregular Model 

We replace equation (25) above with the so-called “trend plus noise model,” 

  𝜇𝑡 = 𝜇𝑡;1 + 𝛼0 + 휀𝑡                               (28) 

where 𝛼0 is a constant and {휀𝑡} is a white-noise process. 

The solution is 

𝑠𝑡 = 𝑠0 - 𝑛0 + 𝛼0t + ∑ 휀𝑖
𝑡
𝑖<1  + 𝑛𝑡                         (29) 

Let A(L) be a polynomial in the lag operator L. It is possible to augment a random walk plus drift process with 

the stationary noise process A(L) 𝑛𝑡. We thus have the “general trend plus irregular model”: 

𝑠𝑡 = 𝜇0 + 𝛼0t + ∑ 휀𝑖
𝑡
𝑖<1  + A(L) 𝑛𝑡                        (30) 

(v) The Local Linear Trend Model 

We construct the local linear trend model by combining several random walk plus noise processes. Let {𝜖𝑡}, {𝑛𝑡}, 

and{𝑢𝑡} be three mutually uncorrelated white-noise processes. The equation for the local linear trend model is: 

𝑠𝑡 = 𝜇𝑡 + 𝑛𝑡 

  𝜇𝑡 = 𝜇𝑡;1 + 𝛼𝑡 + 휀𝑡                                (31) 

𝛼𝑡 = 𝛼𝑡;1 + 𝑢𝑡 

This is the most detailed out of all the above models because the other processes are special cases of the local 

linear trend model, which consists of the noise term 𝑛𝑡  and the stochastic trend term 𝜇𝑡. What is most 

important for our purposes about the model is that the change in its trend yields a random walk plus noise: 

  ∆𝜇𝑡 = 𝜇𝑡 - 𝜇𝑡;1 = 𝛼𝑡 + 휀𝑡                            (32) 

The forecast function of 𝑠𝑡:𝜆 equals the current value of 𝑠𝑡 minus the transitory component 𝑛𝑡, added to 𝜆 

multiplied by the slope of the trend term in t: 

𝐸𝑡𝑠𝑡:𝜆 = (𝑠𝑡 - 𝑛𝑡 ) + 𝜆 (𝛼0 + 𝑢1 + 𝑢2 + ... + 𝑢𝑡 )                 (33) 

For future projects, we will estimate all these models and run different tests on the series and the error terms. We 

will end up with specification and diagnostic tests as a way of gauging the statistical specifications’ adequacy 

and will then compare the forecasting results from the different models. 

3. Some Linear Time-Series Models 

In this section, we define stochastic processes and discuss some of their properties and use in forecasting with an 

objective of developing models that “explain” the movement of the time series 𝑠𝑡. However, this will not be 

done using a set of explanatory variables as in the regression model but by relating it to its own past values and 

to a weighted sum of lagged and current random disturbances. 

The Autoregressive (AR) Model 

In the autoregressive process of order p, the current observation 𝑠𝑡 is generated by a weighted average of past 

observations going back p periods, together with the current period’s random disturbance. We define this process 

as AR(p) and write its equation as 

𝑠𝑡 = 𝜙1𝑠𝑡;1 + 𝜙2𝑠𝑡;2 + ... + 𝜙𝑝𝑠𝑡;𝑝 + 𝛿 + 휀𝑡                   (34) 

𝛿 is a constant term which relates to the mean of the stochastic process. 

The first-order process AR( 1) is 

𝑠𝑡 = 𝜙1𝑠𝑡;1 + 𝛿 + 휀𝑡                                (35) 

Its mean is: 

𝜇 = 𝛿/ (1 - 𝜙1)                                  (36) 

and is stationary if  𝜙1 < 1. (The random walk with drift is a first-order autoregressive process that is not 

stationary, however.) 

 



ijef.ccsenet.org International Journal of Economics and Finance Vol. 9, No. 9; 2017 

98 

4. Empirical Evidence 

We provide here an analysis and summary of the empirical evidence of different models of foreign currency 

forecasting. 

The data given are monthly from March 1973 through December 1994, are coming from Main Economic 

Indicators of the OECD (the Organization for Economic Cooperation and Development) and International 

Financial Statistics of the IMF (the International Monetary Fund), and have been applied for the Netherlands.  

The exchange rate is defined as the U.S. dollar per unit of the Dutch guilder, with direct quotes for the dollar; the 

lowercase letters denote the natural logarithm of the variables and an asterisk denotes the corresponding variable 

for the Netherlands. 

The first equations estimated are the deterministic trend models in equations (3), (6), (8), (9), (11), and (13). The 

results appear in Table 1 below and indicate that the exchange rate forecast cannot be supported by models of 

this type. The second group of equations is the stochastic trend model, from equations (15) and (20); these 

results, in Table 2, show that this alternative model is much better at both interpreting the data and forecasting 

the exchange rate. The final model is of a linear time-series, the autoregressive (AR) model of equation (34) 

shown in Table 3, but its results are also fairly poor.  One may infer that time-series models cannot be used to 

forecast foreign exchange rates with a great degree of faith or assurance for models having such relatively high 

volatility. 

 

Table 1. Deterministic trends 

(i) Linear time trend, eq. (3):   𝑆𝑡 = 𝛼0 + 𝛼1𝑡  + 휀𝑡  (ii) Exponential Growth Curve, eq. (6):𝑠𝑡 = 𝛽0 + 𝛽1𝑡 + 휀𝑡 

𝛼0 37. 384∗∗∗ 

(1.435) 

ß0 3.559∗∗∗ 

(.023) 

𝛼1  . 037∗∗∗ 

(.008) 

ß1 . 001∗∗∗ 

(.0001) 

𝑅2 .073 𝑅2 .288 

D-W .142 D-W   .047 

SSR 26,567.54 SSR 6.615 

F 20.230 F 102.89 

RMSE 10.0699 RMSE .1607 

(iii) Quadratic Trend, eq. (8): 𝑠𝑡 = 𝛿0 + 𝛿1 𝑡 + 𝛿2𝑡2 + 휀𝑡 (iv) Polynomial time trend, eq. (9):  𝑠𝑡  = 휁0 + 휁1𝑡 + 휁2𝑡2 

+ ... + 휁𝑛𝑡𝑛  +   휀𝑡 

𝛿0  3.776∗∗∗ 

(.041) 

휁0  4.382∗∗∗ 

(.528) 

𝛿1  −.002∗ 

(.0006) 

휁1 -.041 

(.038) 

𝛿2 

 

1.0-05∗∗∗  

(2.0-06) 

휁2 .0004  

(.001) 

  휁3 8.3-06  

(1.5-05) 

  휁4 -1.8-07 

(1.2-07) 

  휁5 1.3-09∗∗ 

(5.1-10) 

  휁6 -3.7-12∗∗∗  

(1.2-12) 

  휁7 4.2-15∗∗∗  

(1.1-15) 

𝑅2 .382 𝑅2 .766 

D-W .054 D-W .140 

SSR 5.739 SSR 2.175 

F 78.37 F 115.97 

RMSE .1497 RMSE .0922 
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(v) Stochastic approximation, eq. (11):(Δ𝑠𝑡/𝑠𝑡;1) = 𝑘0 - 𝑘1 𝑠𝑡;1 + 휀𝑡 (vi) Sales Saturation Pattern, eq. (13):  𝑠𝑡 = 𝜆0  −  (𝜆1/𝑡) + 휀𝑡 

𝑘0 .061 

(.043) 

𝜆0 3.867∗∗∗ 

(.018) 

𝑘1 -.016 

(.011) 

𝜆1 −10.239∗∗∗ 

(1.541) 

𝑅2 .007 𝑅2 .148 

D-W 1.952 D-W .039 

SSR .307 SSR 7.918 

F 1.890 F 44.167 

RMSE .0346 RMSE .1759 

Note. 𝑆𝑡 = the spot exchange rate, 𝑠𝑡 = ln(𝑆𝑡), t = time, D-W = the Durbin-Watson statistic, SSR = sum of squares residuals, RMSE = root 

mean square error, Data from 1973.03 to 1994.06, ∗∗∗ = significant at the 1% level, ∗∗ = significant at the 5% level, ∗ = significant at the 

10% level. ∆ = change of the variable. 

 

Table 2. Stochastic trends 

(i) The Random Walk Model, eq. (15):  𝑠𝑡 = 𝑠𝑡;1 + 휀𝑡 (ii) The Random Walk plus Drift Model, eq. (20):  𝑠𝑡 = 𝛼1𝑠𝑡;1 + 𝛼0  +  휀𝑡 

𝑠𝑡;1 

 

1.000∗∗∗ 

(.0006) 

𝛼0 .061 

(.043) 

𝛼1 . 984∗∗∗ 

(.011) 

𝑅2 .967 𝑅2 .967 

D-W 1.941 D-W 1.925 

SSR .309 SSR .307 

L(.) 496.86 F 7,446.37 

RMSE .0347 RMSE .0346 

Note. See the previous table. L(.) = log of likelihood function. 

 

Table 3. Linear time-series models 

The Autoregressive (AR) Model, eq. (34):  𝑠𝑡 = 𝜙1𝑠𝑡;1 + 𝜙2𝑠𝑡;2 + ... + 𝜙𝑝𝑠𝑡;𝑝 + 𝛿 + 휀𝑡 

𝛿 3. 828∗∗∗  

(.108) 

𝜙1 1. 006∗∗∗ 

(.063) 

𝜙2 .062 

(.089) 

𝜙3 -.093  

(.089) 

𝜙4 .016  

(.090) 

𝜙5 -.005 

(.090) 

𝜙6 -.105 

(.089) 

𝜙7 . 199∗∗  

(.089) 

𝜙8 -.071  

(.090) 

𝜙9 -.018  

(.090) 

𝜙10 .026  

(.090) 

𝜙11 .053  

(.090) 

𝜙12 -.092  

(.063) 

𝑅2 .968 

𝐷 − 𝑊 1.958 

𝑆𝑆𝑅 .294 

𝐹 619.29 

𝑅𝑀𝑆𝐸 .0339 

Note. See the previous tables. 
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5. Summary 

This paper examines the predictive performance of several foreign currency exchange rate forecast models, 

namely, linear time-series, the balance of payments approach, the transfer function, the vector autoregression 

model, and various time-series trends. For every such model, we calculate its root mean square forecast error 

(RMSE) as follows: 

RMSE = the square root of ( (∑  (𝐴𝑡 − 𝐹𝑡
𝑛
𝑡<1 )2) / n ) 

where n = the number of observations, A = the actual value of the dependent variable, and F = the forecast value. 

The forecast model with the smallest RMSE is the best predictor we must choose as part of exchange rate 

forecasting. 

An exchange rate is the relative price of two countries’ currencies. The most crucial factors that determine a 

country’s currency value relate to the differences in inflation, the relative money supplies, real incomes, and 

prices, and interest rate, trade balance and budget deficit differentials. The empirical evidence for this approach 

is not satisfactory in general, however: the combination analysis (i.e., the MARMA model) is more adequate 

compared to the other approaches and shows that this specific model has a better specification, but there is still 

room for improvement in foreign currency forecasts’ current mathematical models. Exchange rate movements 

themselves may result from either a parametric change in the above determinants or an artificial intervention by 

governments.  
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