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Abstract 
In recent years the mean-semivariance has been proposed in place of the mean-variance as an alternative 
approach to portfolio analysis since different investors assign a lower weight to positive deviations from the 
mean than to negative ones. The present work investigates empirically the relationship between risk and return in 
a downside risk framework and in a regular risk framework by utilizing returns of securities traded on the 
London Stock Exchange and Paris Stock Exchange. The results reveal that in many cases the downside risk 
measures are equivalent or better in explaining mean returns than the regular risk measures. The paper also 
introduces a new risk-return relation that holds when the distribution of security returns are normal and the 
market index lies inside the semi-deviation-expected return efficient frontier. The existence of this model may 
provide a possible explanation of the empirical results included in this work. Finally, it is argued that for skewed 
distributions of security returns it may be better to employ a three parameter asset pricing than the mean – 
semivariance risk-return relation. 
Keywords: Variance, Semivariance, Regular Beta, Downside Beta  
JEL Classification code: G11 
1. Introduction 
In the pioneering work on portfolio analysis Markowitz (1959) offered the possibility of measuring portfolio risk 
using the semivariance of returns instead of the variance of returns. The variance treats deviations below the 
mean and deviations above the mean in the same way whereas investors assign a lower weight to positive 
deviations than to negative ones. This argument can be used to justify the replacement of the variance with the 
semivariance. The semivariance of security returns measures the dispersion of the distribution of returns that fall 
below a pre-specified target rate of return. 
Hogan and Warren (1974), as well as, Bawa and Lindenberg (1977) developed the mean – semivariance CAPM 
(MS-CAPM) which presents the expected return of a security as an exact linear function of its downside beta 
computed with respect to the market portfolio. The numerator of the downside beta is the cosemivariance 
between security and market returns with the return of the risk free rate as the target return. The denominator is 
the semivariance of returns on the market portfolio with respect to the risk-free rate. The downside beta shows 
the co-movements with the market portfolio in a falling market. The MS CAPM (the mean-variance CAPM 
(MV-CAPM)) predicts that the value-weighted market portfolio of risky securities is efficient in the space of 
semi-deviation and expected return (standard deviation and expected return). The main difference between the 
MS-CAPM and the MV-CAPM is that the former relies on the risk measures of semivariance and downside beta 
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while the latter uses the risk measures of variance and regular beta. The MS portfolio analysis, also, assumes that 
investors are risk averse for all returns below the target rate of return and risk-natural for all returns above the 
target rate of return. The MV portfolio analysis makes the assumption that investors are risk averse over all 
returns. However, such a difference is dependent on the type of the security return distribution. If the 
distributions of returns are normal, the downside beta and the regular beta are identical. On the other hand if the 
distributions of returns are skewed, the downside beta and the regular beta diverge.  
Early empirical investigations of the validity of the MS-CAPM include Jahankhani (1976), Harlow and Rao 
(1989), and Nantell, Price and Price (1982). Interestingly, the MS-CAPM seems to capture better the 
cross-section of stock returns than the MV- CAPM (Harlow and Rao, 1989; Post and Van Vliet, 2004). Estrada 
(2000) and Harvey (2000) produced evidence revealing the superiority of semideviation to explain the cross 
section of emerging market returns. Estrada (2002c) introduced the downside CAPM (D-CAPM), which is based 
on a mean-semivariance behavior assumption as opposed to the CAPM mean-variance behaviour assumption. 
Using the Morgan Stanley Capital Indices database of Emerging Markets presents evidence depicting the 
superiority of the downside beta over the regular beta in explaining the cross sectional of security mean returns.  
The contribution of this paper is twofold. First it employs returns of securities traded on the London Stock 
Exchange and Paris Stock Exchange and investigates empirically whether the semi-deviation and the downside 
beta are superior in explaining expected returns as compared with the standard deviation and the regular beta, 
respectively. This investigation utilizes the methodology of Estrada (2002c). The second contribution is 
theoretical. It introduces a new risk-return relation that holds when the distribution of security returns are normal 
and the market index lies inside the semi-deviation-expected return efficient frontier. Using the new model the 
paper provides a possible explanation of the empirical results included in the present work and casts some doubts 
on the utilization of the MS CAPM in explaining security expected returns.  
The remaining contents of the paper are organized as follows. Section I presents a review of the previous studies 
related to the return interval effect on estimated betas. Section II describes the data employed in the empirical 
tests and the research methodology. Section III discusses the empirical results obtained and offers a possible 
explanation of the results. Finally, Section IV contains a summary of the paper.  
2. Past Literature Review 
Hogan and Waren (1974) used an expected return standard semivariance analysis and derived a security market 
line analogous to the security market line of Sharpe (1964) and Lintner (1965) that employs an expected return 
variance framework. Markowitz (1959, ch. 9) offered the possibility of using the semivariance of returns instead 
of the variance of returns as a measure of portfolio risk. Their equilibrium model can be presented as follows (it 
is assumed that the market portfolio is expected return-semivariance efficient): 

)MR(sv

)MR,jR(csv
]fR)MR(E[fR)jR(E −+=                           (1) 

where E[.] = the expected value operator, 
=)jR(E

the expected return of a security or portfolio j, fR = the risk 
free rate of return that is considered as a constant reference point, =)R(E M  the expected return on the market 
portfolio, )R(sv M = the semivariance of returns on the market portfolio (the semivariance includes only losses 

(RM-Rf < 0) with respect to benchmark fR  is defined by the following equation: ]2)0,RR[min(E)MR(sv fM−= , 

and 
)]0,fRMRmin()fRjR[(E)MR,jR(csv −−=

 = the cosemivariance of returns below Rf on the security or 
portfolio j with the returns on the market portfolio.    
The cosemivariance between the returns on j and M is different from the cosemivariance between M and j. As a 
consequence of this fact, the cosemivariance matrix cannot be guaranteed to produce a positive semi-define 
matrix that can be used to provide a closed solution to the efficient set problem. A number of researcher papers 
deals with the Markowitz efficient frontier in the space of expected returns and semideviation. There include the 
work of Hogan and Warren (1972), Ang (1975), Harlow (1991), Markowitz, Todd, and Xu (1993), Grootveld 
and Hallerbach (1999), De Athayde (2001), Ballestero (2005), and Estrada (2007). Also, Mao (1970) conducted 
utility analysis that implies preference for portfolios in the expected return semideviation space. Moreover, a 
security adds to the portfolio’s M risk when fRjR < and fRMR < , but reduces the portfolio’s M risk when 

fRjR > and fRMR < . 

The downside beta is defined from the following equation: 
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Jahankhani (1976) provided empirical tests for the expected return variance CAPM, as well as, for the expected 
return standard semivariance CAPM developed by Hogan and Waren (1974). Taking into account Roll (1977) 
one can say that he actually tested sample risk-return relations rather than the CAPM relations. His sample 
comprised of all securities in the ‘CRSP’ tape without missing data for the period July 1947, to June 1969. He 
utilized the methodology of Fama and Macbeth (1973) for both tests. The validity of the expected return 
standard semivariance CAPM is conducted with the aid of the following cross-sectional model: 

   pt
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where =ptR the mean return on portfolio p estimated using the period t (for example 1951-53), =β −
D

1pt the 

downside portfolio beta estimated for the period t-1 (for example 1949-51) using Equation (2), =ε − )ˆ(s D
1pt the 

standard deviation of the residual of portfolio p estimated using the period t-1, =γγγγο 3t2t1t ˆ,ˆ,ˆ,ˆ the regression 
coefficients, and =ηptˆ the random disturbance term that has a zero mean value and it is independent of the other 

variables. Jahankhani (1976, p. 516) offers a method for estimating )D
1ptˆ(s −ε .   

The results presented rejected the validity of each model. In each model the intercept was greater than the risk 
less rate of interest and the slope was less than the difference between the returns of the index and the risk-free 
security. Jahankhani (1976) concluded that these results may be due to errors of measurement in the risk-free 
rate of return.    
Bawa and Lindenberg (1977) derived a CAPM employing a mean-lower partial moment framework. Lower 
partial moment is a risk measure that uses only returns that fall below some fixed level of returns. Harlow and 
Rao (1989) supported the general mean-lower partial moment CAPM. Using the second order partial moment of 
a given probability distribution of returns the following equilibrium pricing relation can be produced:  
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portfolio with returns on security j, =)R,R(f Mj  the joint probability density function of returns on security j 
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Rf on the market portfolio =)R(f Mp  the probability density function of returns for the market portfolio (the 
definition of the 2nd - order partial moment is equivalent with that of the semivariance). Bawa and Lindenberg 
(1977) also offered a CAPM employing based on the nth- order partial moment of a given probability 
distribution of returns (Theorem 4, p. 196). 
Nantell and Price (1979) provided a theoretical comparison of the expected return- variance CAPM and the 
expected return-semivariance CAPM and they derived the following two results: (a) The semivariance of returns 
of the market portfolio below Rf is a weighted average of the values )MR,jR(csv below Rf for all the securities in 

the market portfolio, where the weights are the proportions of funds invested in the securities (b) If the joint 
density function of rates of return on the market portfolio and on an individual security is bivariate normal, then 
the security expected return given by the expected return-variance CAPM is equal to that given by the expected 
return-semivariance CAPM. If the return distributions are normal, then 2/)MR,jRcov()MR,jR(csv =  and 

2/)MR(2)MR(sv σ= . In this case, the traditional security beta and the downside security beta are identical In 

contrast, for a skewed distribution the traditional security beta and the downside security beta diverge.   
Nantell, Price and Price (1982) examined empirically the expected return-variance CAPM and the expected 
return-second order partial moment CAPM (see Equation (4) above). They argued that if the joint density 
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function of rates of return on the market portfolio and on an individual security is bivariate lognormal the two 
models can produce different theoretical results. More specifically, they reported that (i) for securities with low 

systematic risk holds  D
j)MR(

fRLPM

)jR,MR(
fRCLPM

j β=<β , where 
jβ = the security j’s systematic risk included in the 

expected return-variance CAPM (ii) for securities with average systematic risk holds  D
jj β=β , and (iii) for 

securities with high systematic risk holds D
jj β>β . 

They initially tested whether the expected return-variance CAPM and the expected return-semivariance CAPM 
are empirically distinguishable. They used a time series of monthly returns for the 1926-1976 time period and 
they divided the whole period into 10 sub-periods. They also constructed 20 portfolios and they considered the 
following two cross-sectional regressions:  

pt1'ptt1tpt ûˆˆR +βλ+λ= −ο                       (5) 

pt
D

1'ptt1tpt ˆˆˆR η+βγ+γ= −ο                        (6) 
where =ptR the monthly portfolio return (e.g. January 1935). The portfolio risk measures are computed as equal 
weighted averages of the individual security risk measures for period 1't −  (eg 1930-34). 

Then they tested hypothesis 0ˆˆ ott >λ−γο . The average values of the coefficients are calculated as simple averages 
of the corresponding month-to-month coefficients estimated using the appropriate time periods. If this 
hypothesis is rejected, then the two models are empirically indistinguishable. Using the Hotelling T2 test, they 
concluded that ott

ˆˆ λ>γ ο  for eight out of ten sub-periods. For the remaining two sub-periods, they concluded 

that the result ott
ˆˆ λ<γ ο  is due to the existing significant negative skewness of returns.  

Their hypotheses in relation to the validity of the expected return-second order partial moment CAPM can be 
summarised as follows: (a) The relationship between expected returns and downside betas is linear; (b) The 
downside beta computed is a complete measure of the risk of a security in the market portfolio. There is no 
relationship between expected returns and other risk factors; (c) The relationship between expected returns and  
downside beta is positive; (d) There are not restrictions on the risk less borrowing or lending. Taking into 
account the results of Roll (1977), the validity of these hypotheses is simply equivalent with the expected return- 
semivariance efficiency of the market portfolio. 
They tested their hypotheses by following the methodology of Fama and Macbeth (1973). The following model 
that generates realized security rates of return for each month t was employed: 
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1'ptt1tpt ˆ)ˆ(sˆ)(ˆˆˆR η+εγ+βγ+βγ+γ= −−−ο                   (7) 
where =ptR the monthly portfolio return (eg January 1935), and D

1'pt −β = the portfolio downside beta computed 
as an equal weighted average of the individual security downside betas for period 1't −  (e.g. 1930-34). Unlike 
Jahankhani (1976), they estimated the coefficients of Equation (6) every month and then they computed and used 
the monthly average coefficient values.   
The term 2D

1'pt )( −β  had been added to test the linearity between returns and downside risk. The term )ˆ(s D
1'pt −ε  

helped to test the residual risk hypothesis. The downside portfolio unsystematic risk is computed as an 
equal-weighted average of the individual downside unsystematic risk of the securities comprising the portfolio. 
They, also, used the following mean-variance model:  

pt1'pt3
2

1'ptt21'ptt1tpt û)ˆ(sˆ)(v̂v̂v̂R +εγ+β+β+= −−−ο                  (8) 

where =β −1'pt  the systematic risk of a portfolio p for period 1't − .  

Further their evidence revealed the following: (a) The linearity hypothesis between expected returns and 
downside beta cannot be rejected; (b) The residual hypothesis cannot be rejected; (c) There is a positive 
relationship between expected returns and downside beta. (d) The relationship between expected returns and 
downside beta is not exact. It holds fRotˆ >γ  and fRMRt1ˆ −<γ . Post and Van Vliet (2005) considered a long 

sample period (1926-2002) and used unconditional MV and MS tests as well as conditional tests that account for 
the economic state-of-the-world and concluded that the MS CAPM provides a better explanation of the 
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cross-section of US stock returns than the MV CAPM. Taking into account the limitations of the downside beta 
as defined by Equation (2), Estrada (2002) proposed the following definition of the downside beta: 

]2)0,MMR[min(E

)]0,MMRmin()0,jjR[min(E

)MR(*sv

)MR,jR(*csv
D*

j
μ−

μ−μ−
==β                    (9) 

where =μ j  the mean of security or portfolio j and =μM the mean of the market portfolio.  

In view of the above definition of cosemivariance three points can be emphasized. First, the cosemivariance 
between the returns on j and M is equal to the cosemivariance between M and j. Second, since we consider only 
returns where 

jjR μ<  and
Μμ<MR , a security adds only to the portfolio’s M risk. And third, the 

cosemivariance matrix is symmetric. Then, Estrada (2002) expressed the D-CAPM as follows: 

 D*
j]fR)MR(E[fR)jR(E β−+=                            (10) 

The expected return-semivariance CAPM is different from expected return-risk models that use skewness and 
kurtosis (Kraus and Litzenberger, 1976; Friend and Westerfield, 1980; Diacogiannis, 1994; Ditmar, 2002). 
Estrada (2002) also compared empirically the expected return-variance CAPM and the expected 
return-semivariance CAPM using the monthly returns from 27 capital indices of emerging markets for varied 
sample periods and the corresponding returns of the world market. Here, sample risk-return relations are tested 
rather than the CAPM relations (Roll, 1977).  
For each index he estimated four risk measures, these being the standard deviation of returns, the traditional beta, 
the semivariance and the downside beta. The evidence produced from regressing the mean returns of the indices 
on each risk measure, reveal four significant and positive relations and that the downside risk provides a higher 
coefficient of determination as compared with each of the remaining risk measures. Then he utilized two 
cross-sectional regressions having as dependent variable the indices’ mean returns and as independent variables 
the pairs (standard-deviation, semivariance) and (beta, downside beta), respectively. The results indicated that 
first cross-section multi-regression produces insignificant results while for the second regression only the 
downside beta shows to affect significantly mean returns.  Finally, a comparison between the mean returns 
produced by the expected return-variance CAPM and those derived using the expected return-semivariance 
CAPM shows that the latter is greater than the former for each market. Estrada (2001) provides an argument that 
the semi-deviation is more useful than the standard deviation when the security returns obey skewed 
distributions and just as useful when the security distributions are symmetric.   
Finally, Post and Van Vliet (2005) used monthly US security returns, the sample period from January 1926 to 
December 2002 and concluded that the expected return-semivariance CAPM outperforms the expected 
return-variance CAPM in explaining cross-sectional mean returns. Additionally they inferred that the 
explanatory power of the conditional downside beta remains after controlling for size and momentum effects.   
3. Research Data  
The present study employs two time-series samples of weekly security returns. We confined our attention to 
continuously listed firms on the London Stock Exchange (LSE) and Paris Stock Exchange (PASE) during two 
periods, January 1997 to December 2002 and January 1999 to December 2004, respectively. This sample 
criterion probably introduces a survival bias. We believe that this survival bias is unlikely to produce a 
systematic bias on the results. With this objective in mind 260 securities were selected from the LSE for each 
sample period. Also, 161 securities were selected from the PASE for the sample period 1997 to 2002 and 207 for 
the period 1999 to 2004. For risk analysis it is particular important to analyze periods during which risks are high. 
Having this in mind, the sample period of this study is selected to include the bear markets of 2000s.   
Before proceeding further, it would be useful to pause briefly and discuss the technique of security return 
calculation. For each security in the sample weekly prices were extracted and the return on a security i at the end 
of period t is calculated by: = + −

−
R ln(P d ) ln(P )tit it it 1

, where ln = the natural logarithm operator, Pit
 = the last 

traded price for security i in period t (price were adjusted for capital changes), 
−

Pit 1
 = the last traded price for 

security i in period t-1 adjusted to the same base, and dit
= the dividend for security i declared xd during the 

period t.  
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The present study uses the FTSE-100 to calculate UK betas and the CAC-40 for the calculation of the betas of 
the firms listed in the PASE.    
The study considers four risk measures, two related to the expected return variance framework 
(standard-deviation and beta) and two related to the expected return standard semivariance analysis 
(semi-deviation and downside beta). It examines whether each risk measure related to the expected return 
standard semivariance analysis provide more explanatory power of mean returns from the corresponding risk 
measure associated to the expected return variance framework. The empirical results are using both individual 
securities and portfolios.  
The first period from January 1997 to December 2002 was divided into two sub-periods one from January 1997 
to December 1998 and the other from January 1999 to December 2002. The first sub-period is used to form 
portfolios and the second is employed to test our hypotheses (he securities are ranked into portfolios by observed 
betas). Similarly the second period from January 1999 to December 2004 produced two sub-periods one from 
January 1999 to December 2000 and the other from January 2001 to December 2004. Again the first sub-period 
provides data for portfolio formation and the second is utilized to test our hypotheses.  
4. Empirical Results and Implications 
The following cross-sectional linear simple regression was used to relate security mean returns with each risk 
measure: 

MRi = γο + γ1 RVi + ui                       (II.1)  
where MRi = the mean return of security i, RVi = the risk variable for security I (the four risk variables 
considered are standard-deviation, semi-deviation, beta, and downside beta), γο, γ1 = the regression coefficients, 
and ui = the error term. As usual, the error term is assumed to have zero mean and constant variance and to be 
independent from the independent variable.  
Table 1 presents the results of the four cross-sectional simple regressions (II.1) for Great Britain using individual 
securities and two sub-periods one from 1999 to 2002 and the other from 2001 to 2004. From Table 1 it can be 
seen that all four risk variables provide significant slope coefficients. For both periods, the semi-deviation 
(downside beta) explains more of the variability in mean returns than the standard deviation (beta).    
The same analysis were repeated for 26 and 52 portfolios respectively (see Tables 2 and 3). The results of Table 
2 indicate again that the coefficients of all four risk measures are statistically significant. For the sub- period 
from 1999 to 2002 the semi-deviation (downside beta) is performing slightly better (worst) than the standard 
deviation (beta) in terms of explanatory power. However, for the sub-period from 2001 to 2004 the standard 
deviation (beta) is slightly better in terms of explanatory power than the semi-deviation (downside beta). The 
high values of the adjusted R2 may be due to the small number of observations. Then, 52 portfolios are 
considered. The results of Table 3 are using 52 portfolios and are similar with those included in Table 2. 
The present work also employs the following bi-variate cross-sectional regression: 

MRi = γο + γ1 RV1i + γ2 RV2i+ui                   (II.2) 
where MRi = the mean return of security i, RVi1 , RVi2 = the first and second risk variable for security i, γο, γ1 , 
γ2 = the regression coefficients, and ui = the error term. Here is also assumed that the error term has zero mean 
and constant variance and is independent from the independent variables.  
The results of the cross-sectional bi-variate regression (II.2) for Great Britain using individual securities and two 
subperiods are included in Table 4. For the sub-period 1999-2002 both the standard deviation and semi-deviation 
are significant while for the sub-period 2001- 2004 only the semi-deviation is significant. When beta and 
downside beta are jointly regressed, only the downside beta is significant for the sub-period 1999-2002 and both 
betas are significant for the subperiod 2001-2004. This result shows that for the sub-period 1999-2002 the 
traditional beta does not contain information which is not included in the downside beta. Also, it reveals for 
individual securities the superiority of the downside risk measures against the risk measures related to the 
expected return variance framework. 
From Table 5, one can see that for the sub-period 1999-2002 both the standard deviation and semi-deviation are 
insignificant while for the sub-period 2001- 2004 they are significant. The former result is likely to be 
attributable to the high correlation between the standard deviation and the semi-deviation (0.99). When beta and 
downside beta are jointly regressed, neither the beta nor the downside beta is significant for both sub-periods. 
Again it is observed a high correlation between these two explanatory variables (0.98).  
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The results of Table 6 reveal that both the standard deviation and semi-deviation are significant for both 
sub-periods. When beta and downside beta are jointly considered, neither the beta nor the downside beta is 
significant for both sub-periods.  
Taking together the results from Great Britain one can see that each of the four risk variables affects significantly 
security or portfolio mean returns. For individual securities, the downside risk measures are the best performing 
variables in terms of explanatory power. For portfolios the results are mixed. In some cases the semi-deviation is 
a slightly better performer than the standard deviation and in other cases it is not. However, the beta is a slightly 
better performer than the downside beta.  
Furthermore, when the standard deviation and the semi-deviation are jointly considered in most cases affect 
significantly mean returns. For individual securities, when beta and the downside beta are jointly employed only 
the downside beta affects significantly mean returns. For portfolios, when these two variables are jointly 
considered, neither beta nor the downside beta is significant. Therefore, for individual securities the downside 
risk measures are better for explaining mean returns than the standard deviation and beta. For portfolios one 
cannot conclude a superiority of the downside beta against the beta.  
The results of the cross-sectional regression (II.1) for France utilizing individual securities are included in Table 
7. The results reveal that each of the four risk measures significantly affects mean returns. Also, for each period, 
the semi-deviation (downside beta) is the best-performing variable in terms of explanation of the variability in 
mean returns than the standard deviation (beta). These findings are in line with those presented in Table 1.   
The results of Table 8 are produced with the aid of 20 portfolios. For each sub-period the standard deviation 
provides a slightly better explanation of the variability in mean returns than the semi-deviation. However, the 
downside beta explains more of the variability in mean returns than the beta.  
The results of Table 9 are relying on 32 and 41 portfolios respectively and they are similar to those shown in 
Table 8.  
Table 10 contains the results of the cross-sectional bi-variate regression (II.2) for France employing individual 
securities. For each sub-period the standard deviation provides an insignificant coefficient. This is also apparent 
after comparing for each sub-period the explanatory power provided by the cross-sectional linear simple 
regression (II.1) (see Table 7) with the explanatory power shown in Table 10. The inclusion of the standard 
deviation into the simple regression that has the semi-deviation as explanatory variable left almost unchanged the 
value of the adjusted R2. Similarly, for the sub-period 2001-04 beta gives an insignificant coefficient. Again the 
consideration of beta as an additional variable into the simple regression that has the downside beta as 
independent variable left unchanged the value of the adjusted R2.     
For the sub-period 1999-02 both betas produce significant coefficients. However, the downside beta provides in 
absolute terms higher t-statistics as compare with that of beta. 
From Table 11 we observe that neither the standard deviation nor the semi-deviation provide significant 
coefficients. However, as we see from Table 11, for each sub-period, the bi-variate regression produces a high R2. 
This is likely to be attributable to the high correlation between the standard deviation and the semi-deviation 
(0.997 for the sub-period 1999-02 and 0.996 for the sub-period 2001-04). Similar results apply for the bi-variate 
regressions using as explanatory variables beta and downside beta. Again high correlations between beta and 
downside beta are observed.  
From Table 12 one can see that in each sub-period the standard deviation and the semi-deviation are related with 
insignificant coefficients. In each case the correlation between the standard deviation and the semi-deviation is 
very high (0.995 for the sub-period 1999-02 and 0.9958 for the sub-period 2001-04). For the sub-period 1999-02 
both the beta and the downside beta are insignificant. However, for the sub-period 2001-04 only the downside 
beta gives a significant coefficient.  
Summarizing the results from France one can observe that each of the four risk variables influences significantly 
security or portfolio mean returns. The downside risk measures are equivalent or better than the traditional risk 
measures in terms of explanatory power. For individual securities, when the standard deviation and the 
semi-deviation are jointly considered only the semi-deviation influences significantly mean returns. For 
portfolios both the standard deviation and the semi-deviation provide insignificant coefficients. Moreover for 
portfolios, when beta and the downside beta are jointly employed the downside beta is equivalent or better than 
the traditional beta in terms of explanatory power. Finally, collecting together the results from both markets it 
can be seen that in most cases the semi-deviation is a better performing variable than the standard deviation in 
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terms of explanatory power. Also a similar conclusion is derived for the down-side beta as compared with the 
traditional beta.  
4. Research Results Possible Explanation  
In this part of the article we will offer a possible explanation for the negative coefficients observed utilizing the 
cross-sectional simple regressions. Firstly,  introduced is a new risk-return relation that holds for normal 
distributions of security returns and market indices lying inside the semi-deviation-expected return efficient 
frontier.  
Suppose that the distributions of security returns are normal. If the market index, call it M1, is an inefficient 
portfolio in the space of mean return – standard deviation, then Diacogiannis (1999) provided the following 
return generating model: 

11 M
UR

M
R +

Μ
=                          (11) 

where M  is a frontier portfolio with E(RM) = E(RM1) and )
1

()(
Μ

> R
M

R σσ , and UM1 = a residual return with 

E(UM1) = 0 and Cov(RM, UM1) = 0 (Diacogiannis (1999). We also assume that portfolio M1 has an expected 
return greater than the expected return of the GMVP. The GMVP is excluded because a zero beta portfolio does 
not exist there (Roll, 1977). 
The portfolio frontier is the set of minimum variance portfolios of risky assets for all expected Returns (Roll, 
1977). The frontier portfolio with the least variance is called the global minimum variance portfolio (GMVP). 
Then he introduced the following risk-return model: 
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where )( jRE = the expected return of security j, E(RzM1) = the expected return of the portfolio whose returns are 

uncorrelated with those of M , )1,( MRjRCov = the covariance between the returns of security j and the returns of 

the inefficient portfolio M, and )1,( MUjRCov = the covariance between the returns of security j and the residual 

return. This model is based on two assumptions (i) The variance-covariance matrix of securities is a non-singular 
positive definite matrix, and (ii) There are at least two securities with different expected returns.  
Equation (12) reveals that the expected return on a security can be written as a linear function of its risk in an 
inefficient portfolio and an additional risk of the security associated with moving inside the efficient frontier.  

When the security returns are normally distributed, then )1,(2)
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Thus Equation (11) becomes: 
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Equation (13) can be also written as  
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If the distributions of security returns are normal, in our work we estimated a single linear regression equation 
having as independent variable the traditional beta (or the downside beta) whereas the true theoretical relation is 
given by Equation (14). In this case a relevant variable that influence security (portfolio) mean returns was left 
out. This variable is negatively correlated with security mean returns and the estimates of the slope coefficients 
for the single linear regressions can be biased.  
On the other hand, if the probability distributions of security returns are skewed, then it is better to take into 
consideration to the analysis skewness and conduct portfolio analysis in three moments rather than using the 
semivariance. In this case if we use single linear regressions then we also have misperceived models since an 
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important explanatory variable is left out (Kraus & Lintenberger, 1976; Friend and Westerfield, 1980; 
Diacogiannis, 1994; Harvey and Siddique, 2000).  
Hence in summary, if the security returns are normally distributed, then the return-semivariance CAPM and the 
return-variance CAPM are identical. If the probability distributions of security returns are skewed it may be 
better to utilize a three parameter asset pricing that takes into consideration the skewness of return distributions.  
5. Conclusions 
The present work uses returns of securities traded on the London Stock Exchange and Paris Stock Exchange and 
investigates empirically the relationship between risk and return in a downside risk framework and in a regular 
risk framework. The four risk variables considered are two associated with the expected return variance 
framework (standard-deviation and beta) and two related with the expected return standard semivariance analysis 
(semi-deviation and downside beta). 
Summarizing the results from Great Britain it can be seen that for individual securities the downside risk 
measures are better in explaining mean returns than the standard deviation and beta. For portfolios one cannot 
conclude a superiority of the downside beta against the beta.  
Collecting the results from France it can be observed that for individual securities only the semi-deviation 
influences significantly mean returns when the standard deviation and the semi-deviation are jointly used. For 
portfolios both the standard deviation and the semi-deviation provide insignificant coefficients. Furthermore, for 
portfolios the downside beta is equivalent or better than the traditional beta in terms of explanatory power when 
beta and the downside beta are jointly considered.  
If the distribution of security returns are normal and the market index lies inside the semi-deviation-expected 
return efficient frontier, then the expected return on any security can be expressed as an exact linear function of 
two variables, its risk in that portfolio and an additional risk associated with moving inside the efficient portfolio 
set. Thus, when dealing with portfolios that are lying inside the boundary portfolio set both variables that 
influence cross-sectionally security expected returns should be taken into consideration. The existence of such a 
new relation between risk and return can be considered as a possible explanation of the results offered in this 
study.  
Finally, for normally distributed security returns, the SV-CAPM is identical with the MV-CAPM. On the other 
hand, if the probability distributions of security returns are skewed it may be better to consider skewness to the 
analysis and use a three parameter asset pricing rather than employ the SV-CAPM.  
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Table 1. Estimating the cross-sectional simple linear regression model 
MRi = γο + γ1 RVi + ui for individual securities (Great Britain) 

           Sub-period 1999-2002 Sub-period 2001-2004 
Risk measure 

(RVj)* 
γο γ1 Adj-R2 γο γ1 Adj-R2 

σ  0.0042 
(9.06) 

-0,0903 
 (-10.86) 

0.311 0.0045  
(10.68)**

-0.0914 
(-10.82) 

0.309 

Σ 0.0044 
(10.67) 

-0.1332  
(-12.83) 

0.387 0.0042 
(10.97) 

-0.1191 
(-11.22) 

0.325 

β 0.0018 
(5.79) 

-0.0036 
(-8.85) 

0.229 0.0041 
(14.04) 

-0.0049 
(-14.96) 

0.442 

βD 0.0033 
(7.96) 

-0.0038  
(-9.98) 

0.275 0.0052 
(14.33) 

-0.0046 
(-15.23) 

0.454 

* σ = the standard deviation of returns, Σ = the semideviation of returns, β = the beta coefficient  
(with respect to FTSE-100), and βD = the downside beta with respect to FTSE-100).  
** t statistics are included in parentheses. Critical value for a two-sided test at 1% significant level: 2.58  
 
Table 2. Estimating the cross-sectional simple linear regression model 
MRp = γο + γ1 RVp + up for 26 portfolios (Great Britain) 

Sub-period 1999-2002 Sub-period 2001-2004 
Risk measure 

(RVj)* 
γο γ1 Adj-R2 γο γ1 Adj-R2 

σ  0.0037 
(4.21) 

-0.1535 
(-4.99) 

0.489 0.0055 
(9.02)** 

-0.1967 
(-8.93) 

0.759 

Σ 0.0038 
(4.46) 

-0.2125 
(-5.26) 

0.516 0.0058 
(8.13) 

-0.2784 
(-8.01) 

0.716 

β 0.0024 
(4.04) 

-0.00441 
(-5.36) 

0.525 0.0047 
(10.76) 

-0.00562 
(-10.80) 

0.822 

βD 0.00304 
(4.06) 

-0.00438 
(-5.01) 

0.491 0.0053 
(10.05) 

-0.0054 
(-9.99) 

0.798 

* σ = the standard deviation of returns, Σ = the semideviation of returns, β = the beta coefficient, and βD = the downside beta.  
** t statistics are included in parentheses. Critical value for a two-sided test at 1%  
significance level: 2.58  
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Table 3. Estimating the cross-sectional simple linear regression model 
MRp = γο + γ1 RVp + up for 52 portfolios (Great Britain) 

Sub-period 1999-2002  Sub-period 2001-2004 
Risk measure 

(RVj)* 
γο γ1 Adj-R2 γο γ1 Adj-R2 

σ  0.0030 
(4.27) 

-0.1130 
(-5.18) 

0.336 0.0051 
(8.59)** 

-0.1640 
(-8.49) 

0.582 

Σ 0.0032 
(4.71) 

-0.5667 
(-5.26) 

0.378 0.0052 
(7.90) 

-0.2202 
(-7.79) 

0.539 

β 0.0021 
(4.71) 

-0.00401 
(-6.43) 

0.442 0.0044 
(10.26) 

-0.00525 
(-10.34) 

0.675 

βD 0.0028 
(4.80) 

-0.0039 
(-6.05) 

0.411 0.0051 
(10.13) 

-0.00512 
(-10.09) 

0.664 

* σ = the standard deviation of returns, Σ = the semideviation of returns, β = the beta coefficient, and βD = the downside beta.  
** t statistics are included in parentheses. Critical value for a two-sided test at 1%  
significance level: 2.58  
 
Table 4. Estimating the cross-sectional simple linear regression model 
MRi = γο + γ1 RV1i + γ2 RV2i+ui for individual securities (Great Britain) 

  Sub-period 1999-2002          Sub-period 2001-2004        
Pair of Risk 

measures 
(RV1i / RV2i) 

γο γ1 γ2 Adj-R2 γο γ1 γ2 Adj-R2 

σ / Σ 0.0032 
(7.79) 

0.2975 
(7.13) 

-0.5207 
(-9.44) 

0.486 0.0039  
(8.63)* 

0.0811 
(1.29) 

-0.2215 
(-2.77) 

0.327 

β / βD  0.0033 
(6.87) 

-0.0009 
(0.092) 

-0.0039 
(-4.04) 

0.273 0.0048 
(12.96) 

-0.0028 
(-3.56) 

-0.0021  
(-2.96) 

0.478 
 

* σ = the standard deviation of returns, Σ = the semideviation of returns, β = the beta coefficient (with respect to FTSE-100), and βD = the 
downside beta (with respect to FTSE-`.  
** t statistics are included in paretneshes. Critical value for a two-sided test at 1% significant level: 2.58  
 
Table 5. Estimating the cross-sectional simple linear regression model 
MRi = γο + γ1 RV1i + γ1 RV2i+ui for 26 portfolios (Great Britain) 

Period 1999-2002 Period 2001-2004 
Pair of Risk 

measures 
(RV1i / RV2i) 

γο γ1 γ2 Adj-R2 γο γ1 γ2 Adj-R2 

σ / Σ 0.0039  
(4.51) 

0.2436 
(0.893) 

-0.5392 
(-1.46) 

0.512 0.0039  
(4.73)** 

-0.7640 
(-3.42) 

0.8285 
(2.55) 

0.804 

β / βD  0.0023 
(2.54) 

-0.00465 
(1.30) 

0.0002 
(0.069) 

0.505 0.0047 
(7.87) 

-0.0054 
(-1.76) 

-0.00019 
(-0.06) 

0.814 

* σ = the standard deviation of returns, Σ = the semideviation of returns, β = the beta coefficient, and βD = the downside beta.  
** t statistics are included in parentheses. Critical value for a two-sided test at 1% significant level: 2.58  
 
Table 6. Estimating the cross-sectional simple linear regression model 
MRi = γο + γ1 RV1i + γ1 RV2i+ui for 52 portfolios (Great Britain) 

Period 1999-2002 Period 2001-2004 
Pair of Risk 

measures 
(RV1i / RV2i) 

γο γ1 γ2 Adj-R2 γο γ1 γ2 Adj-R2 

σ / Σ 0.0032  
(4.78)** 

0.3480 
(2.15) 

-0.6297 
(-2.87) 

0.421 0.0044  
(7.27)** 

-0.6095 
(-3.55) 

0.6243 
(2.87) 

0.626 

β / βD  0.0021 
(3.01) 

-0.0038 
(-1.64) 

-0.0001 
(-0.75) 

0.431 0.0047 
(8.42) 

-0.0034 
(-1.53) 

-0.0018 
(-0.85) 

0.673 

 * σ = the standard deviation of returns, Σ = the semideviation of returns, β = the beta coefficient, and  
βD = the downside beta.  

** t statistics are included in parentheses. Critical value for a two-sided test at 1% significant level: 2.58  
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Table 7. Estimating the cross-sectional simple linear regression model 
MRi = γο + γ1 RVi + ui for individual securities (France) 

Period 1999-2002 Period 2001-2004 
Risk measure 

(RVj)* 
γο γ1 Adj-R2 γο γ1 Adj-R2 

σ  0.0030 
(4.80) 

-0,0694 
 (-6.58) 

0.209 0.0069  
(11.47)**

-0.1348 
(-14.29) 

0.496 

Σ 0.0030 
(5.05) 

-0.0977  
(-6.98) 

0.229 0.0071 
(11.87) 

-0.1937 
(-14.75) 

0.512 

β 0.0005 
(2.23) 

-0.0025 
(-4.63) 

0.113 0.0032 
(6.60) 

-0.0068 
(-10.47) 

0.345 

βD 0.0016 
(3.50) 

-0.0031  
(-6.08) 

0.183 0.0058 
(9.93) 

-0.0075 
(-12.91) 

0.446 
 

* σ = the standard deviation of returns, Σ = the semideviation of returns, β = the beta coefficient (with respect to CAC-40), and βD = the 
downside beta.  
** t statistics are included in parentheses. Critical value for a two-sided test at 1% significant level: 2.58  
  
Table 8. Estimating the cross-sectional simple linear regression model 
MRi = γο + γ1 RVi + ui for 20 portfolios (France) 

Period 1999-2002 Period 2001-2004 
Risk measure 

(RVj)* 
γο γ1 Adj-R2 γο γ1 Adj-R2 

σ  0.0022 
(2.98) 

-0.0976 
(-4.46) 

0.499 0.0053 
(6.42)** 

-0.1890 
(-8.24) 

0.779 

Σ 0.0021 
(2.95) 

-0.1290 
(-4.44) 

0.476 0.0059 
(6.34) 

-0.2689 
(-8.08) 

0.762 

β 0.0007 
(2.29) 

-0.0030 
(-3.23) 

0.331 0.0038 
(4.14) 

-0.0078 
(-5.82) 

0.633 

βD 0.0014 
(2.15) 

-0.0034  
(-3.83) 

0.419 0.0054 
(5.18) 

-0.0082 
(-6.61) 

0.692 

* σ = the standard deviation of returns, Σ = the semideviation of returns, β = the beta coefficient, and βD = the downside beta.  
** t statistics are included in parentheses. Critical value for a two-sided test at 1%  
significance level: 2.58  
 
Table 9. Estimating the cross-sectional simple linear regression model 
MRi = γο + γ1 RVi + ui for 32/41 portfolios (France) 

Period 1999-2002 Period 2001-2004 
Risk measure 

(RVj)* 
γο γ1 Adj-R2 γο γ1 Adj-R2 

σ  0.0023 
(3.79) 

-0.0930 
(-5.49) 

0.484 0.0055 
(7.57)** 

-0.1719 
(-9.59) 

0.694 

Σ 0.0022 
(3.67) 

-0.1229 
(-5.41) 

0.477 0.0058 
(7.45) 

-0.2426 
(-9.37) 

0.682 

β 0.0008 
(2.31) 

-0.0032 
(-4.64) 

0.398 0.0034 
(4.81) 

-0.0071 
(-6.94) 

0.541 

βD 0.0014 
(2.84) 

-0.0034 
(-5.03) 

0.439 0.0052 
(6.74) 

-0.0077 
(-8.33) 

0.631 

* σ = the standard deviation of returns, Σ = the semideviation of returns, β = the beta coefficient, and βD = the downside beta.  
** t statistics are included in parentheses. Critical value for a two-sided test at 1%  
significance level: 2.58  
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Table 10. Estimating the cross-sectional simple linear regression model 
MRi = γο + γ1 RV1i + γ1 RV2i+ui for individual securities (France) 

Period 1999-2002 Period 2001-2004 
Pair of Risk 

measures 
(RV1i / RV2i) 

γο γ1 γ2 Adj-R2 γο γ1 γ2 Adj-R2 

σ / Σ 0.0027  
(4.17) 

0.1034 
(1.51) 

-0.2553 
(2.56) 

0.235 0.0071  
(11.79)**

-0.0026 
(-0.05) 

-0.1900 
(-2.60) 

0.510 

β / βD  0.0027 
(4.64) 

0.0046 
(2.94) 

-0.0075 
(-4.79) 

0.221 0.0061 
(9.44) 

0.0016 
(1.07) 

-0.0090 
(-6.19) 

0.446 

* σ = the standard deviation of returns, Σ = the semideviation of returns, β = the beta coefficient, and βD = the downside beta.  
** t statistics are included in parentheses. Critical value for a two-sided test at 1% significant level: 2.58  

 
Table 11. Estimating the cross-sectional simple linear regression model 
MRi = γο + γ1 RV1i + γ1 RV2i+ui for 20 portfolios (France) 

Period 1999-2002 Period 2001-2004 
Pair of Risk 

measures 
(RV1i / RV2i) 

γο γ1 γ2 Adj-R2 γο γ1 γ2 Adj-R2 

σ / Σ 0.0022  
(2.89) 

-0.865 
 (-0.33) 

-0.0147 
(-0.04) 

0.470 0.0053  
(4.59)** 

-0.2177 
(-0.75) 

0.0411 
(0.099) 

0.766 

β / βD  0.0021 
(2.53) 

0.0051 
(1.29) 

-0.0085 
(-2.12) 

0.440 0.0057 
(4.32) 

0.0029 
(0.49) 

-0.0111  
(-1.87) 

0.678 

* σ = the standard deviation of returns, Σ = the semideviation of returns, β = the beta coefficient, and βD = the downside beta.  
** t statistics are included in parentheses. Critical value for a two-sided test at 1% significant level: 2.58  
 
Table 12. Estimating the cross-sectional simple linear regression model 
MRi = γο + γ1 RV1i + γ1 RV2i+ui for 32/41 portfolios (France) 

Period 1999-2002 Period 2001-2004 
Pair of Risk 

measures 
(RV1i / RV2i) 

γο γ1 γ2 Adj-R2 γο γ1 γ2 Adj-R2

σ / Σ 0.0024  
(3.68)** 

-0.1264 
(-0.67) 

0.0427 
(0.173) 

0.467 0.0053  
(6.37)** 

-0.2673 
(-1.34) 

0.1364 
(0.48) 

0.688 

β / βD  0.0016 
(2.39) 

0.0011 
(0.38) 

-0.0045 
(-1.51) 

0.423 0.0056 
(6.14) 

-0.0040 
(-1.15) 

-0.0116 
(-3.30) 

0.634 

* σ = the standard deviation of returns, Σ = the semideviation of returns, β = the beta coefficient, and  
βD = the downside beta.  

** t statistics are included in parentheses. Critical value for a two-sided test at 1% significant level: 2.58  
 

 
 
 
 
 
 
 
 
 
 
 
 
 


