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Abstract 

Exchange-traded currency options are a recent innovation in the Indian financial market and their pricing is as 

yet unexplored. The objective of this research paper is to empirically compare the pricing performance of two 

well-known option pricing models – the Black-Scholes-Merton Option Pricing Model (BSM) and Duan‟s 

NGARCH option pricing model – for pricing exchange-traded currency options on the US dollar-Indian rupee 

during a recent turbulent period. The BSM is known to systematically misprice options on the same underlying 

asset but with different strike prices and maturities resulting in the phenomenon of the „volatility smile‟. This 

bias of the BSM results from its assumption of a constant volatility over the option‟s life. The NGARCH option 

pricing model developed by Duan is an attempt to incorporate time-varying volatility in pricing options. It is a 

deterministic volatility model which has no closed-form solution and therefore requires numerical techniques for 

evaluation. In this paper we have compared the pricing performance and examined the pricing bias of both 

models during a recent period of volatility in the Indian foreign exchange market. Contrary to our expectations 

the pricing performance of the more sophisticated NGARCH pricing model is inferior to that of the relatively 

simple BSM model. However orthogonality tests demonstrate that the NGARCH model is free of the strike price 

and maturity biases associated with the BSM. We conclude that the deterministic BSM does a better job of 

pricing options than the more advanced time-varying volatility model based on GARCH. 

Keywords: Black-Scholes-Merton, currency options, implied volatility, NGARCH, Non-Linear Least Squares  

1. Introduction 

The foreign currency derivatives market in India has been till recently mainly an over-the-counter (OTC) market 

dominated by currency forwards, swaps and options. These derivatives were introduced after the process of 

financial market reforms was initiated in 1993. Since the Indian foreign exchange market is dominated by banks 

all currency derivatives were introduced in the OTC market with banks as the intermediaries. In order to further 

develop the derivatives market in India and expand the existing menu of foreign exchange hedging tools 

available to Indian residents the joint committee of the Reserve Bank of India (RBI) and Securities and 

Exchange Board of India (SEBI) permitted the trading of currency futures contracts on recognized Indian stock 

exchanges from August 2008. Futures contracts on the USDINR pair were introduced initially and the success of 

these contracts led to the introduction of futures contracts on three other currency pairs. Trading of options on the 

USDINR was allowed by the regulators from October 29, 2010. Both currency futures and options are currently 

traded on three exchanges in India viz. the National Stock Exchange (NSE), the Bombay Stock Exchange (BSE) 

and the Multi-Commodity Exchange (MCX).  

The seminal work of Fisher Black and Myron Scholes (1973) and Robert Merton (1973) gave the financial world 

the first model for pricing contingent claims or options. Although this model was originally intended for pricing 

European options on non-dividend paying stocks it was later adapted to foreign currency options by Garman and 

Kohlhagen (1983). The Garman Kohlhagen model is akin to the Black-Scholes-Merton (BSM) model with the 

underlying asset being the foreign currency exchange rate expressed in terms of domestic currency. This adapted 

BSM is the most popular model amongst practitioners due to its inherent ease of implementation. Empirical 

studies however have unearthed several systematic differences between market prices of options and prices 

derived from the BSM model. These differences are known as „biases‟ and are related to the strike price and time 

to maturity of the option and the variance of the underlying asset. The BSM has been found to overprice and 
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underprice options on the same underlying asset but with different strike prices and times to maturity. This has 

resulted in the well-known phenomenon of the „volatility smile‟ and „volatility skew‟. The main reason for the 

existence of the volatility smile is the restrictive assumption of the BSM that the underlying asset returns have a 

constant mean and constant variance. Advanced option pricing models have tried to incorporate time-varying 

volatility in place of the deterministic volatility of the BSM model. One such model was developed by Duan 

(1995) who used a non-linear GARCH (NGARCH) model to price stock options which allows the incorporation 

of heteroscedasticity in the asset returns. 

This paper compares the empirical performance of the BSM and the NGARCH models in pricing options on the 

USDINR currency pair during a recent volatile period in the Indian foreign exchange market. The main 

contribution of this paper lies in the fact that to the best of our knowledge this is the first paper to empirically 

examine the pricing performance of these two models in respect of currency options in India. We begin with the 

null hypothesis that the NGARCH model which incorporates time-varying volatility should be able to price 

options better than the constant volatility-based BSM during a highly volatile period. We attempt to identify the 

better model on the basis of comparison of the pricing error and analysis of the pricing bias of the two models. 

Our results have practical implications for practitioners and regulators alike.  

The rest of the paper is organized as follows. Section 2 reviews the existing literature on option pricing models 

with time-varying volatility. Section 3 describes the two option pricing models being examined. The data and 

filter rules are presented and the calibration process explained in Section 4. We present the in-sample and 

out-of-sample performance, pricing error statistics and orthogonality tests in Section 5. We conclude the paper 

and explain limitations of the study in Section 6. 

2. Literature Review  

Some stylized facts of financial market volatility that have been well-documented in the literature are the 

„persistence‟ and „clustering‟ of volatility and the „leverage effect‟. Volatility clustering refers to the fact that 

periods of high volatility tend to occur together and so also periods of low volatility. Although asset returns are 

not generally autocorrelated realized volatility of asset returns is found to be highly autocorrelated and persistent 

giving rise to the „long memory‟ effect in financial markets. The „leverage effect‟ first observed by Black (1976) 

refers to the negative correlation between current returns and future volatility. The failure of the BSM model in 

capturing these stylized facts of financial market volatility is attributable to its strong assumption of a constant 

volatility. Researchers have broadly taken two approaches in order to correct the assumption of constant 

volatility in the BSM model. One approach is the continuous-time stochastic volatility models to price options. 

Stochastic volatility models recognize a second source of volatility apart from the volatility of the returns, i.e the 

„volatility of volatility‟. Implementation of stochastic volatility models is cumbersome. Early papers adopting 

this approach include Scott (1986), Johnson and Shanno (1987), Hull and White (1987) and Melino and Turnbull 

(1990). Heston (1993) was the first to develop a closed-form solution for pricing options on assets with 

stochastic volatility.  

The other approach in literature is the discrete-time time-varying volatility models using the autoregressive 

conditional heteroscedastic (ARCH) and Generalized ARCH (GARCH) methods developed by Engle (1982) and 

Bollerslev (1986) respectively. The GARCH model treats the variance forecast for the subsequent period as a 

function of three elements: a long-run unconditional variance, a weighted squared innovation of the previous 

period and a weighted variance of the previous period. Thus the variance forecast for tomorrow is „conditional‟ 

on the sum of the long-run unconditional variance, the squared innovation or „shock‟ of yesterday and 

yesterday‟s conditional variance. The application of GARCH models for option valuation led to the emergence 

of two basic categories of models in this area: the first is the affine model of Heston and Nandi (2000) which 

yields a closed-form solution and the second is the non-affine model of Duan (1995) which requires numerical 

techniques for valuation. Duan and Wei (1999) extended the GARCH model to pricing of foreign currency 

options. Several papers have compared the empirical performance of GARCH models with that of the BSM 

model and or stochastic volatility models. Hsieh and Ritchken (2000) compared the performance of the Duan 

GARCH and Heston-Nandi GARCH models relative to each other and to the BSM model. They found that while 

both GARCH models could explain the maturity and strike-price bias of the BSM model the out-of-sample 

performance of the Duan GARCH model was better. Duan and Zhang (2001) examined the performance of the 

GARCH model and the BSM model using data from the Hang Seng Index options before and after the Asian 

financial crisis of 1998. They concluded that the pricing performance of the GARCH model was better during 

the volatile period. Lehar, Schittenkopf and Scheicher (2002) compared the GARCH and Hull-White stochastic 

volatility model with the benchmark BSM model and found that the GARCH model fared better than the other 

two models in terms of pricing performance. However the performance of all three models in forecasting the 
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value-at-Risk for an options portfolio was found to be unsatisfactory. Yung and Zhang (2003) compared the 

empirical performance of the ad hoc Black-Scholes model of Dumas, Fleming and Whaley with that of the 

EGARCH option pricing model and found that although the pricing performance of the EGARCH model was 

better this superior performance was small and insignificant. Also the hedging performance of the EGARCH 

model was found to be worse than that of the simpler ad hoc Black-Scholes model. Bollen and Rasiel (2003) 

examined the performance of the regime-switching, GARCH and jump-diffusion models and concluded that all 

these models were superior to the BSM model when fitting option prices. On the contrary Harikumar, Boyrie, 

and Pak (2004) evaluated the performance of the BSM and GARCH option pricing models for call options on 

three currencies, viz. the sterling, the Swiss franc and the yen and found that the BSM outperformed the GARCH 

model. Christoffersen, Jacobs, and Mimouni (2006) compared the empirical performance of affine and 

non-affine option pricing models. They found that the non-affine GARCH model performed better than the 

affine Heston-Nandi GARCH model while the latter performed better than the affine Heston stochastic volatility 

model. Huang, Wang, and Chen (2011) studied the pricing performance of the BSM, Hull-White and GARCH 

option pricing models for the Taiwan Index Options market and concluded that the GARCH model performed 

best in that market. Kaminsky (2013) examined the empirical performance of different versions of Duan‟s 

GARCH model and the BSM model for pricing options on Poland‟s WIG20 stock index. He concluded that the 

most accurate pricing models for the period under consideration were the Black model with a volatility term 

structure and the GARCH model with student‟s t distribution. Jou, Wang, and Chiu (2013) examine the 

performance of heterogenous autoregressive (HAR) models based on realized volatility in the SPX options 

market during the crisis period of 2007-2008. They find that the HAR models are better than the NGARCH 

model in predicting out-of-sample option prices probably because the former are based on realized volatility 

which is closer to the implied volatility of options. Badescu, Kulperger, and Lazar (2008) find that an 

asymmetric normal mixture GARCH model is better at predicting out-of-sample prices of S&P 500 call options 

than the standard NGARCH (1,1) option pricing model. Although researchers such as Singh, Ahmed and Pachori 

(2011) have studied the empirical performance of different models for pricing index options in India to the best 

of our knowledge there has been no study till date in respect of options on the rupee-dollar currency pair. Our 

paper aims to fill this gap by comparing the empirical performance of the BSM and the more sophisticated 

GARCH option pricing model of Duan. 

3. Description of the Models 

The models examined are the BSM model and the NGARCH model of Duan (1999).  

3.1 Black-Scholes-Merton Model (BSM) 

The BSM model needs no introduction. According to the BSM the price of an option depends upon five inputs: 

the option strike price, time to maturity of the option, the price of the underlying stock, the rate of interest and 

volatility of the underlying stock returns. The model is based upon certain restrictive assumptions such as (i) 

lognormal distribution of underlying returns with a mean µ and constant volatility σ (ii) constant risk-free rate 

(iii) unlimited short-selling of securities permissible (iv) no dividends on underlying asset (v) absence of 

transaction costs and taxes. The basic BSM model was adapted by Garman and Kohlhagen (1983) for pricing 

European options on currencies as follows: 

𝐶 =  𝑆0𝑒−𝑞𝑡𝑁(𝑑1) − 𝐾 ∗ 𝑒−𝑟𝑡𝑁(𝑑2)       (1) 

Where 𝑑1 =  
ln(

𝑆0
𝐾

)+(𝑟−𝑞 +0.5∗𝜎2)∗𝑡

𝜎√𝑡
 

      𝑑2 =  𝑑1 −  𝜎√𝑡 

and C = call option on the currency, 𝑆0 = current exchange rate expressed as number of units of domestic 

currency for the foreign currency, K = option strike price, r = risk-free interest rate for domestic currency, q = 

risk-free rate for foreign currency, t = time to maturity of the option and 𝜎 = volatility of the underlying 

exchange rate. 

The only unobservable parameter in the above model is the volatility of the underlying asset. Several studies 

have examined the efficacy of alternative measures of volatility to be input into the model. Although early work 

used historical volatility of the underlying asset as an input to the BSM several researchers such as Latane and 

Rendleman (1976), Chiras and Manaster (1978), Merville and Pieptea (1989) showed that the underlying 

volatility implied in the traded prices of options is a better predictor of ex-post volatility than volatility estimated 

from historical time-series. This measure of volatility is known in the literature as „implied volatility‟. It is that 

estimate of volatility which when plugged into the BSM causes the model price to be equal to the observed 
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market price of the option. This modified version of the classical BSM model which uses an option-implied 

volatility instead of a constant volatility is popular with practitioners. We have used this modified form of the 

BSM in the present study. 

3.2 NGARCH Option Pricing Model 

Duan (1995) was the first to apply the GARCH model for pricing options. Although there are several variants of 

the GARCH model we have followed the non-linear asymmetric GARCH (1,1) model adapted by Duan (1999) 

for pricing foreign currency options. This is because a low-order GARCH model incorporating the leverage 

effect has been generally found adequate for characterizing time-series (Duan, 1999). Within Duan‟s framework 

the underlying exchange-rate return (𝑒𝑡) is assumed to follow a nonlinear GARCH-M model under the physical 

probability measure P.  

ln (𝑒𝑡+1)

𝑒𝑡
=  𝑟𝑑 − 𝑟𝑓 + 𝛿𝑡+1√𝑞𝑡+1 −

1

2
 𝑞𝑡+1 +  √𝑞𝑡+1  𝜀𝑡+1       (2) 

Where 𝜀𝑡+1, conditional on information up to the time t+1 is a standard normal random variable, 𝑟𝑑 and 𝑟𝑓 are 

the one-period, continuously compounded domestic and foreign risk-free interest rates respectively and 𝛿𝑡+1 

denotes the unit risk premium for the exchange rate. 

The conditional variance forecast is denoted by 𝑞𝑡+1 which is assumed to follow a GARCH process defined as: 

𝑞𝑡+1 =  𝛼0 + 𝛼1𝑞𝑡(𝜀𝑡 − 𝜃)2 + 𝛼2𝑞𝑡        (3) 

where 𝛼0 > 0, 𝛼1 ≥ 0, 𝛼2 ≥ 0 and 𝛼1(1 + 𝜃2) + 𝛼2 < 1 in order to ensure stationarity of the variance. The 

parameter θ captures the negative correlation between returns and volatility and thus denotes the leverage effect. 

It may be noted that the GARCH model subsumes the BSM model because in the special case when 𝛼1 =0 and 

𝛼2 = 0, the variance process becomes homoscedastic and the GARCH model reduces to the BSM model. 

In order to price options within the GARCH framework Duan defined an equilibrium price measure Q and 

showed that the measure Q satisfied the local risk-neutral valuation relationship (LRNVR) when certain 

conditions are fulfilled. Under the pricing measure Q,  

ln (𝑒𝑡+1)

𝑒𝑡
=  𝑟𝑑 − 𝑟𝑓 −

1

2
 𝑞𝑡+1 + √𝑞𝑡+1𝜀𝑡+1

∗                           (4) 

where the variance process is:  

𝑞𝑡+1 =  𝛼0 + 𝛼1𝑞𝑡(𝜀𝑡
∗ − ( 𝛿𝑡 + 𝜃))2 + 𝛼2𝑞𝑡                       (5) 

and 

𝜀𝑡+1
∗  = 𝜀𝑡+1 + 𝛿𝑡+1, conditional on information up to the time t is a standard normal random variable under 

measure Q. The new non-centrality parameter is θ* = 𝛿𝑡 + 𝜃 and the risk-neutral pricing measure can be 

determined by four parameters which are 𝛼0, 𝛼1, 𝛼2 and θ*. Using Eq. 4 the exchange rate at maturity T, (𝑆𝑇), 

can be computed numerically as: 

𝑆𝑇 =  𝑆𝑡exp ((𝑟𝑑 − 𝑟𝑓)(𝑇 − 𝑡) − 
1

2
∑ 𝑞𝑖

𝑇
𝑖=𝑡+1 + ∑ 𝑞𝑖𝜀𝑖

∗𝑇
𝑖=𝑡+1 )                   (6) 

Since there is no closed-form solution for this problem the conditional distribution of 𝑆𝑇  given today‟s 

exchange rate 𝑆𝑡 is determined by running Monte Carlo simulations. A large number of random paths are 

generated and the exchange rates corresponding to each random path are calculated using eqns. (4) and (5). 

Under the risk-neutral pricing measure Q the call option price at time t with a strike price of K and maturity of T 

can be expressed as:  

𝐶𝑎𝑙𝑙𝑡
𝑓𝑥

=  𝑒−𝑟(𝑇−𝑡)𝐸𝑄[max(𝑒𝑇 − 𝐾, 0) /𝜑𝑡]                             (7) 

In this paper we have used 10,000 simulations of the asset price path to estimate the exchange rate and option 

payoff at the expiry date. The martingale property fails to hold exactly in simulation because of discretization 

and sampling errors. We have used the Empirical Martingale Simulation (EMS) technique of Duan and Simonato 

(1998) in order to achieve variance reduction and ensure that the martingale property is satisfied. The technique 

is applied as follows for n stock price paths with m sub-intervals 𝑆𝑗𝑡𝑖 each (Chan & Wong, 2013). 

We first set 𝑆𝑗
∗(𝑡0) = 𝑆𝑗(𝑡0) =  𝑆0.  
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At each point of time 𝑡1 … 𝑡𝑚, we calculate 

𝑍𝑗𝑡𝑖 = 𝑆𝑗
∗𝑡𝑖−1

𝑆𝑗𝑡𝑖

𝑆𝑗𝑡𝑖−1
, for j = 1, …n 

𝑍0𝑡𝑖 =
1

𝑛
𝑒−𝑟𝑡𝑖 ∑ 𝑍𝑗𝑡𝑖

𝑛

𝑗=1

 

Then the corrected j th stock price at time 𝑡𝑖 is given by 

𝑆𝑗
∗(𝑡𝑖) =  𝑆0

𝑍𝑗𝑡𝑖

𝑍0𝑡𝑖
                                      (8) 

After this correction the corrected stock price paths at each point of time satisfy the martingale condition. 

4. Data and Methodology 

The data under study comprises daily closing prices of call options on the USDINR currency pair traded on the 

National Stock Exchange (NSE) from May 1, 2013 to October 31, 2013. As explained earlier this period was 

selected for study because of the extreme volatility witnessed by the rupee-dollar pair over this period. The 

options are European-style contracts which are cash-settled on expiry. Every option contract is for a notional 

value of USD 1000 but the premium is quoted in Indian rupees. These contracts are traded on the Exchange 

during 9.00 a.m. and 5.00 p.m. from Monday through Friday.  

4.1 Data Screening Procedure 

In line with existing literature we have applied certain rules for filtering the data: (i) option prices not satisfying 

the lower boundary conditions for call options, (𝑐 ≥  max (𝑆0 − 𝐾 ∗ 𝑒−𝑟𝑡 , 0)) were excluded. (ii) options 

maturing in less than five trading days were excluded as their prices may be quite erratic and not a reflection of 

their fair value (iii) strike prices with a daily traded volume of less than ten contracts were excluded because 

illiquid options may not be priced fairly. After applying these restrictions we were left with a data set of 3156 

call option prices. 

The filtered data have been analyzed along three different lines: (i)as per option moneyness (ii) as per option 

maturity and (iii) as per moneyness-maturity. We have measured moneyness as the ratio of spot price to strike 

price (S/K) and segregated the data in five different moneyness categories: Deep-out-of-the-money (DOTM: S/K 

< 0.85), out-of-the-money (OTM: S/K >=0.85and < 0.95), at-the-money (ATM: S/K >=0.95 and < 1.05), 

in-the-money (ITM: S/K >=1.05 and < 1.15) and deep-in-the-money (DITM: S/K >=1.15). We have further 

segregated the option price data into three categories of maturity: short-term (< 30 days), medium-term (between 

30 and 90 days) and long-term (greater than or equal to 90 days).  

In order to estimate the initial structural parameters and initial conditional variance for the GARCH model we 

have used historical data of daily returns of the USDINR for a sliding five-year window starting from May 1, 

2008 and ending with September 30, 2013 obtained from the website of the RBI. The yields of treasury bills with 

the maturity closest to the maturity of the option have been used as the risk-free rate of return for the INR and 

USD and these have been retrieved from publications of the RBI and the database of the Federal Reserve Bank 

of Atlanta (FRED) respectively. We have excluded all holidays and taken a year to be equal to 252 trading days. 

4.2 Methodology and Model Calibration 

Both the option pricing models examined in this study depend on unobservable parameters such as the spot 

volatility in the BSM and the structural parameters 𝛼0, 𝛼1 , 𝛼2 and θ* in the GARCH models. One way of 

estimating these parameters is by extracting them from the physical asset returns using econometric tools such as 

maximum likelihood estimation. The BSM was originally used to estimate option prices using an estimate of 

volatility based on historical observations. However such estimation from historical data reflects only past data 

which may not be representative of the future. Several papers such as Bakshi, Cao and Chen (1997), Bates 

(1991), Dumas, Fleming, and Whaley (1998), Heston and Nandi (2000), Hsieh and Ritchken (2000) have 

followed the approach of minimizing the sum of squared errors between actual and theoretical option prices 

using a non-linear least squares (NLLS) procedure in order to obtain market-implied volatility and structural 

parameters. Parameters thus determined have the advantage of being based upon forward-looking information 

contained in option prices. The procedure followed is to minimize the objective function which is simply the 

sum of squared errors between the market price of the option and its model price. 
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𝑓(Ω) = 𝑚𝑖𝑛𝜑 ∑ [𝐶𝑜𝑏𝑠,𝑖(𝐾, 𝑇) − 𝐶𝑀𝑜𝑑𝑒𝑙,𝑖(𝑥1, 𝑥2 … 𝑥𝑛)]
2𝑛

𝑖=1                           (9) 

where Ω is the vector of parameter values to be determined by NLLS, 𝐶𝑜𝑏𝑠,𝑖(𝐾, 𝑇) is the market price of the i th 

option and 𝐶𝑀𝑜𝑑𝑒𝑙,𝑖(𝑥1, 𝑥2 … 𝑥𝑛) is the model price of the i th option. Calibrating the BSM is relatively simple as 

only one parameter, i.e. the underlying volatility has to be estimated. We have used implied volatility backed out 

on the „t‟ day to price options on day „t+1‟ using the spot price, strike price, time to maturity and interest rates of 

day t+1 thus giving us out-of-sample estimates of the option price.  

In the case of the GARCH model we have used the underlying exchange rate returns data as well as the options 

data for calibrating the model as per a two-step procedure. 

We started with a five-year rolling window of daily exchange rate returns starting from May 1, 2008 ending with 

April 30, 2013 and estimated the GARCH parameters 𝛼0,  𝛼1 𝛼2  and θ* from this data using maximum 

likelihood estimation (MLE). These initial parameters were used to estimate the conditional variance on the first 

day of the month, i.e. May 2, 2013 and then Monte Carlo simulations were employed to simulate the option 

prices on May 2, 2013 as per the GARCH option pricing model. The second step was to calibrate the original 

MLE parameters to market prices using the NLLS technique. These new „implied‟ structural parameters were 

used as initial parameters to simulate option prices for the subsequent day, i.e. May 3, 2013. Again these 

parameters were calibrated to market option prices using NLLS. At the end of the month the initial five-year 

window was rolled forward by deleting the earliest month and adding a new month. The structural parameters on 

the first day of the new month were again estimated by MLE. This two-step procedure has been followed for the 

entire sample period. The calibrated „implied‟ parameters for each day have been used to determine 

one-day-ahead option prices based on the strike prices, interest rates and spot exchange rates of the next day 

using Monte Carlo simulation thus yielding out-of-sample estimates of the option price. 

We have used Excel VBA code (Chan & Wong, 2013) to perform the Monte Carlo simulations required for 

estimating the GARCH option model prices. Excel VBA has also been used to perform the minimization by 

opting for the GRG Nonlinear method and limiting the number of iterations to 1500. No restrictions were placed 

on the time taken for the iterations.  

5. Empirical Performance and Observations 

This section documents the implied volatility pattern and the out-of-sample pricing performance of the models. 

Table 1 depicts the summary statistics of the daily USDINR returns over the period starting from May 1, 2008 to 

October 31, 2013. It is evident that the exchange rate returns data are negatively skewed and exhibit a large 

positive kurtosis. The non-normality of the distribution is confirmed by the Jarque-Bera test statistic which is a 

high 954.34 with a p-value of zero.  

 

Table 1. Descriptive statistics of USDINR returns (May 1, 2013 to October 31, 2013) 

Descriptive Measures Statistics Descriptive Measures Statistics 

Mean 0.0003 Std.Dev 0.0062 

Median 0.0002 Skewness -0.0238 

Maximum 0.0379 Kurtosis 7.1527 

Minimum -0.0388 Jarque-Bera 954.3400 

  Probability 0.0000 

 

The graph of the daily USDINR returns in figure 1 clearly reveals the time-varying nature of the volatility and 

volatility clustering. An option pricing model based on an underlying GARCH process is therefore expected to 

perform better than the BSM which assumes normally distributed underlying data.        
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Figure 1. Daily USDINR returns (May 1, 2008-October 31, 2013) 

 

Table 2 depicts the descriptive statistics of the call option prices over the sample period. It can be seen that 

nearly 84 per cent of the observations are short-term options and ATM calls make nearly 82 per cent of the 

observations. 

 

Table 2. Descriptive statistics of the call option price (May 2013-October 2013) 

Moneyness Metric Short-term Medium-term Long-term Total observations 

OTM Average 0.1226 0.2038 0.3292 

 

 

Std Dev 0.1792 0.2322 0.0743 

 

 

Number 371 13 3 387 

ATM Average 0.8160 0.8923 0.7000 

 

 

Std Dev 0.7785 0.7132 0.3989 

 

 

Number 2087 478 9 2574 

ITM Average 5.0043 4.8758 

  

 

Std Dev 1.3578 1.4598 

  

 

Number 165 12 

 

177 

DITM Average 9.9589 

   

 

Std Dev 1.8327 

   

 

Number 18 

  

18 

Total   2641 503 12 3156 

 

The pricing bias of the BSM model is well-documented in the literature. We have used the BSM to back out the 

implied volatility from the market prices and analyzed the same within each moneyness-maturity bucket. Table 3 

summarizes the descriptive statistics of implied volatilities for different moneyness-maturity buckets. 

 

Table 3. Descriptive statistics of market implied volatility (May 2013-October 2013) 

Moneyness  Metric Short-term Medium-term Long-term 

OTM Average 0.2002 0.1034 0.0680 

 
Std Dev 0.0541 0.0347 0.0057 

ATM Average 0.1258 0.0822 0.0650 

 
Std Dev 0.0512 0.0283 0.0059 

ITM Average 0.2776 0.1368 
 

 
Std Dev 0.1162 0.0486 

 
DITM Average 0.5609 

  
  Std Dev 0.2330     

 

It is evident from the table that implied volatilities vary systematically with respect to the strike prices over the 

sample period and make a smile pattern when they move from ATM options to OTM or DITM options. OTM, 

ITM and DITM calls exhibit the highest mean implied volatilities and ATM calls the lowest. Also average 
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implied volatilities are seen to be highest for short-term options and tend to decline with increase in the maturity 

of the option. The standard deviation of implied volatilities is higher for short-term ITM and DITM options but 

declines for medium-term and long-term options. 

In accordance with existing research we have used three yard-sticks for measuring the empirical performance of 

the two models: (i) in-sample pricing errors (ii) out-of-sample pricing errors and (iii) Orthogonality tests. The 

following three error metrics have been employed to judge the pricing performance of the two models. 

1) Mean Absolute Percentage Error (MAPE). 
1

𝑛
∑ |

𝐶𝑖,𝑚𝑜𝑑𝑒𝑙−𝐶𝑖,𝑚𝑎𝑟𝑘𝑒𝑡

𝐶𝑖,𝑚𝑎𝑟𝑘𝑒𝑡
|𝑛

𝑖=1  This is a measure of the 

magnitude of the pricing error.  

2) Mean Percentage Error (MPE) 
1

𝑛
∑

(𝐶𝑖,𝑚𝑜𝑑𝑒𝑙−𝐶𝑖,𝑚𝑎𝑟𝑘𝑒𝑡)

𝐶𝑖,𝑚𝑎𝑟𝑘𝑒𝑡

𝑛
𝑖=1 . This is a measure of the direction of the 

pricing error. 

3) Mean Squared Error (MSE) 
1

𝑛
∑ (𝐶𝑖,𝑚𝑜𝑑𝑒𝑙 − 𝐶𝑖,𝑚𝑎𝑟𝑘𝑒𝑡)2𝑛

𝑖=1 . This is a measure of the volatility of the 

pricing error. 

5.1 In-Sample Performance 

In-sample testing of the models reveals the consistency of the parameters with the option prices. Table 4 depicts 

the mean and standard deviation for the parameter estimates for both models for each month of the sample 

period. It is observed that the parameters of both models vary considerably over the sample period as evidenced 

by their high standard deviations.  

 

Table 4. Parameter estimates over the sample period (May 2013-October 2013) 

Month 

 

BSM NGARCH 

  

σ 𝛼0 𝛼1 𝛼2 θ* 

May 2013 Average 0.0664 0.0000 0.1000 0.8800 0.0000 

 

StdDev 0.0045 0.0000 0.0000 0.0000 0.0000 

June 2013 Average 0.0923 0.0000 0.1000 0.8800 0.0000 

 

StdDev 0.0172 0.0000 0.0000 0.0000 0.0000 

July 2013 Average 0.1052 0.0000 0.0979 0.7920 0.0576 

 

StdDev 0.0185 0.0000 0.0013 0.0228 0.0013 

August 2013 Average 0.1560 0.0000 0.0968 0.7831 0.0044 

 

StdDev 0.0455 0.0000 0.0150 0.1163 0.0025 

September 2013 Average 0.1931 0.0000 0.1206 0.6691 0.0007 

 

StdDev 0.0271 0.0000 0.0470 0.1711 0.0001 

October 2013 Average 0.1270 0.0000 0.0747 0.8095 0.0000 

 

StdDev 0.0221 0.0000 0.0052 0.0707 0.0000 

 

We have evaluated the in-sample performance of both models by comparing the market option prices with the 

model prices computed using the estimated parameters of the current day. Specifically, we estimate structural 

parameters Ω𝑡 at time t and use these parameters and other inputs such as the spot price, strike price, interest 

rates and time to maturity at time t in order to price all options at time t. Table 5 shows the in-sample pricing 

errors for different categories of moneyness.  

 

Table 5. In-sample error statistics as per option moneyness 

  MAPE  MPE MSE 

Moneyness BSM GARCH BSM GARCH BSM GARCH 

OTM 0.6302 0.5148 -0.595 -0.3148 0.0076 0.0132 

ATM 0.1358 0.1875 -0.0694 -0.0057 0.0084 0.0203 

ITM 0.0282 0.0276 -0.0248 -0.0231 0.0475 0.0465 

DITM 0.0296 0.0295 -0.0296 -0.0295 0.2404 0.2405 
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The MAPE and MPE of both models are the highest for OTM options and progressively decline with increase in 

the moneyness suggesting that OTM options are the worst priced among all categories. The error statistics of 

both models are comparable for DITM options. The performance of the GARCH model is better for the OTM 

and ITM options as evident from the lower MAPE and MPE of the GARCH model. The BS model exhibits a 

lower absolute percentage error in respect of ATM options. Both models consistently underprice options of all 

moneyness but the extent of underpricing is lower for the GARCH model.  

In-sample performance as per maturity of the options is depicted in Table 6. The pricing errors of the BSM are 

higher for short-term options and long-term options as compared to medium-term options. The GARCH model 

shows the highest MAPE for short-term options but the largest MPE for long-term options. While both models 

underprice options of all maturities, the GARCH model shows a lower underpricing of short-term options than 

the BSM.  

 

Table 6. In-sample error statistics as per option maturity 

  MAPE  MPE MSE 

Maturity BSM GARCH BSM GARCH BSM GARCH 

Short-term 0.2018 0.2203 -0.1558 -0.0606 0.0113 0.02 

Medium-term 0.1026 0.1338 -0.0063 -0.0557 0.0185 0.0305 

Long-term 0.128 0.1295 -0.0105 -0.0936 0.006 0.007 

 

The in-sample performance across all categories of moneyness-maturity is shown in Table 7. The table clearly 

shows that the in-sample performance of the GARCH model is better than the BSM in respect of short-term and 

medium-term OTM options as evidenced by the lower MAPE of the GARCH model. The BSM prices ATM 

options better than the GARCH model while the performance of both models is similar for ITM and DITM 

options. The GARCH model shows a lower underpricing for all categories except for the medium-term and 

long-term ATM options. To sum up, the GARCH model shows a lower MAPE than the BSM in six out of nine 

moneyness-maturity buckets and a lower MPE than the BSM in seven out of nine moneyness-maturity buckets. 

The GARCH model is thus superior to the BSM judged according to in-sample performance.  

 

Table 7. In-sample error statistics as per option moneyness-maturity 

  Short-term Medium-term Long-term 

Moneyness BSM GARCH BSM GARCH BSM GARCH 

MAPE 
      

OTM 0.6559 0.5265 0.4905 0.4873 0.1585 0.2053 

ATM 0.1501 0.202 0.0973 0.1301 0.1066 0.1034 

ITM 0.0274 0.0269 0.0348 0.0333 
  

DITM 0.0296 0.0295 
    

MPE  
      

OTM -0.6204 -0.3157 -0.488 -0.4873 -0.0901 -0.0846 

ATM -0.0918 -0.0164 0.0063 -0.0461 0.0023 -0.0826 

ITM -0.0242 -0.0229 -0.0254 -0.0099 
  

DITM -0.0296 -0.0295 
    

MSE 
      

OTM 0.0066 0.012 0.0219 0.0263 0.0034 0.005 

ATM 0.0074 0.019 0.0164 0.0291 0.0055 0.0064 

ITM 0.0461 0.0454 0.0543 0.0503 
  

DITM 0.2404 0.2405         

 

5.2 Out-of-Sample Performance 

It is well-recognized that a model with a larger number of structural parameters will lead to a better in-sample fit 

than another model with fewer parameters. Hence it becomes necessary to evaluate the out-of-sample 

performance of the models to ascertain whether the improvement in fit is simply because of over-fitting or 

whether the additional parameters have a true forecasting power. This also enables the evaluation of the stability 

of the model parameters over time. We have examined the one-day-ahead pricing performance of both models by 
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using the estimated structural parameters of the current day for pricing options on the subsequent day. These 

out-of-sample forecasts have been compared with traded option prices to estimate the pricing error.  

While the pricing performance of both models deteriorates when we shift from in-sample assessment to 

out-of-sample assessment, the deterioration is found to be sharper in case of the GARCH model. We first 

examined the pricing error statistics for different categories of moneyness. Table 8 shows that the MAPE and 

MPE of both models are the largest in respect of OTM options and are seen to decrease as we progress towards 

DITM options. While the BSM model is seen to underprice options of all levels of moneyness the GARCH 

model is seen to overprice OTM and ATM options and underprice ITM and DITM options. The degree of 

under-/over-pricing for both models declines with increase in the moneyness. The GARCH option pricing model 

fares worse than the BSM with higher error statistics across all categories of moneyness.  

 

Table 8. Out-of-sample error statistics as per option moneyness 

  MAPE  MPE MSE 

Moneyness BSM GARCH BSM GARCH BSM GARCH 

OTM 0.6115 2.5605 -0.5747 1.8407 0.0111 0.0404 

ATM 0.1934 1.0882 -0.0404 0.9653 0.023 0.1327 

ITM 0.0288 0.0326 -0.0252 -0.0205 0.0515 0.0564 

DITM 0.0295 0.0294 -0.0295 -0.0294 0.2406 0.2402 

 

The pricing errors for both models with respect to the time to maturity are depicted in Table 9. It is evident that 

the MAPE and MPE for the BSM decline with increasing maturity. The pricing errors for the GARCH model 

however are higher for short-term and long-term options than for the medium-term options. Again the GARCH 

model results in higher pricing errors for all maturities than the BSM model.  

 

Table 9. Out-of-sample error statistics as per option maturity 

  MAPE  MPE MSE 

Maturity BSM GARCH BSM GARCH BSM GARCH 

Short-term 0.2449 1.4136 -0.1235 1.2163 0.024 0.0945 

Medium-term 0.1303 0.8723 -0.0087 0.7403 0.0308 0.2939 

Long-term 0.1161 1.5046 -0.0073 1.5046 0.0056 0.5299 

 

For a better evaluation of the out-of-sample performance we have segregated the option data in nine 

moneyness-maturity buckets.  

Table 10 shows that the BSM model exhibits a lower MAPE in eight out of nine moneyness-maturity buckets. 

The higher MAPE of the more sophisticated GARCH model is surprising and is contrary to what is observed in 

advanced financial markets. The BSM model is seen to underprice all categories of options except medium-term 

and long-term ATM options. The GARCH model on the other hand overprices options of all categories except 

ITM and DITM options of a short maturity. The BSM model also scores over the GARCH model in terms of 

having a lower MSE in eight out of nine moneyness-maturity buckets.  

 

Table 10. Out-of-sample error statistics by moneyness and maturity 

  Short-term Medium-term Long-term 

Moneyness BSM GARCH BSM GARCH BSM GARCH 

MAPE 
      

OTM 0.6335 2.9901 0.5188 4.6961 0.2463 2.1399 

ATM 0.2077 1.3322 0.126 0.8569 0.0834 1.3123 

ITM 0.028 0.0313 0.0354 0.0542 
  

DITM 0.0295 0.0294 
    

MPE  
      

OTM -0.5981 2.2566 -0.5028 4.3238 -0.0545 2.1399 

ATM -0.0612 1.2132 0.0028 0.7311 0.0054 1.3123 
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ITM -0.0246 -0.0212 -0.0275 0.0258 
  

DITM -0.0295 -0.0294 
    

MSE 
      

OTM 0.0096 0.0276 0.0312 0.1347 0.0063 0.4718 

ATM 0.0213 0.1002 0.0289 0.3042 0.0048 0.5409 

ITM 0.05 0.0538 0.0561 0.1057 
  

DITM 0.2406 0.2402         

 

In order to ascertain whether the outperformance of the BSM model is statistically significant we have conducted 

the Diebold-Mariano test on the squared pricing errors from both models. This test (Diebold & Mariano, 1995) 

examines the quality of forecasts from different models. Results of the test are shown in Table 11. 

 

Table 11. Diebold-mariano equality test (in-sample)  

  Hypothesis DM statistic p-value 

H0 Both methods have same forecast accuracy 9.4231 

  

2.20E-16 

  Ha BSM method has greater forecast accuracy 

 

The test has been run with the R function “dm.test” taking forecast horizon = 1 and power = 2. The null 

hypothesis of the DM test is that both models have the same forecast accuracy. We conducted a one-tailed test 

that the BSM model has greater forecast accuracy than the GARCH model. The results of the DM test show that 

the p-value is zero. We therefore rejected the null and concluded that the BSM model indeed has greater forecast 

accuracy.  

We have computed the log MAPE ratio in order to compare the models with each other. The ratio was computed 

as given below: 

DMAPE = 𝑙𝑛
𝑀𝐴𝑃𝐸𝐺𝐴𝑅𝐶𝐻

𝑀𝐴𝑃𝐸𝐵𝑆
 

This ratio has been computed for each day in the sample period. A positive value of the ratio means that the BSM 

yields more accurate estimates than the GARCH model while a negative value implies that the GARCH model 

outperforms the BSM. We have also computed a „wins ratio‟ which is simply the proportion of days from the 

total sample on which the GARCH model outperformed the BSM. Table 12 shows the average DMAPE ratio and 

the wins ratio for each month of the sample period. The pricing performance of the BSM model is seen to be 

better than that of the GARCH model in the months of May and June. As the volatility increased, however, this 

outperformance of the BSM is seen to decline as evident from the declining DMAPE ratio.  

 

Table 12. Month-wise DMAPE ratio and wins ratio 

Month Avg DMAPE GARCH vs BS-IV GARCH vs BS-IV Wins ratio 

May 2013 3.0215 0.00 

June 2013 2.1178 0.05 

July 2013 0.0606 0.52 

August 2013 0.4147 0.25 

September 2013 0.4212 0.15 

October 2013 0.0604 0.43 

 

Table 13 shows these ratios separately for the pre-volatility period (the months of May 2013 and June 2013) and 

the volatile period (July 2013 to October 2013). The BSM clearly outperformed the GARCH model during the 

pre-volatile period as evident from the positive average DMAPE ratio and the wins ratio. This outperformance 

was maintained by the BSM even during the volatile period although the extent of outperformance is lower 

during the volatile period. 
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Table 13. DMAPE and wins ratio during volatile and pre-volatile periods 

Period Avg DMAPE GARCH vs BS-IV GARCH vs BS-IV Wins ratio 

Pre-volatile period 2.5911 0.02 

Volatile period 0.2307 0.35 

 

5.3 Orthogonality Tests 

Finally in line with existing research (Madan, Carr, & Chang, 1998; Lehar et al., 2002) we have conducted 

orthogonality tests to ascertain to what extent the GARCH model is able to address the pricing biases inherent in 

the BSM model. According to Madan et al. a pricing model is good if its pricing errors do not demonstrate any 

pattern and are not predictable. We have performed regression analysis on the out-of-sample absolute percentage 

errors obtained for each day of the sample for both the models using the Eviews 7 package. The APEs have been 

regressed on three explanatory variables – the moneyness of the option, squared moneyness and time to maturity 

of the option. The form of the regression is: 

𝐴𝑃𝐸 =  𝛼0 +  𝛼1
𝑆

𝐾
+ 𝛼2

𝑆

𝐾

2
+ 𝛼3𝑡𝑖𝑚𝑒 𝑡𝑜 𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦                            (10) 

Where moneyness is denoted by 
𝑆

𝐾
 and squared moneyness by 

𝑆

𝐾

2
. 

Regression results are documented in Table 14. The standard errors reported are robust and heteroscedasticity 

and autocorrelation-consistent (HAC) in accordance with Newey and West (1987). 

 

Table 14. Results for regressing out-of-sample errors on option characteristics 

Model Variable Coefficient Std. Error t-Statistic Prob. R-squared F-statistic 

BSM Intercept 25.5729 1.6752 15.2658 0.0000 0.4562 881.3309 

 
Moneyness (S/K) -46.5114 3.2336 -14.3840 0.0000 

  

 
Squared moneyness (S/K)^2 21.1683 1.5573 13.5929 0.0000 

  

 
Time to maturity -1.0372 0.1028 -10.0883 0.0000 

  
GARCH Intercept 12.9219 16.6038 0.7783 0.4365 0.0429 47.0795 

 
Moneyness (S/K) -8.1615 32.3835 -0.2520 0.8010 

  

 
Squared moneyness (S/K)^2 -3.6022 15.7895 -0.2281 0.8196 

  

 
Time to maturity -1.2771 1.2931 -0.9876 0.3234 

  
Note. Reported standard errors are hetereoscedasticity and autocorrelation consistent (Bartlett kernel, Newey-West fixed bandwidth = 9). 

 

There is a high degree of predictability of the pricing error for the BSM as the 𝑅2 for the regression is a high 

45.62%. The coefficients of the moneyness and maturity terms are negative and statistically significant implying 

that the pricing error declines with increase in moneyness and maturity. The „smile‟ effect is obvious from the 

positive coefficient of the squared-moneyness term which is again statistically significant implying that the 

pricing errors are higher for deep-in-the-money and deep-out-of-the-money options. Thus the moneyness and 

maturity biases of the BSM are clearly evident from the regression results. The GARCH model regression 

however has a much lower 𝑅2 of 4.28% implying that there is no predictability of the pricing errors from the 

main explanatory variables considered here. The t-statistics of the moneyness, squaredmoneyness and time to 

maturity terms are all close to zero implying that these terms are not statistically significant. We can therefore 

conclude that there is no moneyness or maturity bias present in the GARCH model. 

6. Conclusion and Limitations of the Study 

In this paper we have analyzed the comparative empirical performance of the well-known Black-Scholes-Merton 

(BSM) model and Duan‟s NGARCH option pricing model for pricing options on the USDINR exchange rate 

during the volatile period of May 2013 to October 2013. The empirical performance of the Duan GARCH option 

pricing model has not been studied very widely because the model lacks a closed-form solution and 

implementation is computationally demanding. Also to the best of our knowledge till date there has been no 

study of this model in the context of Indian currency options. Our paper aims to fill this gap. We conclude that in 

spite of the added complexities of the NGARCH option pricing model this model is unable to outperform the 

relatively simpler BSM model in terms of pricing performance. This conclusion is in line with that of Harikumar 
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et al. (2004) who found that the BSM outperforms the GARCH model in respect of currency options. It is 

however contrary to that of Bollen and Rasiel (2003) who conclude that GARCH models are an improvement 

over the fixed smile model. Our second finding is that the GARCH model is free of the moneyness and maturity 

biases exhibited by the BSM model as demonstrated by orthogonality tests. This result in is in line with that of 

Lehar et al. (2002) and Hsieh and Ritchken (2000). 

The limitations of this study are two-fold. First, we have focused on a volatile period in the recent history and 

hence the sample period is short. The second limitation is that we have not analyzed the hedging performance of 

the two models. We propose to do the same in a subsequent paper. 
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