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Abstract 
Realized semivariance is reported more informative than realized variance. This paper employs a new modeling 
approach for the realized semivariance inspired by Chou (2005) in order to capture the asymmetry of volatility in 
financial markets better. With high frequency data from Shanghai stock market in Chinese, the empirical results, 
which uses four types of volatility proxies including squared daily returns, daily high-low price ranges, realized 
variance, and realized range consistently, indicate that this model sharpens the forecast power of existing 
volatility models in terms of GARCH type models. Mincer-Zarnowitz regression and four loss functions are 
employed for the assessments in out of the sample forecasting. 
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1. Introduction 
Volatility has been a traditional tool to measure the risk of the financial market for a long time. It plays a key role 
in the areas of asset pricing, portfolio allocation, and risk management. In recent years, as transaction data is 
becoming increasing widely available, great interest has been drawn into the use of high frequency data for 
measuring and forecasting volatility. This approach is called the realized volatility. One of the advantages to use 
the new emerging nonparametric volatility approach is that it can fully exploit intraday information and deliver 
an observable proxy for the volatility. Therefore it makes direct modeling volatility possible and avoids 
complicated estimation procedures which employ the unobservable volatility approach–the GARCH type and 
stochastic volatility models.  

Barndorff-Nielsen, Kinnebrock and Shephard (2008) introduced a new measure for the variation of asset prices 
based on high frequency data. It is called realized semivariance (RS) and it is reported more informative than the 
simple realized variance. Inspired by Chou (2005), the same methodology is adopted in that paper for the 
realized semivariance to capture the asymmetry in financial markets better.Combined with realized semivariance 
this modeling approach can sharpen the forecast power of existing volatility models intuitively. It is also 
confirmed in our empirical study through the comparison of four GARCH-type models for non-negative series, 
proposed by Engle (2002) and known as Multiplicative Error Model (MEM). We employ Shanghai composite 
index data of one minute’s frequency to obtain our daily and realized volatility estimators. Mincer-Zarnowitz 
(MZ) regression is a widely accepted method for the model comparison. According to Engle (2005), different 
volatility proxies contain different information about volatility. Therefore, we use six different volatility proxies 
of both daily frequency and high frequency as the measure volatility in MZ equation: squared daily returns, 
absolute daily returns, daily high-low price ranges, realized variance, realized range, and realized bipower 
variation. They consistently indicate that our modeling approach sharpens the forecast power of non-negative 
series GARCH type models. Besides MZ equation, we use four loss functions in Hansen and Lunde (2005) as 
criterions for assessing the forecasting ability of the models. For the one step ahead out of sample tests, we also 
employ an expanding window estimation procedure to simulate the actual estimation adapted to the data 
updating process. All in sample, out of sample and the expanding window prediction consistently confirmed our 
intuition that this modeling approach is able to sharpen the forecast power of non-negative series GARCH type 
models combined with realized semivariance. The rest of this paper has the following structure. In section 2 we 
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will discuss the theory of realized volatility and semivariance. Section 3 introduces our empirical funds. Section 
4 is the model comparisons. Section 5 is the conclusions. 

2. Realized Volatility, Realized Semivariance and the Model 
Realized variance estimates the ex-post variance of asset prices over a fixed time interval. Since we are going to 
carry out our empirical analysis based in trading time, we define realized variance as: 
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RV is the sum of squared intraday returns. Although the data arrives into our database at irregular points in time, 
however according to Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006), these irregularly spaced 
observations can be regarded as being equally spaced observations on a new time-changed process in the same 
stochastic class. Thus there is no intellectual loss initially considering equally spaced returns. In arbitrage free 
markets, P is often considered to follow a semimartingale process. Then as we have increasing data in one day’s 
time interval RV must converge into: 
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σμ , μ is a locally bounded predictable drift process andσis a cadlag volatility process, 

which adapted to some common filtration Ft. Barndorff-Nielsen, Kinnebrock and Shephard (2008) introduced a 
new measure of variation called realized semivariance. This kind of estimator is solely determined by the single 
side (upward and downward) moves in high frequency asset prices defined as: 
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Where 1P is the indicator function taking the value 1 of the argument is true and 0 otherwise. If P is a semi 
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Under in-fill asymptotic, the jumps in the process of P are: 
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Then the realized variance of P converges into:  
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And the downward realized semivariance and upward realized semivariance will converge into different limits 
under in-fill asymptotic: 
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From above, we can easily figure out that: +− += tt

p

t RSRSRV . However, since the two components of RVt can be 

distinguished, it must be more informative than mixed together. For the purpose of volatility measuring, we also 
introduce two another realized measures here. The first one is called realized range, proposed by Christensen and 
Podolskij (2005) and Martens and van Dijk (2007). This estimator is inspired by the idea of Parkinson (1980) 
that range-based variance estimator is much more efficient than return-based estimator. And this one is indeed 
reported more efficient and less contaminated by micro noises in empirical study. It is defined as follows: 
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In a driftless martingale process, this estimator also converges to quadratic variation. Usually for the estimation 
of one day's volatility, driftless martingale process assumption is not a bad one. The second one is called realized 
bipower variation. This estimator is proposed by Barndorff-Nielsen and Shephard (2002). It is defined as: 
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Where µ1 is a normalization factor. And in a semimartingale process with finite jumps, realized bipower 
variation converges to integrated variation but not quadratic variation.  

Inspired by Chou (2005), we can know that his model can be naturally extended to model the upward (downward) 
realized semivariances with a little modification: 
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We call this model Asymmetric Multiplicative Error Model (AMEM), according to Engle and Gallo (2006), for 
Realized Semivariance (AMEM-RS). In the following empirical study, we compare volatility forecasting power 
in context of out-of-sample forecast of four different models: MEM-RV, MEM-RV with lagged return, 
AMEM-RS and AMEM-RS with lagged return. 

3. Empirical Results 
To calibrate our modelling approach, we employ high frequency Shanghai composite index data in this paper. 
The data contain observations from January 1, 2007 to January 4, 2013. After deleting the days of unavailable 
and insufficient information, we have 1570 days' observations of 1 minute's frequency data. The data is from the 
Wind database. Table 1 gives out the descriptive statistics of raw data and daily estimators obtained from raw 
data in every day. 

 

Table 1. The descriptive statistics of raw and daily data 

 Raw prices Raw returns Daily returns Squared returns Absolute returns Ranges 

Mean 2957 -9.7E-06 -3.1E-04 1.324 0.867 1.685 

Median 277 0.000 0.0324 0.526 0.656 1.444 

Maximum 6092 2.865 6.876 47.678 6.778 7.638 

Minimum 1706 -5.458 -5.820 0.000 0.000 0.425 

Std. Dev. 882.5 0.067 1.297 3.164 0.824 0.897 

Skewness 1.524 -1.546 0.013 6.170 1.986 1.844 

Kurtosis 4.845 24846 5.024 61.894 8.518 9.008 

Jarque-Bera 745.0 1.6E+09 314 245278 3169 3467 

Probability 0.000 0.000 0.000 0.000 0.000 0.000 

Sum 7.8E+08 -5.650 -0.497 2456 1345 2598 

Observations 628934 628933 1570 1570 1570 1570 

Note. Raw returns, daily returns and range are all multiplied by 100; squared returns and absolute returns are respectively the squared value 

and absolute value of daily returns. 

 

In order to compare models in terms of their prediction accuracy, we need to use proper proxies for underlying 
unobservable true volatility. According to Engle and Gallo (2006), there is still no consensus about a “true” or 
"best" measure of volatility. And “many ways exist to measure and model financial asset volatility”. Here we 
employ six measures of asset volatility for our model comparison. Three of them are three ordinary daily 
measures: absolute daily returns, daily Parkinson high-low range estimator and the most usual squared daily 
returns. We give their statistics description in Table 1. The other three of them are realized volatility measures: 
realized variance, realized range and realized bipower variation with the most used 5 minutes' frequency. Table 2 
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gives their statistics description together with RS+ and RS-. 

 

Table 2. The descriptive statistics of realized estimators 

 RV RR RB RS+ RS- 

Mean  1.642  1.110  1.636  0.811  0.831 
Median  1.057  0.758  1.112  0.501  0.493 
Maximum  35.663  23.719  21.293  19.202  33.875 
Minimum  0.132  0.117  0.157  0.074  0.046 
Std. Dev.  2.114  1.393  1.866  1.146  1.375 
Skewness  6.303  6.837  4.896  6.321  11.779 
Kurtosis  69.475  79.844  38.567  67.219  238.107 
Jarque-Bera  299464  398511  89026  280241  3652223 
Probability  0.000  0.000  0.000  0.000  0.000 
Sum  2577  1743  2569  1273  1304 
Observations  1570  1570  1570  1570  1570 

 

Figure 2 presents the time series of RS+ against RS-. These two parts of realized variance do look very different 
from each other, and therefore two separately models for each of them is necessary. The information may be 
fruitful. 

 

 
Figure 1. Upside and downside realized semivariance 

 

In order to incorporate the leverage effects of lagged returns better, we estimate four models in this section: 
MEM-RV, MEM-RV with lagged returns, AMEM-RS and AMEM-RS with lagged returns. We employ the 
simplest form GARCH model for all of the four models–GARCH (1, 1), which is already adequacy in most 
applications according to Bollerslev, Chou, and Kroner (1992). Table 3 presents the estimated parameters of the 
four models. 

 

Table 3. MEM type models for realized volatility and semivariance 

 
MEM-RV 

MEM-RS 

 RS+ RS- RS+ RS- 

Constant 
0.037 0.035 0.016 0.017 0.015 0.026 

(0.050) (0.032) (0.017) (0.016) (0.011) (0.011)** 

ARCH 
0.367 0.219 0.257 0.282 0.158 0.152 

(0.097)*** (0.087)** (0.078)*** (0.058)*** (0.052)*** (0.054)*** 

GARCH 
0.623 0.760 0.731 0.710 0.823 0.814 

(0.090)*** (0.086)*** (0.071)*** (0.065)*** (0.051)*** (0.057)*** 

Return(-1) 
 -0.097    -0.065 
 (0.049)**    (0.015)*** 

Return(-2) 
    -0.046  
    (0.022)*  

Log-L -2446.0 -2438.9 -1910.8 -1912.5 -1902.5 -1896.1 

Note. Model selection is based on AIC and BIC and numbers in parenthesis are the standard deviations, and stars refer to significance level of 

10% (*), 5% (**) and 1% (***). 
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4. Models Comparison 
According to Hansen and Lunde (2005) we continue to use the four loss functions employed by them as 
criterions for model: 
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The first two loss functions are regular ones. QLIKE is proposed by Bollerslev (1994), and is also called 
Gaussian quasi-maximum likelihood function, which can easily be recognized that it is originated from the 
likelihood function of GARCH model from its formulation. R2LOG is proposed by Pagan and Schwert (1990), it 
aims to give some penalty to the asymmetry of the volatility forecasting. Different from the quadratic loss 
function, it was a proportional loss function. We focus on the out of sample comparisons for finding useful 
models in prediction of real world. In table 4, r2, |r|, range, realized volatility, realized range and realized bipower 
variance are used as measurement volatility (MV) to judge the performance of the four models' fitting value in 
last section. It is clear that with most loss functions the lagged realized semivariance (RS-Lag) performs better 
than other forecasted volatilities (FV). 

 

Table 4. Out of sample forecasting comparisons with different loss functions 

 r2 |r| Range RV RR RB 

 Loss function: MSE 

RV 1311.01 316.10 173.71 161.84 166.19 147.48 

RV-Lag 1291.31 264.08 130.04 159.16 128.32 154.23 

RS 1314.82 299.29 156.18 159.38 156.75 151.35 

RS-Lag 1275.95 227.06 104.69 159.07 110.93 155.88 

 Loss function: MAE 

RV 177.15 110.01 79.57 70.02 75.87 61.68 

RV-Lag 175.46 104.57 74.08 69.30 71.58 62.83 

RS 178.71 109.48 76.87 70.22 76.95 62.96 

RS-Lag 173.93 100.14 69.41 69.15 69.96 62.58 

 Loss function: QLIKE 

RV 296.25 137.68 267.57 119.68 79.97 109.97 

RV-Lag 280.83 130.42 257.72 120.26 74.55 110.61 

RS 274.01 120.77 232.00 104.60 68.97 95.95 

RS-Lag 256.58 117.03 233.38 110.12 65.46 101.07 

 Loss function: R2LOG 

RV 581.08 184.60 30.35 23.71 45.23 18.45 

RV-Lag 575.44 180.40 28.11 23.20 41.84 18.39 

RS 586.71 186.37 27.38 24.15 46.95 19.09 

RS-Lag 576.70 179.22 25.32 23.73 41.91 18.90 

Note. For RS models we use upside RS and downside RS forecasting to synthesize RV forecasting and the model with minimum forecasting 

errors under four types of loss functions and six types of “true volatility” measurements. 

 

5. Conclusion 
Volatility is one of the core problems in many financial practices, but the asymmetry of volatility is often 
confused in arbitrage and risk management because downside volatility is definitely not equal to upside volatility 
in these fields. Separately modelling the two sides of volatility would be more informative than just mixing them 
together. 
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In this paper, we use a new modelling approach to model the realized semi variance with high frequency data in 
Chinese financial markets. Then the empirical study shows that when measured by six different volatility proxies, 
the realized semi variance (RS) performs better than the traditional realized volatility estimator (RV). 

These findings reveal that when measuring volatility or fluctuations of financial assets, the usage of our new 
estimator will increase the performance of many financial practices like pricing or risk management. With the 
development of the information technology, high frequency data are more and more available. Developing an 
accurate and robust estimation of assets volatility is increasing important. One feasible way to extend this paper 
is to incorporate the correlation effects between upside realized semivariance and downside ones. 

 

Table 5. In sample forecasting comparisons with different loss functions 

 r2 |r| Range RV RR RB 

 Loss function: MSE 

RV 917.34 281.96 175.48 329.61 239.66 229.96 

RV-Lag 868.62 223.06 126.37 304.65 194.04 206.50 

RS 900.61 258.05 152.80 318.47 223.53 220.72 

RS-Lag 857.14 195.18 105.52 299.71 178.72 202.70 

 Loss function: MAE 

RV 161.01 103.54 80.22 81.53 84.83 72.35 

RV-Lag 155.57 97.17 72.51 77.34 78.68 68.61 

RS 160.62 102.74 77.13 81.24 85.25 72.52 

RS-Lag 154.68 94.45 68.36 76.89 77.82 68.17 

 Loss function: QLIKE 

RV 318.62 137.03 265.86 151.53 97.56 136.82 

RV-Lag 296.85 129.43 253.80 146.52 88.02 131.02 

RS 291.97 120.12 232.62 138.01 85.96 122.61 

RS-Lag 280.73 114.25 224.65 133.55 77.94 118.88 

 Loss function: R2LOG 

RV 567.85 178.04 32.61 32.08 55.92 25.60 

RV-Lag 552.63 170.76 28.97 29.77 50.91 23.26 

RS 572.36 179.32 29.69 32.67 57.67 26.03 

RS-Lag 556.11 170.91 26.11 30.29 52.32 23.71 
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Appendix A 
In Sample Comparison 
In this table, the same research in table 4 is organized and r2, |r|, range, realized volatility, realized range and 
realized bipower variance are used as measurement volatility (MV) to judge the performs of the four models' 
fitting value of in sample forecasts. It also consistently indicates that with most loss functions the lagged realized 
semivariance (RS-Lag) performs better than other forecasted volatilities (FV). 
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