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Abstract 
We propose a fund allocation strategy for a highly risk-averse investor based on pessimistic decision making to 
construct portfolios of four major asset classes. Using US data (indexes of stocks, bonds, real estate, and 
commodities) from January 1990 to December 2010, we find that the proposed Minimax strategy performs well 
out-of-sample with respect to standard risk measures. Its performance is better than common alternative trading 
strategies such as fixed weights, minimum variance, or mean-variance methods. Portfolio weights are stable 
across time, resulting in lower turnover than any mean-variance related strategy. Finally, we find that optimal 
portfolios are widely diversified across all asset classes. This study suggests that the proposed Minimax strategy 
is implementable in portfolio management, and of special importance for investors with daily risk management.  

Keywords: minimax, maximin, portfolio selection, portfolio management, portfolio choice 

1. Introduction 
Taking risk is usually accompanied by obtaining economic gains. In portfolio management, an investor typically 
trades risk against profits, according to his preference. However, in this trade-off it is fundamental to define “risk” 
appropriately. In the typical mean-variance model of Markowitz (1952), risk is defined as variation in returns. In 
this paper, we deviate from classical risk measures and we define risk in terms of a worst case scenario for two 
reasons. First, symmetric risk measures incorporate undesirable properties. Positive deviations of returns from 
their means should not be considered as risk, as volatility implies. Second, considering risk as measured by worst 
case scenarios is seasonable given recent periods of economic turmoil. During periods of moderate economic 
changes, risk measures such as volatility or Value-at-Risk may be quite effective. In extreme economic periods 
however, an investor may prefer to be much more conservative. For both reasons, we consider the highest 
realized loss to be the risk that matters most for an investor and consequently, we apply this risk measure for 
portfolio optimization.  

Turning to first moments of return distributions, it has been shown in the past that estimating sample means 
suffers from serious problems. Slightly different mean estimates of asset returns can result in completely adverse 
portfolio positions. Literature proposes different ways to handle this estimation error. Minimax optimization not 
only implements a more appropriate risk measure for risk averse investors, but also avoids the major problem of 
estimating means.  

A typical investor that may apply the Minimax trading strategy is a corporation, a pension fund, or a bank that 
invests in several asset classes and that is due to high regulatory requirements such as Basel II and Basel III. This 
regulation may require daily risk management, according to standard risk measures such as the Value-at-Risk. 
Corporations and funds that obey such regulation fear to exceed the risk limit of their portfolio on too many days 
per year, implying higher capital requirements. Consequently, the Minimax strategy meets the needs of 
institutional investors that aim at minimizing daily investment losses.  

The second type of investor that needs to mimimize daily investment losses is an investor that is due to 
mark-to-market accounting, either for regulatory issues or, e.g., because of leveraged investment postitions that 
may trigger margin calls if the portfolio falls short of a certain level.  

In order to find an “optimal portfolio” that satisfies any risk-averse investor, different portfolio selection rules 
have been proposed by a large body of finance research. To be mentioned first, the naive 1/N allocation rule goes 
back to the fourth century  and survived until today. With this simple rule of thumb, one can obtain a 
well-diversified and risk reducing portfolio without having to estimate any model parameter. It is still a plausible 
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and “hard to beat” benchmark for newly proposed portfolio selection methods. DeMiguel et al. (2009) state and 
show that there are still “miles to go” to beat the 1/N strategy, in particular for sample-based mean-variance 
strategies.  

More and more of sophisticated asset allocation rules have been proposed over time. Markowitz (1952) derived 
the mean-variance theory, and still today, portfolio optimization based on the first two moments of the return is 
widely used. However, it suffers from serious caveats. First, it assumes either that the investor has an 
approximately quadratic utility function or that returns that are normally distributed and the investor’s utility 
function is exponential. Second, estimating moments via their sample analogues leads to extreme and fluctuating 
weights , and as a result, portfolios perform poorly out-of-sample, in particular when trading costs are considered 
or when return distributions deviate from normality; see, for instance, Michaud (1998). A large literature 
examines extensions of the popular mean-variance model to reduce estimation error, for instance the Bayesian 
approach. In such a framework, Kan and Zhou (2007) combine mean-variance, minimum variance portfolios as 
well as the risk-free asset in order to decrease the influence of estimation error on investor´s utility. Additionally, 
De Miguel et al. (2009a) show that imposing L2 norm constraints is equivalent to shrinking the covariance 
matrix. Lasso constraints are analyzed by Fan et al. (2012). For a summary of extensions to the mean-variance 
model, see DeMiguel et al. (2009b). We want to propose a trading strategy that fits any highly risk-averse 
investor, and to the best of our knowledge, we are the first to examine the performance of the Minimax strategy 
in a multi-asset-class portfolio choice context.  

The Minimax strategy is a “pessimistic” trading strategy, because it chooses portfolio weights such that portfolio 
payoff is maximized in the worst case scenario. In particular, we use one year of daily returns, and we run a 
Monte Carlo simulation in order to model different states of nature for all possible portfolios. Using the worst 
case scenario, i.e. the state of nature with the lowest portfolio return, we choose portfolio weights such that 
portfolio payoff is maximal. Then we use the optimal weights for the next period, and so forth.  

The first one that introduces the term “Minimax” in a portfolio context is Young (1998). He suggests linear 
programming for maximizing the minimum return of a portfolio based on historical returns, given a certain 
required minimum return. There have been earlier studies by, e.g., Sengupta (1982) and Lintner and Krasker 
(1982) on minimax optimization in portfolio choice. However, Young (1998) is the first to find that the Minimax 
model outperforms traditional mean-variance portfolios under a log-normal return distribution, and that it is 
compatible with expected utility maximization. There is a large body of research on linear programming models 
such as the Minimax model, and Mansini et al. (2003) provide a systemtatic overview as well as a discussion of 
their properties. Ding (2006) considers Minimax models without explicitly requiring a minimum return, as we 
will do in this paper.  

This literature also connects to ambiguity aversion, another branch of Finance research. Gilboa and Schmeidler 
(1989) model situations where a decision maker has not enough information to assume one single prior 
distribution and determines investor preference as utility function over a set of multiple prior distributions. 
Chateauneuf et al. (2005) derive the theoretical framework for some important applications of multiple priors. In 
a recent paper, Garlappi et al. (2007) use confidence intervals for expected returns to model decision-making 
under multiple priors. They also show that if ambiguity aversion goes to infinity, the resulting portfolio is the 
global minimum variance portfolio. We will see later that the minimum variance portfolio is the hardest 
benchmark to beat in terms of portfolio risk and portfolio performance. The closest study to ours is Tütüncü and 
Koenig (2004). They use uncertainty sets for the moments of returns to obtain portfolios with best worst case 
behavior. Still, in their numerical exercise, they only examine equity and fixed income securities. We contribute 
to the literature by showing that Minimax portfolio choice strategies are valid and practically implementable for 
a representative multi asset investor, and we compare the performance of our Minimax trading strategy to 
common alternative benchmarks.  

We use US stock, bond, real estate and commodity indexes to construct portfolios with yearly portfolio holding 
periods. Our representative investor is a multi asset investor that is due to stringent risk reporting–such as a large 
pension fund–and thus, cares about daily investment losses. The largest stake of US pension funds is invested in 
stocks and bonds. Yet, many funds diversify into real estate, commodities and other alternative investments as 
well. Looking at the Public Fund Survey (2009), we find that a representative US pension fund invested about 60% 
of its assets into stocks, about 20% into bonds, and the remaining part in other assets, such as real estate, private 
equity, hedge funds and commodities. Additionally, Belousova and Dorfleitner (2012) find that commodities add 
significant diversification potential to a portfolio of European stocks and bonds, and commodities can be 
particularly benefitial for risk-minimizing portfolio strategies. In order to compare our results to the US pension 
fund industry, we build a fixed weight benchmark that mimics a constant investment style of a representative US 
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pension fund. Of course, we also test our results against the naive diversification strategy, which invests one 
fourth of funds into each asset class. In addition, we construct benchmarks that are based on common alternative 
portfolio selection concepts: Mean-variance and minimum variance optimization.  

In our empirical analysis, we find outperformance of our Minimax-based portfolios against all other benchmarks 
considered. From a practical perspective, it is important to note that the weights of our Minimax trading strategy 
are stable over time and consequently, our Minimax strategy has a lower turnover than all mean-variance related 
strategies, even in the presence of short-selling constraints. This remark is noteworthy, because Minimax 
optimization leads to positive weights per definition, which is an appreciable feature from the viewpoint of a 
practitioner. Furthermore, the resulting Minimax portfolios are diversified across all considered asset classes 
with on average 11% invested in stocks, 54% invested in bonds, 15% invested in real estate and 15% in 
commodities, respectively.  

The paper is organized as follows. Section 2 explains the Minimax decision and Section 3 introduces our 
database. Section 4 provides our empirical results and Section 5 provides robustness checks for the results. 
Finally, Section 6 concludes.  

2. Portfolio Selection Based on Minimax Decision Rule 
Minimax optimal portfolios provide the best worst-case behavior. For a certain year with T trading days, let there 
be n risky assets with random daily returns Rt

(i) (i = 1, ..., n and t = 1, ..., T). Further we assume that the investor 
holds a fraction wi invested in each asset. The vector of weights W = (w1, ..., wn)′ should satisfy W′e = 1 (with e = 
(1, 1, ..., 1)′ being a (n × 1) vectors of ones), i.e. all weights should add up to one. In the following, we also 
assume that short-selling is not allowed (wi ≥ 0 for all i). This assumption is not problematic, since our 
representative investor is due to regulatory constraints, such that short-selling is not allowed for pension funds . 
Still, we relax this assumtion later on, and we examine the performance of all trading strategies in the presence 
of possible short-selling.  

Let W′Rt = ∑i = 1nwiRt
(i) be the portfolio payoff at day t, given the asset return vector Rt = (Rt

(1), …, Rt
(n))′ and a 

certain asset allocation W. To determine suitable weights for time t, a risk averse investor may solve the 
following Minimax optimization problem:  

(1) W* =  argmax W min τ ∈ {t − 1, ..., t − T} W′Rτ subject to W′e = 1 and wi ≥ 0. He considers the past T 
returns. In our application we set T = 250 to estimate the Minimax weights based on one year of daily returns. 
For any given asset allocation W there is a worst daily outcome of W′Rτ with τ ∈ {t − 1, …, t − T}. The 
Minimax portfolio is the asset allocation W* which corresponds to the maximum return (or smallest loss) in the 
class of minimum outcomes.  

2.1 Intuition 

To make Minimax optimizations more intuitive, in the following we want to show how the Minimax procedure 
works with only two asset classes. If we look at the upper panel of Figure 1, we can see the possible portfolio 
return outcome at one specific day. All possible portfolio allocations are located on the straight line. Either we 
put all invested funds into stocks, or we invest all funds into bonds, or we spread the funds across both assets. At 
this particular day, stock performance was better than bond performance. Now we look at another possible 
historical trading day (middle panel of Figure 1), and we see that at this particular trading day, stock performance 
was worse than bond performance. Now consider first the two extreme positions, being completely invested in 
stocks and being completely invested in bonds. If one is completely invested in stocks, the worst outcome occurs 
in the second day and corresponds to a gross return of about 0.85. One can improve this worst outcome by 
investing more into bonds. The worst outcome holding only bonds occurs in the first day with a gross return of 
0.75. Again, one would be better off holding a more diversified portfolio. To sum up, in this two asset example 
Minimax optimization would take the asset allocation that corresponds to the intersection of the two lines.  

In the last panel of Figure 1, we now see all possible portfolio allocations for the last 250 trading days. For any 
given asset allocation the worst outcome corresponds to the point with the lines closest to the point of origin. 
Going again from the extreme portfolios towards more diversified portfolios (from both sides), we end up in the 
scenario that yields the highest portfolio return, given the worst case scenario. In our case the Minimax portfolio 
is the asset allocation which corresponds to the returns at the kink, i.e. at about the coordinates (0.65 ⁄ 0.25). We 
find that excluding one single day would not alter the optimal weights strongly. The Minimax leads to stable 
weights even though it depends on the single worst outcome. The optimization procedure is repeated each year 
to determine the weights for the following year. 
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2.2 Relationship to Minimum Variance Portfolio  

Consider a return time series of length T, {rt}t  = 1
T where all returns follow the same distribution. The expected 

minimum is given by the corresponding quantile of the distribution, i.e. qα with α = 1 ⁄ T. Assume the returns 
follow a distribution such that the quantile can be expressed by qα = μ − zασα. This holds amongst others for the 
t − distribution. Now consider a combination of n returns W ′Rt with Rt = (rt

(1), …, rt
(n)), mean μ = (μ(1), …, μ(n)) 

and covariance matrix Σ. The quantile of the combination is given by  

(2) qα(W) = W ′μ − zα  √W ′ΣW  

If the investor applies the Minimum variance portfolio he supposes that the returns have a similar magnitude, i.e. 
μ(i) = μ(j). Under this assumption we find that the Minimax optimization is equivalent to the minimum variance 
optimization, i.e.  

(3) W⋆ = argmaxW , W
′
e  = 1 qα(W)  

(4)  = argmaxW , W
′
e  = 1W

′μ − zα√W ′ΣW  

(5)  = argmaxW , W
′
e  = 1μ − zα√W ′ΣW  

(6)  = argminW , W
′
e  = 1√W ′ΣW  

We have seen that for similar means and a “nice” distribution of the returns the Minimax is similar to the 
minimum variance portfolio.  

But why should an investor apply the Minimax instead of minimum variance portfolio? Mainly there are two 
advantages. Firstly, the Minimax asset allocation model adjusts quickly to structural shocks. Secondly, it 
implicitly considers the mean and not only the variance. We present the behavior by a structural shock to (i) the 
mean and to (ii) the variance. The reaction is shown in Figure 2. We consider two assets with daily returns Rt

(1), 
Rt

(2). In our simulation the uncorrelated normal returns have means μ(1) = μ(2) = 10 − 3 and variances σ(1) = σ(2) = 
10 − 5. The weights are estimated based on an estimation window of one year. As the returns are equal optimal 
weights are given by W* = (0.5, 0.5)′. In the period from year 1 to year 2 the Minimax as well as the minimum 
variance portfolio are close to the optimal weights. The top plot of Figure 2 shows the reaction of a large shock 
to the mean. Other things equal, at year 2 the mean return of asset 1 drops to μ t

(1) = − 5⋅10 − 3, t ≥ 2. We observe 
that the Minimax weight in asset 1 is immediately decreasing. After less than 4 month (about year 2.3) the 
Minimax is only invested in asset 2. The minimum variance portfolio decreases slowly its share in asset 1. Note 
that the decrease does not stem from the fact that the variance has changed (it has not) but from the bias in the 
mean estimate. At period t = 2.5 half of the returns of the estimation window have mean μ t

(1) = 10 − 3 (t ∈ (1.5, 2)) 
while the other half of the returns have mean μ t

(1) =  − 5⋅10 − 3 (t ∈ [2, 2.5)). The sample variance is high and the 
minimum variance portfolio invests less in asset 1. As the estimation window is one year, at t ≥ 3 there is no 
more bias and the minimum variance allocation is again the initial allocation: W = (0.5, 0.5)′. The Minimax 
optimization keeps excluding asset 1. At t ≥ 2 asset 1 is N( − 5⋅10 − 3, 10 − 5) distributed and asset 2 is N(10 − 3, 10 

− 5) distributed. The weights of the Minimax are hence more reasonable.  

The lower plot of figure 2 shows the behavior if a shock to the variance occurs. The returns are distributed as 
before, i.e. Rt

(i) ~ N(10 − 3, 10 − 5) for i ∈ {1, 2}. At year 2, a shock to the variance of asset 2 occurs, i.e. σ t
(2) = 

2⋅10 − 5 for t ≥ 2. Just before year 2 the Minimax portfolio readjusts from 0.55 to 0.475. About one month after 
the shock Minimax optimization reacts to the shock and decreases the weight in asset 2, i.e. W = (0.65, 0.35)′ for 
about t ≥ 2.2. Due to the large estimation window the minimum variance portfolio adjusts only slowly. Not until 
t ≥ 3 the minimum variance portfolio reaches its optimal weight of W = (2/3, 1/3). 

We find that the Minimax reacts quicker to structural breaks and avoids misspecifications as it also considers the 
mean.  
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Table 3. Descriptive statistics 

PERFORMANCE Geometric Return (%) Volatility (%) Sharpe Ratio 

Stocks 0.033 1.15 0.022 

Bonds 0.037 0.43 0.055 

Real Estate 0.040 1.66 0.024 

Commodities 0.018 1.37 0.009 

 

DISTRIBUTION Geom. Return (%) Min (%) Max (%) Skewness Kurtosis 

Stocks 0.033 -9.0 11.6 -0.01 9.46 

Bonds 0.037 -4.0 5.1 -0.66 8.29 

Real Estate 0.040 -18.3 18.6 0.48 23.53 

Commodities 0.018 -16.8 7.9 -0.41 7.48 

 

CORRELATION Stocks Bonds Real Estate 

Bonds -0.07   

Real Estate 0.65 -0.01  

Commodities 0.11 0.03 0.09 

 

All numbers are based on daily returns. Returns (%) are calculated geometrically. The Sharpe Ratio is calculated 
by substracting the daily risk-free rate from daily returns, and then dividing by their daily standard deviation. 
Min (%)/Max (%) is the minimum return/maximum return of all realizations in the sample period, denoted in 
percentage. Correlations are caculated unconditionally on the returns. All measures are calculated over the whole 
period of 1990 to 2010.  

We note that in the considered time period, real estate has been the asset class with the highest return, but also 
with the highest volatility. Especially during the financial crisis in 2008 we notice a heavy decline of US house 
prices. Also stock and commodity prices decreased during that time, in contrast to US bonds, which incorporate 
the lowest volatility of all four asset classes. Their volatility is only as high as 0.43% for daily prices, which is by 
far less than half of the volatility of stocks, real estate and commodities. Another risk measure, minimum return, 
indicates that bonds are less risky than stocks, real estate and commodities, losing only 4.0% in the worst trading 
day over the whole period. Bonds are also attractive, when we relate risk and return, looking at the Sharpe Ratio. 
Again, bonds outperform other asset classes. We can thus expect that bonds will play a major role in all 
risk-reducing optimizations.  

When we look at correlations between asset classes, we find that almost all asset classes exhibit low correlations. 
The only exception is a relatively high correlation between stocks and real estate. We conclude that this is 
because our real estate investment trust (REIT) is exchange-traded. We can thus further expect that a 
risk-reducing optimization will diversify funds across asset classes, since diversification potential is high due to 
low asset correlations.  

4. Empirical Results 
We now show results for our empirical analysis. Each year in January, we run the Minimax and mean-variance 
optimizations based on the last 250 trading days. We obtain optimal weights for each optimization strategy, and 
we hold a portfolio based on these optimal weights for one subsequent year. After this year, we evaluate the 
(out-of-sample) performance and, we rerun the optimization based on return realizations based on that particular 
year, and so on. Furthermore, we show results for the equal weights and fixed weights strategies, which merely 
reallocate funds to their predetermined shares. Table 4 presents results of performance and risk for all trading 
strategies.  

Looking at the out-of-sample performance of our portfolios, we can see that the mean-variance portfolio (with λ 
= 3) yields the highest return, but also the highest volatility. Neglecting the mean-variance portfolio, with an 
average daily return of 0.05% and a volatility of 0.54%, the Minimax strategy has the highest Sharpe Ratio. We 
can also see that the minimum variance portfolio has the lowest (out-of-sample) volatility, which is in line with 
the objective of minimum variance optimization, i.e., to minimize (in-sample) volatility. Interestingly, by 
diversifying funds widely across all asset classes, the naive strategies beat the mean-variance portfolio in terms 
of volatility, still the Minimax and the Minimum Variance strategies outperform naive diversification strategies 
not only in terms of risk, but even yield a higher return. All portfolios have lower Sharpe Ratios with respect to 
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Minimax (but mean-variance), and the difference of Sharpe Ratios with respect to Minimax is significant for all 
portfolios, except for minimum variance. All results are obtained by imposing short-selling constraints, which 
implicitely enhance the performance of mean-variance related competitors; see, for example, Jagannathan and 
Ma (2003). 

 

Table 4. Performance and risk results 

PERFORMANCE Return (%) Vola (%) Sharpe Ratio Excess Return Turnover CEV3 

Minimax 0.052 0.54 0.071 over Minimax (%) 9.2 4.8 

Minimum Variance 0.039 0.40 0.063 -0.013 9.9 3.7*** 

Equal Weights 0.040 0.78 0.032*** -0.012 0 3.0** 

Fixed Weights 0.040 0.77 0.034*** -0.012 0 3.1** 

Mean-Variance 0.105 0.97 0.094*** 0.053 26.4 9.1*** 

 

RISK Volatility (%) VaR(0.95) (%) VaR(0.99) (%) Max. Loss (%) 

Minimax 0.54 -0.57 -0.99 -2.06 

Minimum Variance 0.40 -0.54 -1.08 -2.63 

Equal Weights 0.78 -0.95 -2.29 -8.71 

Fixed Weights 0.77 -0.99 -2.07 -7.31 

Mean-Variance 0.97 -1.71 -3.59 -9.25 

 

All numbers are based on daily returns. Return (%) is calculated geometrically. The Sharpe Ratio is calculated by 
substracting the daily risk-free rate from daily returns, and then dividing by their daily standard deviation. 
Turnover is proxied by the sum of absolute deviations in weights before and after rebalancing. We rebalance 
portfolios every year, using past 250 trading days for our optimizations. CEV3 is the Certainty Equivalent for a 
mean-variance investor with risk aversion parameter λ = 3. VaR stands for Value-at-Risk, which indicates the 
minimum return (or equivalently, the maximum loss) for a certain significance level (95% or 99%). Based on the 
test of Ledoit and Wolf (2008) significant Sharpe Ratio and CEV3 differences of the alternative portfolio model 
and the Minimax at 1%,  5%,  10% level are denoted by ***, ** and *, respectively. Short-selling is not allowed 
for all optimizations. All measures are calculated over the whole period of 1990 to 2010. 

However, we have to bear in mind that this gain comes at the cost of rebalancing the portfolio from year to year. 
Active rebalancing leads to higher transaction costs, which may compensate the benefits of optimization and 
which works in favor of easy rule-of-thumb strategies with low portfolio turnover. The strategies with less 
turnover are by construction the equal weights and fixed weights strategies, which cause almost no transaction 
costs. We proxy turnover by the sum of total deviation in weights from one period to another:  

(9) TOt = ∑i  = 1
4∣wi , t − wi , t  − 1∣; 

Yet, we neglect here that asset prices change over time, so even naive strategies have slightly positive transaction 
costs, since portfolios have to be reset to their predetermined fixed allocation from year to year. Mean-variance 
portfolios have the highest turnover, which is more than 20 times as high as the turnover of minimum variance 
and Minimax strategies. This is not surprising, though. Literature shows that pure mean-variance related 
portfolio optimizations exhibit strongly fluctuating weights, which result in high transaction costs. Therefore, 
several approaches have been proposed to handle the problem of estimation error, which is mainly responsible 
for highly fluctuating weights. For instance, Ledoit and Wolf (2003, 2004) suggest to use a weighted average of 
the sample covariance and another estimator. By doing so, extreme weights can be prevented and thus, 
transaction costs can be substantially lowered. For practical implementation, transaction costs play a major role. 
Remember that our representative agent is a big US pension fund investing billions of dollars for its clients. A 
small reduction in costs is equivalent to saving a huge amount of money.  

Now it is interesting to compare turnover of our Minimax approach to minimum variance optimization. We can 
see that turnover is comparable, but still, turnover is slightly less for the proposed Minimax strategy. 

Last but not least, comparing the Certainty Equivalent of all strategies, we find that the Mean-Variance approach 
yields the highest CEV3 value out-of-sample, which is not surprising, too, since the Certainty Equivalent is a 
concept originating in the mean-variance theory of Markowitz (1952). Again, CEV3 differences of all portfolios 
with respect to Minimax are significant. To sum up the performance of our four portfolios, we find that Minimax 
is always best or second best, and thus, Minimax is very consistent across all performance measures used. Now 
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positively correlated with a correlation coefficient of 0.73. Only one other pair of portfolio strategies is as highly 
correlated. The high correlation indicates that the risk minimizing mechanisms must be similar, and it has also 
been shown theoretically that both strategies lead to almost the same optimal portfolio, if returns are normally 
distributed (see e.g. Young (1998), p. 675). Both Minimax and minimum variance hold the largest fraction of 
funds in bonds. We saw before that bonds have quite nice performance characteristics, they have the highest 
Sharpe Ratio and the lowest volatility. Thus, it is not surprising that, on average, a 54% share of Minimax 
portfolios and a 61% share of minimum variance portfolios is invested into this asset class. In contrast, Minimax 
invests a little more into real estate (15%) and commodities (15%) than the minimum variance strategy (9% and 
10%, respectively). The mean-variance strategy is on average heavily invested into real estate and commodities, 
while their share in stocks and bonds is only 20%. This, however, is a result of fluctuating weights in the 
mean-variance optimization, as we can see in Figure 6. Mean-variance portfolios always consist of only one 
asset class, which is held for one period. In contrast, Minimax and minimum variance strategies seem to be quite 
stable over time. Figure 6 plots the time series of portfolio weights.  

This figure shows portfolio weights for each asset class, resulting from Minimax, minimum variance and 
mean-variance optimizations. Rebalancing takes place every year. The number 1 on the abscissa corresponds to 
year 1991, since we need one year of historical returns (January 1990 to December 1990) for the optimizations.  
5. Robustness Checks 
In this section, we test our results for robustness. To do so, we slightly change Minimax as well as other 
optimization procedures, and we see that results basically stay the same.  

First, we rerun optimizations and fixed weight strategies for yearly returns, in contrast to daily returns. We 
provide results for the main performance measures in Appendix A Table 6 shows that when we look at yearly 
returns, the minimum variance portfolio dominates Minimax both in terms of risk and return. This is due to the 
return distribution. On the one hand, yearly returns are closer to the normality assumptions than daily returns, 
and thus, Minimax optimization loses its advantage in the very left part of the return distribution, because high 
portfolio losses are rare. On the other hand, the closeness to normality of portfolio return works in favor of 
optimizations using volatility as a symmetric risk measure. However, we see that Minimax is able to beat naive 
asset allocation stategies and therefore, is preferable from the point of view of big US pension funds. Again, we 
want to highlight the advantage of Minimax for daily periods of interest, for instance for institutional investors 
that are due to daily risk reporting.  

As a second robustness check, we want to consider a different rebalancing period. Up to now, we rebalance 
portfolios once a year, how it is commonly done in the literature, and our estimation window consists of 250 past 
observations. Now we want to consider a rolling windows approach: We rebalance every day, and again, the 
estimation window consists of 250 past observations. Results are provided in Appendix B shows that Minimax 
has the highest Sharpe Ratio. Again, and based on the Sharpe Ratio, we find outperformance of the Minimax 
portfolio selection over all considered benchmarks. For Minimax portfolio returns, volatility is slightly higher 
than for minimum variance portfolios, still returns are again higher. All other results stay qualitatively the same 
as in the base scenario with yearly rebalancing.  

In a third robustness check, we allow for short-selling, i.e. we do not require the asset weights to be positive. 
This obviously works against mean-variance related optimizations that suffer from estimation error. We can see 
results for optimizations in Appendix C shows performance and risk characteristics for our standard case, daily 
returns and yearly rebalancing. For minimum variance portfolios, allowance for short-selling does not change. 
For mean-variance portfolios, however, we can see that the portfolio risk increases substantially, as well as 
turnover, which is a result of large long and short positions in the portfolio. Such a portfolio is not preferable for 
our typical investor, since it holds substantial risk, and turnover is around 25 times higher than for minimum 
variance or Minimax portfolios. However, the mean-variance portfolio without short-selling restriction yields a 
Sharpe Ratio which is higher than that of its competitors. Again, the Sharpe Ratio for our Minimax portfolio is 
higher than that of minimum variance. Table 8 provides robustness checks for daily returns and daily rebalancing 
without short-selling restrictions. As expected, turnover increases in addition for all portfolios and yields 3818.9 
for the mean-variance portfolio, as opposed to around 40.4 and 46.5 for Minmax and minimum variance 
portfolios, respectively. Again, the Sharpe Ratio of Minimax exceeds the Sharpe Ratio of the mean-variance 
related strategies.  

The last robustness check is with respect to crises periods. In Appendix D, we analyze the performance of the 
Minimax portfolio and its competitors during crises periods. We consider the following crises: (1) the Internet 
bubble during 2000/2001, (2) the Terrorist attack in 9/11/2001, (3) the Banking crises during 2007/2008 and 
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subsequent (4) Economic recession during 2008–2010. The Minimax portfolio suffers of the smallest maximum 
loss in all crises but one. In all considered crises it has the largest or second largest CE3 performance. In all cases 
it achieves Sharpe ratio which is above average–sometimes best. We conclude that in particular for crises periods, 
the Minimax portfolio performs well.  
6. Conclusion 
In this paper, we propose a trading strategy called Minimax, which is based on pessimistic decision making and 
which suits a highly risk-averse investor. In particular, Minimax is an appropriate asset allocation optimization 
for big pension funds or other institutional investors that are due to daily risk reporting, either because of 
regulatory requirements or because of mark-to-market accounting. Maximizing the worst case payoff of a 
portfolio, Minimax strategies are practically easy to implement and constitute a proper alternative to common 
risk-minimizing optimizations such as minimum variance.  

We use US data on indexes of stocks, bonds, real estate and commodities from January 1990 to December 2010 
in order to calculate daily portfolio returns. We compare the proposed allocation strategy with alternative asset 
allocation strategies. Therefore, we calculate a minimum variance portfolio, which minimizes volatility within 
one year of historical daily returns, a mean-variance portfolio, an equal weights strategy, and a typical US 
pension fund portfolio, which imitates an asset allocation that a representative investor could possibly run.  

Our main result is that the proposed Minimax strategy outperforms all competitors, in terms of different risk and 
performance measures. We find the minimum variance portfolio to be the hardest competitor for Minimax, 
assuming a highly risk-averse agent, and portfolio characteristics of both strategies are comparable. We show 
that the particular advantage of the Minimax strategy is the avoidance of very large losses. Optimizations based 
on volatility as a symmetric risk measure such as minimum variance strategies fail to provide optimal portfolios 
with attractive performance characteristics, because they minimize not only negative, but also positive returns. 
Minimax, however, only cares about huge portfolio losses, and provides preferable performance characteristics 
by allowing positive portfolio returns. Naive portfolio allocation rules are not competitive to Minimax in terms 
of performance and risk. Still, this does not mean that naive portfolio allocation strategies are in general not 
appropriate for any investor. Studies show that many optimization strategies fail to beat simple rules of thumb, 
and by diversifying funds across different asset classes, one can reduce risk efficiently without imposing strong 
ex ante restrictions. Another advantage of fixed weight strategies, besides their simplicity and applicability, is 
low turnover. This feature makes them particularly interesting for long-term investors that face high transaction 
costs. Mean-variance optimization is not competitive to all above mentioned strategies, due to high estimation 
error.  

Considering portfolio characteristics, we find admirable features for portfolio weights that result from all 
strategies but from mean-variance optimization. Portfolio weights are relatively stable over time for Minimax 
and minimum variance, resulting in comparable turnover and transaction costs. Transaction costs are particularly 
high for the mean-variance portfolio, implied by high estimation error and extreme portfolio weights. Minimax 
and minimum variance portfolios both invest on average about 50-60% of their funds into bonds, while the rest 
of funds is spead across the remaining asset classes. By doing so, the resulting portfolios are satisfyingly 
diversified.  

In a last analysis, we check our results for robustness. For yearly returns (instead of daily returns), we lose 
dominance over the minimum variance strategy. This is particularly due to the fact that yearly returns are “closer 
to normality” than daily returns. In a scenario with normally distributed returns, portfolios based on Markowitz 
(1952) are shown to be optimal. We also check whether the chosen rebalancing period of one year has particular 
influence on our results. We show that using daily rebalancing, we obtain even better results as when using 
yearly rebalancing. Lastly, we allow for short-selling, which was constrained in all optimizations before. As 
expected, mean-variance weights fluctuate even more, resulting in high turnover and transaction costs. The 
dominance of Minimax over minimum variance portfolios remains.  

All results suggest that Minimax strategies provide an attractive alternative asset allocation optimization for a 
highly risk-averse investor that is concerned with daily risk management. Since Minimax prevents portfolios 
from realizing high extreme losses, institutional investors that are due to daily risk management can lower their 
daily portfolio risk. Additionally, Minimax strategies are easily implementable due to its simple algorithm and 
because exchange traded funds provide easy access to all considered asset classes.  
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Appendix  
Appendix A. Robustness Check: Yearly Returns  
Table A1. Robustness check: yearly returns 

PERFORMANCE Return (%) Vola (%) Sharpe Ratio Excess Return Turnover 

Minimax 11.2 10.3 0.739 over Minimax (%) 8.2 

Minimum Variance 11.9 9.3 0.900 +0.7 8.9 

Equal Weights 11.7 12.4 0.653 +0.5 0 

Fixed Weights 11.4 12.3 0.631 +0.2 0 

Mean-Variance 11.0 23.3 0.318 -0.2 30 

 

Table A2.  

RISK Volatility (%) VaR(0.95) (%) VaR(0.99) (%) Max. Loss (%) 

Minimax 10.3 -8.1 -10.8 -10.8 

Minimum Variance 9.3 -2.4 -4.3 -10.0 

Equal Weights 12.4 -17.6 -28.3 -28.3 

Fixed Weights 12.3 -14.9 -23.6 -36.9 

Mean-Variance 23.3 -37.6 -45.0 -45.0 

 

All numbers are based on yearly returns. Return (%) is calculated geometrically. The Sharpe Ratio is calculated 
by substracting the yearly risk-free rate from yearly returns, and then dividing by their yearly standard deviation. 
Turnover is proxied by the sum of absolute deviations in weights before and after rebalancing. We rebalance 
portfolios every year, using past 250 trading days for our optimizations. VaR stands for Value-at-Risk, which 
indicates the minimum return (or equivalently, the maximum loss) for a certain significance level (95% or 99%). 
Short-selling is not allowed for all optimizations. All measures are calculated over the whole period of 1990 to 
2010.  
 
Appendix B. Robustness Check: Daily Rebalancing  
Table B1. Robustness check: daily rebalancing 

PERFORMANCE Return (%) Vola (%) Sharpe Ratio Excess Return Turnover CEV3 

Minimax 0.04 0.44 0.058 over Minimax (%) 40.4 3.7 

Minimum Variance 0.04 0.42 0.057 -0.002 41.8 3.6 

Equal Weights 0.04 0.79 0.036 +0.003 0 3.4 

Fixed Weights 0.04 0.77 0.036 +0.002 0 3.3 

Mean-Variance 0.06 0.94 0.052 +0.023 394.7 4.9 

 

Table B2. 

RISK Volatility (%) VaR(0.95) (%) VaR(0.99) (%) Max. Loss (%) 

Minimax 0.44 -0.6 -1.0 -2.1 

Minimum Variance 0.42 -0.5 -1.1 -2.6 

Equal Weights 0.79 -0.9 -2.3 -8.7 

Fixed Weights 0.77 -1.0 -2.1 -7.3 

Mean-Variance 0.94 -1.7 -3.6 -16.8 

 

All numbers are based on daily returns. Return (%) is calculated geometrically. The Sharpe Ratio is calculated by 
substracting the daily risk-free rate from daily returns, and then dividing by their daily standard deviation. 
Turnover is proxied by the sum of absolute deviations in weights before and after rebalancing. We rebalance 
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portfolios every day, using past 250 trading days for our optimizations. CEV3 is the Certainty Equivalent for a 
mean-variance investor with risk aversion parameter λ = 3. VaR stands for Value-at-Risk, which indicates the 
minimum return (or equivalently, the maximum loss) for a certain significance level (95% or 99%). Short-selling 
is not allowed for all optimizations. All measures are calculated over the whole period of 1990 to 2010.  

 

Appendix C. Robustness Check: Short-Selling Allowed 
Table C1. Robustness check: short-selling allowed (daily returns, yearly rebalancing) 

PERFORMANCE Return (%) Vola (%) Sharpe Ratio Excess Return Turnover CEV3 

Minimax 0.05 0.54 0.071 over Minimax (%) 9.2 4.8 

Minimum Variance 0.04 0.40 0.063 -0.013 10.2 3.8 

Mean-Variance 0.58 4.30 0.131 +0.530 243.3 39.2 

 

Table C2.  

RISK Volatility (%) VaR(0.95) (%) VaR(0.99) (%) Max. Loss (%) 

Minimax 0.54 -0.6 -1.0 -2.1 

Minimum Variance 0.40 -0.5 -1.1 -2.6 

Mean-Variance 4.30 -6.0 -10.7 -31.9 

 

Table C3.  

PERFORMANCE Return (%) Vola (%) Sharpe Ratio Excess Return Turnover CEV3 

Minimax 0.04 0.44 0.058 over Minimax (%) 40.4 3.7 

Minimum Variance 0.04 0.57 0.045 0.000 46.5 3.6 

Mean-Variance 0.21 4.90 0.040 +0.170 3818.9 -2.9 

 

Table C4.  

RISK Volatility (%) VaR(0.95) (%) VaR(0.99) (%) Max. Loss (%) 

Minimax 0.44 -0.6 -1.0 -2.1 

Minimum Variance 0.57 -0.6 -1.1 -14.7 

Mean-Variance 4.90 -7.0 -12.7 -60.3 

 

All numbers are based on daily returns. Return (%) is calculated geometrically. The Sharpe Ratio is calculated by 
substracting the daily risk-free rate from daily returns, and then dividing by their daily standard deviation. 
Turnover is proxied by the sum of absolute deviations in weights before and after rebalancing. We rebalance 
portfolios every year in Table C3 and every day in Table C4, using past 250 trading days for our optimizations. 
CEV3 is the Certainty Equivalent for a mean-variance investor with risk aversion parameter λ = 3. VaR stands 
for Value-at-Risk, which indicates the minimum return (or equivalently, the maximum loss) for a certain 
significance level (95% or 99%). Short-selling is allowed for all optimizations. All measures are calculated over 
the whole period of 1990 to 2010.  
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Appendix D. Robustness Check: Crises Periods  
Table D1. Performance in crises 

 Internet bubble 2000/2001 Terrorist attack 9/11/2001 Banking crisis 2007/2008 Recession 2008-2010 

CE3 SR Max. 

Loss 

CE3 SR Max. 

Loss 

CE3 SR Max. 

Loss 

CE3 SR Max. 

Loss 

Minimax 8.1 0.104 1.71 3.6 0.045 1.50 3.9 0.073 1.05 4.6 0.076 2.06 

MIV 7.7 0.107 1.89 3.8 0.046 1.56 3.7 0.077 1.31 4.5 0.074 2.05 

EW 5.9 0.059 5.06 2.7 0.031 1.62 2.3 0.024 1.89 -2.9 -0.006 8.71 

FW 2.6 0.029 6.01 1.7 0.015 1.78 2.6 0.029 1.93 -1.7 -0.004 7.31 

MV 8.5 0.075 4.48 -4.2 -0.016 3.20 10.8 0.105 3.01 7.0 0.075 3.10 

Note. This table reports out-of-sample performance (CE3, SR, Max. Loss in %) for the Minimax portfolio and its competitors in several 

crises periods. We analyze the following crises: (1) Internet bubble 2000/2001, (2) Terrorist attack 9/11/2001, (3) Banking crises 2007/2008 

and (4) Economic recession 2008–2010.  
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