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Abstract

We propose a fund allocation strategy for a highly risk-averse investor based on pessimistic decision making to
construct portfolios of four major asset classes. Using US data (indexes of stocks, bonds, real estate, and
commodities) from January 1990 to December 2010, we find that the proposed Minimax strategy performs well
out-of-sample with respect to standard risk measures. Its performance is better than common alternative trading
strategies such as fixed weights, minimum variance, or mean-variance methods. Portfolio weights are stable
across time, resulting in lower turnover than any mean-variance related strategy. Finally, we find that optimal
portfolios are widely diversified across all asset classes. This study suggests that the proposed Minimax strategy
is implementable in portfolio management, and of special importance for investors with daily risk management.

Keywords: minimax, maximin, portfolio selection, portfolio management, portfolio choice
1. Introduction

Taking risk is usually accompanied by obtaining economic gains. In portfolio management, an investor typically
trades risk against profits, according to his preference. However, in this trade-off it is fundamental to define “risk”
appropriately. In the typical mean-variance model of Markowitz (1952), risk is defined as variation in returns. In
this paper, we deviate from classical risk measures and we define risk in terms of a worst case scenario for two
reasons. First, symmetric risk measures incorporate undesirable properties. Positive deviations of returns from
their means should not be considered as risk, as volatility implies. Second, considering risk as measured by worst
case scenarios is seasonable given recent periods of economic turmoil. During periods of moderate economic
changes, risk measures such as volatility or Value-at-Risk may be quite effective. In extreme economic periods
however, an investor may prefer to be much more conservative. For both reasons, we consider the highest
realized loss to be the risk that matters most for an investor and consequently, we apply this risk measure for
portfolio optimization.

Turning to first moments of return distributions, it has been shown in the past that estimating sample means
suffers from serious problems. Slightly different mean estimates of asset returns can result in completely adverse
portfolio positions. Literature proposes different ways to handle this estimation error. Minimax optimization not
only implements a more appropriate risk measure for risk averse investors, but also avoids the major problem of
estimating means.

A typical investor that may apply the Minimax trading strategy is a corporation, a pension fund, or a bank that
invests in several asset classes and that is due to high regulatory requirements such as Basel II and Basel III. This
regulation may require daily risk management, according to standard risk measures such as the Value-at-Risk.
Corporations and funds that obey such regulation fear to exceed the risk limit of their portfolio on too many days
per year, implying higher capital requirements. Consequently, the Minimax strategy meets the needs of
institutional investors that aim at minimizing daily investment losses.

The second type of investor that needs to mimimize daily investment losses is an investor that is due to
mark-to-market accounting, either for regulatory issues or, e.g., because of leveraged investment postitions that
may trigger margin calls if the portfolio falls short of a certain level.

In order to find an “optimal portfolio” that satisfies any risk-averse investor, different portfolio selection rules
have been proposed by a large body of finance research. To be mentioned first, the naive 1/N allocation rule goes
back to the fourth century and survived until today. With this simple rule of thumb, one can obtain a
well-diversified and risk reducing portfolio without having to estimate any model parameter. It is still a plausible
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and “hard to beat” benchmark for newly proposed portfolio selection methods. DeMiguel et al. (2009) state and
show that there are still “miles to go” to beat the 1/N strategy, in particular for sample-based mean-variance
strategies.

More and more of sophisticated asset allocation rules have been proposed over time. Markowitz (1952) derived
the mean-variance theory, and still today, portfolio optimization based on the first two moments of the return is
widely used. However, it suffers from serious caveats. First, it assumes either that the investor has an
approximately quadratic utility function or that returns that are normally distributed and the investor’s utility
function is exponential. Second, estimating moments via their sample analogues leads to extreme and fluctuating
weights, and as a result, portfolios perform poorly out-of-sample, in particular when trading costs are considered
or when return distributions deviate from normality; see, for instance, Michaud (1998). A large literature
examines extensions of the popular mean-variance model to reduce estimation error, for instance the Bayesian
approach. In such a framework, Kan and Zhou (2007) combine mean-variance, minimum variance portfolios as
well as the risk-free asset in order to decrease the influence of estimation error on investor’s utility. Additionally,
De Miguel et al. (2009a) show that imposing L2 norm constraints is equivalent to shrinking the covariance
matrix. Lasso constraints are analyzed by Fan et al. (2012). For a summary of extensions to the mean-variance
model, see DeMiguel et al. (2009b). We want to propose a trading strategy that fits any highly risk-averse
investor, and to the best of our knowledge, we are the first to examine the performance of the Minimax strategy
in a multi-asset-class portfolio choice context.

The Minimax strategy is a “pessimistic” trading strategy, because it chooses portfolio weights such that portfolio
payoff is maximized in the worst case scenario. In particular, we use one year of daily returns, and we run a
Monte Carlo simulation in order to model different states of nature for all possible portfolios. Using the worst
case scenario, i.e. the state of nature with the lowest portfolio return, we choose portfolio weights such that
portfolio payoff is maximal. Then we use the optimal weights for the next period, and so forth.

The first one that introduces the term “Minimax” in a portfolio context is Young (1998). He suggests linear
programming for maximizing the minimum return of a portfolio based on historical returns, given a certain
required minimum return. There have been earlier studies by, e.g., Sengupta (1982) and Lintner and Krasker
(1982) on minimax optimization in portfolio choice. However, Young (1998) is the first to find that the Minimax
model outperforms traditional mean-variance portfolios under a log-normal return distribution, and that it is
compatible with expected utility maximization. There is a large body of research on linear programming models
such as the Minimax model, and Mansini et al. (2003) provide a systemtatic overview as well as a discussion of
their properties. Ding (2006) considers Minimax models without explicitly requiring a minimum return, as we
will do in this paper.

This literature also connects to ambiguity aversion, another branch of Finance research. Gilboa and Schmeidler
(1989) model situations where a decision maker has not enough information to assume one single prior
distribution and determines investor preference as utility function over a set of multiple prior distributions.
Chateauneuf et al. (2005) derive the theoretical framework for some important applications of multiple priors. In
a recent paper, Garlappi et al. (2007) use confidence intervals for expected returns to model decision-making
under multiple priors. They also show that if ambiguity aversion goes to infinity, the resulting portfolio is the
global minimum variance portfolio. We will see later that the minimum variance portfolio is the hardest
benchmark to beat in terms of portfolio risk and portfolio performance. The closest study to ours is Tiitlincii and
Koenig (2004). They use uncertainty sets for the moments of returns to obtain portfolios with best worst case
behavior. Still, in their numerical exercise, they only examine equity and fixed income securities. We contribute
to the literature by showing that Minimax portfolio choice strategies are valid and practically implementable for
a representative multi asset investor, and we compare the performance of our Minimax trading strategy to
common alternative benchmarks.

We use US stock, bond, real estate and commodity indexes to construct portfolios with yearly portfolio holding
periods. Our representative investor is a multi asset investor that is due to stringent risk reporting—such as a large
pension fund—and thus, cares about daily investment losses. The largest stake of US pension funds is invested in
stocks and bonds. Yet, many funds diversify into real estate, commodities and other alternative investments as
well. Looking at the Public Fund Survey (2009), we find that a representative US pension fund invested about 60%
of its assets into stocks, about 20% into bonds, and the remaining part in other assets, such as real estate, private
equity, hedge funds and commodities. Additionally, Belousova and Dorfleitner (2012) find that commodities add
significant diversification potential to a portfolio of European stocks and bonds, and commodities can be
particularly benefitial for risk-minimizing portfolio strategies. In order to compare our results to the US pension
fund industry, we build a fixed weight benchmark that mimics a constant investment style of a representative US
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pension fund. Of course, we also test our results against the naive diversification strategy, which invests one
fourth of funds into each asset class. In addition, we construct benchmarks that are based on common alternative
portfolio selection concepts: Mean-variance and minimum variance optimization.

In our empirical analysis, we find outperformance of our Minimax-based portfolios against all other benchmarks
considered. From a practical perspective, it is important to note that the weights of our Minimax trading strategy
are stable over time and consequently, our Minimax strategy has a lower turnover than all mean-variance related
strategies, even in the presence of short-selling constraints. This remark is noteworthy, because Minimax
optimization leads to positive weights per definition, which is an appreciable feature from the viewpoint of a
practitioner. Furthermore, the resulting Minimax portfolios are diversified across all considered asset classes
with on average 11% invested in stocks, 54% invested in bonds, 15% invested in real estate and 15% in
commodities, respectively.

The paper is organized as follows. Section 2 explains the Minimax decision and Section 3 introduces our
database. Section 4 provides our empirical results and Section 5 provides robustness checks for the results.
Finally, Section 6 concludes.

2. Portfolio Selection Based on Minimax Decision Rule

Minimax optimal portfolios provide the best worst-case behavior. For a certain year with T trading days, let there
be n risky assets with random daily returns R (i=1,..,nand t=1, .., T). Further we assume that the investor
holds a fraction w; invested in each asset. The vector of weights W = (wy, ..., w,)’ should satisfy W'e =1 (with e =
(1,1, ..., 1) being a (n x 1) vectors of ones), i.e. all weights should add up to one. In the following, we also
assume that short-selling is not allowed (w;>0 for all 7). This assumption is not problematic, since our
representative investor is due to regulatory constraints, such that short-selling is not allowed for pension funds.
Still, we relax this assumtion later on, and we examine the performance of all trading strategies in the presence

of possible short-selling.

Let W'R,=Y,;= I"w:R,” be the portfolio payoff at day t, given the asset return vector R, = (R”, ..., R’) and a
certain asset allocation W. To determine suitable weights for time t, a risk averse investor may solve the
following Minimax optimization problem:

(1) W*= argmax W min t € {t—1,...,t—T} W'R, subject to W'e=1 and w;>0. He considers the past T
returns. In our application we set T =250 to estimate the Minimax weights based on one year of daily returns.
For any given asset allocation W there is a worst daily outcome of W'Rt with t € {t—1,...,t—T}. The
Minimax portfolio is the asset allocation W* which corresponds to the maximum return (or smallest loss) in the
class of minimum outcomes.

2.1 Intuition

To make Minimax optimizations more intuitive, in the following we want to show how the Minimax procedure
works with only two asset classes. If we look at the upper panel of Figure 1, we can see the possible portfolio
return outcome at one specific day. All possible portfolio allocations are located on the straight line. Either we
put all invested funds into stocks, or we invest all funds into bonds, or we spread the funds across both assets. At
this particular day, stock performance was better than bond performance. Now we look at another possible
historical trading day (middle panel of Figure 1), and we see that at this particular trading day, stock performance
was worse than bond performance. Now consider first the two extreme positions, being completely invested in
stocks and being completely invested in bonds. If one is completely invested in stocks, the worst outcome occurs
in the second day and corresponds to a gross return of about 0.85. One can improve this worst outcome by
investing more into bonds. The worst outcome holding only bonds occurs in the first day with a gross return of
0.75. Again, one would be better off holding a more diversified portfolio. To sum up, in this two asset example
Minimax optimization would take the asset allocation that corresponds to the intersection of the two lines.

In the last panel of Figure 1, we now see all possible portfolio allocations for the last 250 trading days. For any
given asset allocation the worst outcome corresponds to the point with the lines closest to the point of origin.
Going again from the extreme portfolios towards more diversified portfolios (from both sides), we end up in the
scenario that yields the highest portfolio return, given the worst case scenario. In our case the Minimax portfolio
is the asset allocation which corresponds to the returns at the kink, i.e. at about the coordinates (0.65/0.25). We
find that excluding one single day would not alter the optimal weights strongly. The Minimax leads to stable
weights even though it depends on the single worst outcome. The optimization procedure is repeated each year
to determine the weights for the following year.
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Figure 1. Illustration of minimax for two asset classes
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2.2 Relationship to Minimum Variance Portfolio

Consider a return time series of length T, {r,}, - \T where all returns follow the same distribution. The expected
minimum is given by the corresponding quantile of the distribution, i.e. ¢, with a =1/T. Assume the returns
follow a distribution such that the quantile can be expressed by ¢, = ¢ — z,0,. This holds amongst others for the
¢ — distribution. Now consider a combination of n returns W'R, with R, = (", ..., #”), mean U= (,u(l), e ,u(”))
and covariance matrix X. The quantile of the combination is given by

©2) qu(W) =Wy —z, N\WEW

If the investor applies the Minimum variance portfolio he supposes that the returns have a similar magnitude, i.e.
1= Under this assumption we find that the Minimax optimization is equivalent to the minimum variance
optimization, i.e.

(3) W* = argmaxy, We=1 q.(W)

(4) =argmaxy, - Wy — 2 \NWEW
(5) =argmaxy, We— W= za\/W'EW
(6) = argminy, .- NWEIW

We have seen that for similar means and a “nice” distribution of the returns the Minimax is similar to the
minimum variance portfolio.

But why should an investor apply the Minimax instead of minimum variance portfolio? Mainly there are two
advantages. Firstly, the Minimax asset allocation model adjusts quickly to structural shocks. Secondly, it
implicitly considers the mean and not only the variance. We present the behavior by a structural shock to (i) the
mean and to (ii) the variance. The reaction is shown in Figure 2. We consider two assets with daily returns R,
R,®. In our simulation the uncorrelated normal returns have means " = z® =107 and variances ¢ = ¢ =
10°. The weights are estimated based on an estimation window of one year. As the returns are equal optimal
weights are given by W = (0.5, 0.5). In the period from year 1 to year 2 the Minimax as well as the minimum
variance portfolio are close to the optimal weights. The top plot of Figure 2 shows the reaction of a large shock
to the mean. Other things equal, at year 2 the mean return of asset 1 drops to " =—5-1077, 1 > 2. We observe
that the Minimax weight in asset 1 is immediately decreasing. After less than 4 month (about year 2.3) the
Minimax is only invested in asset 2. The minimum variance portfolio decreases slowly its share in asset 1. Note
that the decrease does not stem from the fact that the variance has changed (it has not) but from the bias in the
mean estimate. At period ¢ = 2.5 half of the returns of the estimation window have mean x,'" =107 (1 € (1.5, 2))
while the other half of the returns have mean (" = —5-107° (¢ € [2, 2.5)). The sample variance is high and the
minimum variance portfolio invests less in asset 1. As the estimation window is one year, at ¢ > 3 there is no
more bias and the minimum variance allocation is again the initial allocation: W = (0.5, 0.5). The Minimax
optimization keeps excluding asset 1. At # >2 asset 1 is N(—5-10*, 10 °) distributed and asset 2 is N(10 >, 10
%) distributed. The weights of the Minimax are hence more reasonable.

The lower plot of figure 2 shows the behavior if a shock to the variance occurs. The returns are distributed as
before, i.e. R, ~N(1073,1077) for i € {1,2}. At year 2, a shock to the variance of asset 2 occurs, i.e. @ =
2107 for ¢ > 2. Just before year 2 the Minimax portfolio readjusts from 0.55 to 0.475. About one month after
the shock Minimax optimization reacts to the shock and decreases the weight in asset 2, i.e. W = (0.65, 0.35) for
about # > 2.2. Due to the large estimation window the minimum variance portfolio adjusts only slowly. Not until
t > 3 the minimum variance portfolio reaches its optimal weight of W = (2/3, 1/3).

We find that the Minimax reacts quicker to structural breaks and avoids misspecifications as it also considers the
mean.
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Figure 2. Structural shocks to mean and variance: minimax and minimum variance portfolios

The figure shows the weights of the Minimax and Minimum Variance (MinVar) portfolio under a structural shock to the mean
(top plot) and the variance (lower plot) at # =2. The y — axis represents the weight for asset 1 (the weight for asset 2 is hence
given by 1 — y). The x — axis denotes the time (in years). The returns of both assets i € {1, 2} are N(u”, 6" distributed with
#D=10"%and ¢V = 107>, At year 2 there is a lasting shift of the mean x" = —5-10 2 (top plot) and the variance ¢'® =

2-10 7 (lower plot), respectively.
2.3 Benchmark Models for Minimax Trading Strategy

We test several benchmark models to compete against the proposed Minimax trading strategy. The benchmark
models are chosen according to their relevance in the literature. We additionally show results for the “fixed
weights” strategy, in order to mimick a representative investor’s trading strategy. This fixed weights strategy is
based on average holdings of US pension funds and invests 60% into stocks, 20% into bonds, 10% into real
estate and 10% into commodities, respectively.

A strategy that is closely related to the fixed weights strategy is the equal weights strategy. Here we apply the
naive -rule of thumb to allocate funds to different asset classes. Since n =4 in our case, we invest 25% of total
funds into each asset class every year. One advantage of both strategies is obvious: Transaction costs are
negligible. And as DeMiguel et al. (2009) state, the naive -rule is still hard to beat for any optimization, since
estimation error does not exist.

Now we introduce the mean-variance related trading strategies that we are going to test our model against in the
following section. First of all, we introduce the minimum variance portfolio as the competitor that is most likely
to beat the Minimax trading strategy for the following reasons. A body of literature is written on problems in
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mean-variance optimization due to estimation of expected returns. Small deviations of expected returns from
realized returns result in high fluctuating weights. Jagannathan and Ma (2003) therefore propose to just ignore
expected returns and use the minimum variance portfolio instead. It mimimizes the risk of a portfolio and
therefore is a suitable strategy for any highly risk-averse investor. The main difference to Minimax is the risk
measure, which is symmetric (volatility). In particular, the minimum variance optimization is given as

(7) miny WEW;
subject to W'e = 1 and w; > 0, with X beeing the 4 x 4 variance-covariance matrix of our four asset classes.

The last strategy that we want to test our Minimax strategy against is the mean-variance strategy. It is based on
Markowitz (1952) and relates risk and return as given in the following optimization:

(8) maxy Wu — AWEW,

subject to We = 1 and w; > 0. We calculate mean-variance optimal portfolios based on a risk-aversion parameter
of three, i.e. 1 = 3 (as commonly chosen, see e.g., Kan & Zhou, 2007).

3. Data

To form portfolios, we use indexes on four major asset classes that big US pension funds commonly and mainly
invest in: stocks, bonds, real estate and commodities. We notice that a major share of pension funds actually
invests in more asset classes (e.g., in hedge funds). We do only consider stocks, bonds, real estate and
commodities for two reasons: First, the share invested in alternative asset classes is relatively small with about
5%. Second, in our Minimax optimization, we are limited to a certain number of asset classes due to
computational issues, and four asset classes turn out to be still feasible.

Our database is Thomson Datastream, and we download daily prices of performance indexes on the four asset
classes. For stocks, we consider the total return (dividends included) on the S&P 500 index. Bond performance is
measured by the Barclays Aggregate Bond index, also in terms of a total return index. For real estate, we use the
Datastream US real estate index, which is an appropriate proxy for the US real estate market. We note that
pension funds also may directly own residential and commercial real estate. However, we lack daily prices and
therefore rather consider the performance of a real estate investment trust, where daily valuation is available.
Commodity market performance is proxied by the common used S&P GSCI index, which is widely diversified
across commodities. Finally, we take the yields on a 90-day Treasury Bill as a proxy for the risk-free rate.

Our indexes cover 21 years from January 1990 to December 2010, resulting in 5480 daily observations. We
provide the performance of all asset classes in Figure 3 and descriptive statistics for all asset classes in Table 3.
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Figure 3. Performance of asset classes

Note. The figure shows the time series of one dollar invested into each asset class in January 1990. Sample period is January 1990 to
December 2010.
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Table 3. Descriptive statistics

PERFORMANCE Geometric Return (%) Volatility (%) Sharpe Ratio
Stocks 0.033 1.15 0.022
Bonds 0.037 0.43 0.055
Real Estate 0.040 1.66 0.024
Commodities 0.018 1.37 0.009

DISTRIBUTION Geom. Return (%) Min (%) Max (%) Skewness Kurtosis

Stocks 0.033 -9.0 11.6 -0.01 9.46
Bonds 0.037 -4.0 5.1 -0.66 8.29
Real Estate 0.040 -18.3 18.6 0.48 23.53
Commodities 0.018 -16.8 7.9 -0.41 7.48

CORRELATION Stocks Bonds Real Estate

Bonds -0.07
Real Estate 0.65 -0.01
Commodities 0.11 0.03 0.09

All numbers are based on daily returns. Returns (%) are calculated geometrically. The Sharpe Ratio is calculated
by substracting the daily risk-free rate from daily returns, and then dividing by their daily standard deviation.
Min (%)/Max (%) is the minimum return/maximum return of all realizations in the sample period, denoted in
percentage. Correlations are caculated unconditionally on the returns. All measures are calculated over the whole
period of 1990 to 2010.

We note that in the considered time period, real estate has been the asset class with the highest return, but also
with the highest volatility. Especially during the financial crisis in 2008 we notice a heavy decline of US house
prices. Also stock and commodity prices decreased during that time, in contrast to US bonds, which incorporate
the lowest volatility of all four asset classes. Their volatility is only as high as 0.43% for daily prices, which is by
far less than half of the volatility of stocks, real estate and commodities. Another risk measure, minimum return,
indicates that bonds are less risky than stocks, real estate and commodities, losing only 4.0% in the worst trading
day over the whole period. Bonds are also attractive, when we relate risk and return, looking at the Sharpe Ratio.
Again, bonds outperform other asset classes. We can thus expect that bonds will play a major role in all
risk-reducing optimizations.

When we look at correlations between asset classes, we find that almost all asset classes exhibit low correlations.
The only exception is a relatively high correlation between stocks and real estate. We conclude that this is
because our real estate investment trust (REIT) is exchange-traded. We can thus further expect that a
risk-reducing optimization will diversify funds across asset classes, since diversification potential is high due to
low asset correlations.

4. Empirical Results

We now show results for our empirical analysis. Each year in January, we run the Minimax and mean-variance
optimizations based on the last 250 trading days. We obtain optimal weights for each optimization strategy, and
we hold a portfolio based on these optimal weights for one subsequent year. After this year, we evaluate the
(out-of-sample) performance and, we rerun the optimization based on return realizations based on that particular
year, and so on. Furthermore, we show results for the equal weights and fixed weights strategies, which merely
reallocate funds to their predetermined shares. Table 4 presents results of performance and risk for all trading
strategies.

Looking at the out-of-sample performance of our portfolios, we can see that the mean-variance portfolio (with 4
= 3) yields the highest return, but also the highest volatility. Neglecting the mean-variance portfolio, with an
average daily return of 0.05% and a volatility of 0.54%, the Minimax strategy has the highest Sharpe Ratio. We
can also see that the minimum variance portfolio has the lowest (out-of-sample) volatility, which is in line with
the objective of minimum variance optimization, i.e., to minimize (in-sample) volatility. Interestingly, by
diversifying funds widely across all asset classes, the naive strategies beat the mean-variance portfolio in terms
of volatility, still the Minimax and the Minimum Variance strategies outperform naive diversification strategies
not only in terms of risk, but even yield a higher return. All portfolios have lower Sharpe Ratios with respect to
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Minimax (but mean-variance), and the difference of Sharpe Ratios with respect to Minimax is significant for all
portfolios, except for minimum variance. All results are obtained by imposing short-selling constraints, which
implicitely enhance the performance of mean-variance related competitors; see, for example, Jagannathan and
Ma (2003).

Table 4. Performance and risk results

PERFORMANCE Return (%) Vola (%) Sharpe Ratio  Excess Return Turnover CEV3
Minimax 0.052 0.54 0.071 over Minimax (%) 9.2 4.8
Minimum Variance 0.039 0.40 0.063 -0.013 9.9 3. 7HA*
Equal Weights 0.040 0.78 0.032%%** -0.012 0 3.0%*
Fixed Weights 0.040 0.77 0.034%%** -0.012 0 3.1%*
Mean-Variance 0.105 0.97 0.094*** 0.053 26.4 9.1%**

RISK Volatility (%) VaR(0.95) (%) VaR(0.99) (%) Max. Loss (%)

Minimax 0.54 -0.57 -0.99 -2.06

Minimum Variance 0.40 -0.54 -1.08 -2.63

Equal Weights 0.78 -0.95 -2.29 -8.71

Fixed Weights 0.77 -0.99 -2.07 -7.31

Mean-Variance 0.97 -1.71 -3.59 -9.25

All numbers are based on daily returns. Return (%) is calculated geometrically. The Sharpe Ratio is calculated by
substracting the daily risk-free rate from daily returns, and then dividing by their daily standard deviation.
Turnover is proxied by the sum of absolute deviations in weights before and after rebalancing. We rebalance
portfolios every year, using past 250 trading days for our optimizations. CEV3 is the Certainty Equivalent for a
mean-variance investor with risk aversion parameter 4 = 3. VaR stands for Value-at-Risk, which indicates the
minimum return (or equivalently, the maximum loss) for a certain significance level (95% or 99%). Based on the
test of Ledoit and Wolf (2008) significant Sharpe Ratio and CEV3 differences of the alternative portfolio model
and the Minimax at 1%, 5%, 10% level are denoted by ***, ** and *, respectively. Short-selling is not allowed
for all optimizations. All measures are calculated over the whole period of 1990 to 2010.

However, we have to bear in mind that this gain comes at the cost of rebalancing the portfolio from year to year.
Active rebalancing leads to higher transaction costs, which may compensate the benefits of optimization and
which works in favor of easy rule-of-thumb strategies with low portfolio turnover. The strategies with less
turnover are by construction the equal weights and fixed weights strategies, which cause almost no transaction
costs. We proxy turnover by the sum of total deviation in weights from one period to another:

) 10, ZZi:14|Wi,t - Wi,t—ll;

Yet, we neglect here that asset prices change over time, so even naive strategies have slightly positive transaction
costs, since portfolios have to be reset to their predetermined fixed allocation from year to year. Mean-variance
portfolios have the highest turnover, which is more than 20 times as high as the turnover of minimum variance
and Minimax strategies. This is not surprising, though. Literature shows that pure mean-variance related
portfolio optimizations exhibit strongly fluctuating weights, which result in high transaction costs. Therefore,
several approaches have been proposed to handle the problem of estimation error, which is mainly responsible
for highly fluctuating weights. For instance, Ledoit and Wolf (2003, 2004) suggest to use a weighted average of
the sample covariance and another estimator. By doing so, extreme weights can be prevented and thus,
transaction costs can be substantially lowered. For practical implementation, transaction costs play a major role.
Remember that our representative agent is a big US pension fund investing billions of dollars for its clients. A
small reduction in costs is equivalent to saving a huge amount of money.

Now it is interesting to compare turnover of our Minimax approach to minimum variance optimization. We can
see that turnover is comparable, but still, turnover is slightly less for the proposed Minimax strategy.

Last but not least, comparing the Certainty Equivalent of all strategies, we find that the Mean-Variance approach
yields the highest CEV3 value out-of-sample, which is not surprising, too, since the Certainty Equivalent is a
concept originating in the mean-variance theory of Markowitz (1952). Again, CEV3 differences of all portfolios
with respect to Minimax are significant. To sum up the performance of our four portfolios, we find that Minimax
is always best or second best, and thus, Minimax is very consistent across all performance measures used. Now
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we want to stress one component of performance, which is highly relevant for a big US pension fund portfolio,
namely its risk. Risk can be measured differently, and here we use a selection of risk measures that is often used
in scientific work as well as in practical work. We use volatility as a common symmetric risk measure in finance,
we use the Value-at-Risk (VaR) measure as the most frequently used assymetric risk measure. Finally, we use the
maximum loss as an asymmetric risk measure that fits best our risk aversion assumption, namely that our
representative investor is highly risk-averse, and as a result, he fears high losses.

Having documented that minimum variance beats all competitors in terms of volatility, again, it is noteworthy
that the Minimax approach yields not only a higher return than both naive asset allocation strategies, but
additionally Minimax optimal portfolio returns exhibit much less volatility than returns of portfolios that could
represent a typical US pension fund portfolio. We thus document an improvement both in return and in risk.

\ @ Minimax
e Minimum Variance

s

VaR (0.95) Sharpe Ratio Equally Weighted
= == Fixed Weighted

= w = Mean Variance

Turnover

Minimum

Figure 4. Graphical illustation of performance and risk results

All performance and risk results are based on the numbers and variables in Table 4. We rank all strategies, while
1 is given to the strategy that perfoms the poorest for a particular risk measure, and 5 is given to the best strategy,
respectively. All measures are calculated over the whole period of 1990 to 2010.

The next risk analysis is based on the Value-at-Risk measure. It indicates the maximum loss that is possible for a
given significance level, here we choose the level according to 95% and 99%. We find that on the 95%
significance level, the minimum variance portfolio is the one with the lowest maximum loss. Strategies of
representative pension funds are exposed to risk, which is almost twice as high as minimum variance and
Minimax optimizations, based on the VaR(0.95) risk measure. The results are basically the same when we look at
the Value-at-Risk at the 99% significance level. Again, naive diversification strategies load twice as much risk
than risk-minimizing strategies. The mean-variance portfolio is not competitive based on any risk measure.
Interestingly, the minimum variance portfolios outperform Minimax portfolios at the 95% VaR significance level,
but it appears to be the other way round at the 99% significance level. The same result is obtained for maximum
loss, where the Minimax portfolio clearly dominates all other strategies. We can see from the results that for a
highly risk-averse investor, minimum variance is the hardest competitor for our Minimax model.
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Figure 5. Empirical quantiles of minimax and minimum variance

The figure shows the portfolio return distributions of Minimax and minimum variance strategies. The abscissa
denotes quantiles and the ordinate axis shows gross returns, where 1.00 stands for zero portfolio return. The
portfolio returns are calculated over the whole period of 1990 to 2010.

The last result indicates that Minimax portfolios outperform its closest competitor in the very left tail of return
distributions, i.e. for a highly risk-averse agent like ours. We want to examine this issue by looking at the return
distributions of Minimax and minimum variance portfolios. Figure 5 shows both distributions. Looking at very
low portfolio returns (i.e., at the very left hand of Figure 5), we notice that Minimax dominates minimum
variance. In other words, for the portfolio risk that matters most for a highly risk-averse agent, Minimax
outperforms the minimum variance strategy. For low, but not extreme returns we can see that it is the other way
round, while turning to positive returns, again Minimax dominates minimum variance. This is because minimum
variance minimizes a symmetric risk measure, volatility, and therefore chooses a portfolio with returns that do
not deviate too far from their mean. This, however, is not a nice property. Imagine a portfolio A that generates
highly volatile, but high returns and a portfolio B that generates lower and less volatile returns than portfolio A.
The minimum variance strategy would always prefer portfolio A to B, although logically, a risk-averse investor
with any reasonable utility function should prefer portfolio B to A (and this is what Minimax would do).

The outperformance of Minimax over minimum variance in terms of the common used Sharpe Ratio can thus be
summarized as a dominance of Minimax in the right-hand part (positive returns) of return distributions as well as
in the very left part (extreme losses).

Table 5. Portfolio characteristics

WEIGHTS Minimum Maximum Average (Vola)  Average (Vola)  Average (Vola) Average (Vola)
All All Stocks Bonds Real Estate Commodities
Minimax 0 0.90 0.11 (0.11) 0.54 (0.24) 0.15 (0.18) 0.15 (0.11)
Minimum Variance 0 0.92 0.15(0.10) 0.61 (0.26) 0.09 (0.14) 0.10 (0.10)
Equal Weights 0.25 0.25 0.25 (0) 0.25 (0) 0.25 (0) 0.25 (0)
Fixed Weights 0.1 0.60 0.6 (0) 0.2 (0) 0.1 (0) 0.1 (0)
Mean-Variance 0 1.00 0.10 (0.30) 0.10 (0.30) 0.43 (0.51) 0.33 (0.48)

CORRELATION Minimax Minimum Variance Equal Weights Fixed Weights

Minimum Variance 0.73

Equal Weights 0.54 0.52

Fixed Weights 0.50 0.52 0.52

Mean-Variance 0.25 0.24 0.78 0.24
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All numbers in the upper table are based on asset weights resulting from portfolio otimizations. “Minimum All”
and “Maximum All” denote minimum and maximum weights for any asset class, whereas “Average” denotes the
average weight in one specific asset class. Correlation measures in the table below are again based on daily
portfolio returns. All measures are calculated over the whole period of 1990 to 2010.

4.1 Analysis of Portfolio Weights

Besides attractive performance characteristics, one should also look at other portfolio characteristics. A big
pension fund aims at maintaining rather constant portfolio weights than at rebalancing frequently due to higher
transaction costs. We already considered turnover as a proxy for transaction costs, and we found that the naive
strategies cause the least transaction costs, Mean-Variance optimization leads to the highest transaction costs,
and turnover of minimum variance and Minimax strategies is quite comparable.
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Figure 6. Time series of portfolio weights

This fact leads to the question, to what extent both best performing strategies are similar. When we consider
correlations of portfolio returns, we can see that Minimax and minimum variance portfolio returns are highly
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positively correlated with a correlation coefficient of 0.73. Only one other pair of portfolio strategies is as highly
correlated. The high correlation indicates that the risk minimizing mechanisms must be similar, and it has also
been shown theoretically that both strategies lead to almost the same optimal portfolio, if returns are normally
distributed (see e.g. Young (1998), p. 675). Both Minimax and minimum variance hold the largest fraction of
funds in bonds. We saw before that bonds have quite nice performance characteristics, they have the highest
Sharpe Ratio and the lowest volatility. Thus, it is not surprising that, on average, a 54% share of Minimax
portfolios and a 61% share of minimum variance portfolios is invested into this asset class. In contrast, Minimax
invests a little more into real estate (15%) and commodities (15%) than the minimum variance strategy (9% and
10%, respectively). The mean-variance strategy is on average heavily invested into real estate and commodities,
while their share in stocks and bonds is only 20%. This, however, is a result of fluctuating weights in the
mean-variance optimization, as we can see in Figure 6. Mean-variance portfolios always consist of only one
asset class, which is held for one period. In contrast, Minimax and minimum variance strategies seem to be quite
stable over time. Figure 6 plots the time series of portfolio weights.

This figure shows portfolio weights for each asset class, resulting from Minimax, minimum variance and
mean-variance optimizations. Rebalancing takes place every year. The number 1 on the abscissa corresponds to
year 1991, since we need one year of historical returns (January 1990 to December 1990) for the optimizations.

5. Robustness Checks

In this section, we test our results for robustness. To do so, we slightly change Minimax as well as other
optimization procedures, and we see that results basically stay the same.

First, we rerun optimizations and fixed weight strategies for yearly returns, in contrast to daily returns. We
provide results for the main performance measures in Appendix A Table 6 shows that when we look at yearly
returns, the minimum variance portfolio dominates Minimax both in terms of risk and return. This is due to the
return distribution. On the one hand, yearly returns are closer to the normality assumptions than daily returns,
and thus, Minimax optimization loses its advantage in the very left part of the return distribution, because high
portfolio losses are rare. On the other hand, the closeness to normality of portfolio return works in favor of
optimizations using volatility as a symmetric risk measure. However, we see that Minimax is able to beat naive
asset allocation stategies and therefore, is preferable from the point of view of big US pension funds. Again, we
want to highlight the advantage of Minimax for daily periods of interest, for instance for institutional investors
that are due to daily risk reporting.

As a second robustness check, we want to consider a different rebalancing period. Up to now, we rebalance
portfolios once a year, how it is commonly done in the literature, and our estimation window consists of 250 past
observations. Now we want to consider a rolling windows approach: We rebalance every day, and again, the
estimation window consists of 250 past observations. Results are provided in Appendix B shows that Minimax
has the highest Sharpe Ratio. Again, and based on the Sharpe Ratio, we find outperformance of the Minimax
portfolio selection over all considered benchmarks. For Minimax portfolio returns, volatility is slightly higher
than for minimum variance portfolios, still returns are again higher. All other results stay qualitatively the same
as in the base scenario with yearly rebalancing.

In a third robustness check, we allow for short-selling, i.e. we do not require the asset weights to be positive.
This obviously works against mean-variance related optimizations that suffer from estimation error. We can see
results for optimizations in Appendix C shows performance and risk characteristics for our standard case, daily
returns and yearly rebalancing. For minimum variance portfolios, allowance for short-selling does not change.
For mean-variance portfolios, however, we can see that the portfolio risk increases substantially, as well as
turnover, which is a result of large long and short positions in the portfolio. Such a portfolio is not preferable for
our typical investor, since it holds substantial risk, and turnover is around 25 times higher than for minimum
variance or Minimax portfolios. However, the mean-variance portfolio without short-selling restriction yields a
Sharpe Ratio which is higher than that of its competitors. Again, the Sharpe Ratio for our Minimax portfolio is
higher than that of minimum variance. Table 8 provides robustness checks for daily returns and daily rebalancing
without short-selling restrictions. As expected, turnover increases in addition for all portfolios and yields 3818.9
for the mean-variance portfolio, as opposed to around 40.4 and 46.5 for Minmax and minimum variance
portfolios, respectively. Again, the Sharpe Ratio of Minimax exceeds the Sharpe Ratio of the mean-variance
related strategies.

The last robustness check is with respect to crises periods. In Appendix D, we analyze the performance of the
Minimax portfolio and its competitors during crises periods. We consider the following crises: (1) the Internet
bubble during 2000/2001, (2) the Terrorist attack in 9/11/2001, (3) the Banking crises during 2007/2008 and

35



www.ccsenet.org/ijef International Journal of Economics and Finance Vol. 6, No. 8;2014

subsequent (4) Economic recession during 2008—2010. The Minimax portfolio suffers of the smallest maximum
loss in all crises but one. In all considered crises it has the largest or second largest CE3 performance. In all cases
it achieves Sharpe ratio which is above average—sometimes best. We conclude that in particular for crises periods,
the Minimax portfolio performs well.

6. Conclusion

In this paper, we propose a trading strategy called Minimax, which is based on pessimistic decision making and
which suits a highly risk-averse investor. In particular, Minimax is an appropriate asset allocation optimization
for big pension funds or other institutional investors that are due to daily risk reporting, either because of
regulatory requirements or because of mark-to-market accounting. Maximizing the worst case payoff of a
portfolio, Minimax strategies are practically easy to implement and constitute a proper alternative to common
risk-minimizing optimizations such as minimum variance.

We use US data on indexes of stocks, bonds, real estate and commodities from January 1990 to December 2010
in order to calculate daily portfolio returns. We compare the proposed allocation strategy with alternative asset
allocation strategies. Therefore, we calculate a minimum variance portfolio, which minimizes volatility within
one year of historical daily returns, a mean-variance portfolio, an equal weights strategy, and a typical US
pension fund portfolio, which imitates an asset allocation that a representative investor could possibly run.

Our main result is that the proposed Minimax strategy outperforms all competitors, in terms of different risk and
performance measures. We find the minimum variance portfolio to be the hardest competitor for Minimax,
assuming a highly risk-averse agent, and portfolio characteristics of both strategies are comparable. We show
that the particular advantage of the Minimax strategy is the avoidance of very large losses. Optimizations based
on volatility as a symmetric risk measure such as minimum variance strategies fail to provide optimal portfolios
with attractive performance characteristics, because they minimize not only negative, but also positive returns.
Minimax, however, only cares about huge portfolio losses, and provides preferable performance characteristics
by allowing positive portfolio returns. Naive portfolio allocation rules are not competitive to Minimax in terms
of performance and risk. Still, this does not mean that naive portfolio allocation strategies are in general not
appropriate for any investor. Studies show that many optimization strategies fail to beat simple rules of thumb,
and by diversifying funds across different asset classes, one can reduce risk efficiently without imposing strong
ex ante restrictions. Another advantage of fixed weight strategies, besides their simplicity and applicability, is
low turnover. This feature makes them particularly interesting for long-term investors that face high transaction
costs. Mean-variance optimization is not competitive to all above mentioned strategies, due to high estimation
error.

Considering portfolio characteristics, we find admirable features for portfolio weights that result from all
strategies but from mean-variance optimization. Portfolio weights are relatively stable over time for Minimax
and minimum variance, resulting in comparable turnover and transaction costs. Transaction costs are particularly
high for the mean-variance portfolio, implied by high estimation error and extreme portfolio weights. Minimax
and minimum variance portfolios both invest on average about 50-60% of their funds into bonds, while the rest
of funds is spead across the remaining asset classes. By doing so, the resulting portfolios are satisfyingly
diversified.

In a last analysis, we check our results for robustness. For yearly returns (instead of daily returns), we lose
dominance over the minimum variance strategy. This is particularly due to the fact that yearly returns are “closer
to normality” than daily returns. In a scenario with normally distributed returns, portfolios based on Markowitz
(1952) are shown to be optimal. We also check whether the chosen rebalancing period of one year has particular
influence on our results. We show that using daily rebalancing, we obtain even better results as when using
yearly rebalancing. Lastly, we allow for short-selling, which was constrained in all optimizations before. As
expected, mean-variance weights fluctuate even more, resulting in high turnover and transaction costs. The
dominance of Minimax over minimum variance portfolios remains.

All results suggest that Minimax strategies provide an attractive alternative asset allocation optimization for a
highly risk-averse investor that is concerned with daily risk management. Since Minimax prevents portfolios
from realizing high extreme losses, institutional investors that are due to daily risk management can lower their
daily portfolio risk. Additionally, Minimax strategies are easily implementable due to its simple algorithm and
because exchange traded funds provide easy access to all considered asset classes.
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Appendix
Appendix A. Robustness Check: Yearly Returns
Table Al. Robustness check: yearly returns

PERFORMANCE Return (%)  Vola (%) Sharpe Ratio  Excess Return Turnover
Minimax 11.2 10.3 0.739 over Minimax (%) 8.2
Minimum Variance 11.9 9.3 0.900 +0.7 8.9
Equal Weights 11.7 12.4 0.653 +0.5 0
Fixed Weights 11.4 12.3 0.631 +0.2 0
Mean-Variance 11.0 233 0.318 -0.2 30
Table A2.

RISK Volatility (%) VaR(0.95) (%) VaR(0.99) (%) Max. Loss (%)

Minimax 10.3 -8.1 -10.8 -10.8

Minimum Variance 9.3 -2.4 -4.3 -10.0

Equal Weights 12.4 -17.6 -28.3 -28.3

Fixed Weights 12.3 -14.9 -23.6 -36.9

Mean-Variance 23.3 -37.6 -45.0 -45.0

All numbers are based on yearly returns. Return (%) is calculated geometrically. The Sharpe Ratio is calculated
by substracting the yearly risk-free rate from yearly returns, and then dividing by their yearly standard deviation.
Turnover is proxied by the sum of absolute deviations in weights before and after rebalancing. We rebalance
portfolios every year, using past 250 trading days for our optimizations. VaR stands for Value-at-Risk, which
indicates the minimum return (or equivalently, the maximum loss) for a certain significance level (95% or 99%).
Short-selling is not allowed for all optimizations. All measures are calculated over the whole period of 1990 to
2010.

Appendix B. Robustness Check: Daily Rebalancing
Table B1. Robustness check: daily rebalancing

PERFORMANCE Return (%)  Vola (%) Sharpe Ratio  Excess Return Turnover CEV3
Minimax 0.04 0.44 0.058 over Minimax (%) 40.4 3.7
Minimum Variance 0.04 0.42 0.057 -0.002 41.8 3.6
Equal Weights 0.04 0.79 0.036 +0.003 0 3.4
Fixed Weights 0.04 0.77 0.036 +0.002 0 33
Mean-Variance 0.06 0.94 0.052 +0.023 394.7 4.9
Table B2.

RISK Volatility (%) VaR(0.95) (%) VaR(0.99) (%) Max. Loss (%)

Minimax 0.44 -0.6 -1.0 2.1

Minimum Variance 0.42 -0.5 -1.1 -2.6

Equal Weights 0.79 -0.9 -2.3 -8.7

Fixed Weights 0.77 -1.0 -2.1 -7.3

Mean-Variance 0.94 -1.7 -3.6 -16.8

All numbers are based on daily returns. Return (%) is calculated geometrically. The Sharpe Ratio is calculated by
substracting the daily risk-free rate from daily returns, and then dividing by their daily standard deviation.
Turnover is proxied by the sum of absolute deviations in weights before and after rebalancing. We rebalance
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portfolios every day, using past 250 trading days for our optimizations. CEV3 is the Certainty Equivalent for a
mean-variance investor with risk aversion parameter A =3. VaR stands for Value-at-Risk, which indicates the
minimum return (or equivalently, the maximum loss) for a certain significance level (95% or 99%). Short-selling
is not allowed for all optimizations. All measures are calculated over the whole period of 1990 to 2010.

Appendix C. Robustness Check: Short-Selling Allowed
Table C1. Robustness check: short-selling allowed (daily returns, yearly rebalancing)

PERFORMANCE Return (%) Vola (%) Sharpe Ratio  Excess Return Turnover CEV3
Minimax 0.05 0.54 0.071 over Minimax (%) 9.2 4.8
Minimum Variance 0.04 0.40 0.063 -0.013 10.2 3.8
Mean-Variance 0.58 4.30 0.131 +0.530 243.3 39.2
Table C2.
RISK Volatility (%) VaR(0.95) (%) VaR(0.99) (%) Max. Loss (%)
Minimax 0.54 -0.6 -1.0 -2.1
Minimum Variance 0.40 -0.5 -1.1 -2.6
Mean-Variance 4.30 -6.0 -10.7 -31.9
Table C3.
PERFORMANCE Return (%) Vola (%) Sharpe Ratio  Excess Return Turnover CEV3
Minimax 0.04 0.44 0.058 over Minimax (%) 40.4 3.7
Minimum Variance 0.04 0.57 0.045 0.000 46.5 3.6
Mean-Variance 0.21 4.90 0.040 +0.170 3818.9 -2.9
Table C4.
RISK Volatility (%) VaR(0.95) (%) VaR(0.99) (%) Max. Loss (%)
Minimax 0.44 -0.6 -1.0 2.1
Minimum Variance 0.57 -0.6 -1.1 -14.7
Mean-Variance 4.90 -7.0 -12.7 -60.3

All numbers are based on daily returns. Return (%) is calculated geometrically. The Sharpe Ratio is calculated by
substracting the daily risk-free rate from daily returns, and then dividing by their daily standard deviation.
Turnover is proxied by the sum of absolute deviations in weights before and after rebalancing. We rebalance
portfolios every year in Table C3 and every day in Table C4, using past 250 trading days for our optimizations.
CEV3 is the Certainty Equivalent for a mean-variance investor with risk aversion parameter A = 3. VaR stands
for Value-at-Risk, which indicates the minimum return (or equivalently, the maximum loss) for a certain
significance level (95% or 99%). Short-selling is allowed for all optimizations. All measures are calculated over
the whole period of 1990 to 2010.
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Appendix D. Robustness Check: Crises Periods

Table D1. Performance in crises

Internet bubble 2000/2001

Terrorist attack 9/11/2001

Banking crisis 2007/2008

Recession 2008-2010

CE3 SR Max. CE3 SR Max. CE3 SR Max. CE3 SR Max.

Loss Loss Loss Loss

Minimax 8.1 0.104 1.71 3.6 0.045 1.50 39 0.073 1.05 4.6 0.076 2.06
MIV 7.7 0.107 1.89 3.8 0.046 1.56 37 0.077 1.31 4.5 0.074 2.05
EW 59 0.059 5.06 2.7 0.031 1.62 2.3 0.024 1.89 -2.9 -0.006 8.71
FW 2.6 0.029 6.01 1.7 0.015 1.78 2.6 0.029 1.93 -1.7 -0.004 7.31
MV 8.5 0.075 4.48 -4.2 -0.016 3.20 10.8 0.105 3.01 7.0 0.075 3.10

Note. This table reports out-of-sample performance (CE3, SR, Max. Loss in %) for the Minimax portfolio and its competitors in several
crises periods. We analyze the following crises: (1) Internet bubble 2000/2001, (2) Terrorist attack 9/11/2001, (3) Banking crises 2007/2008

and (4) Economic recession 2008-2010.
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