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Abstract 
With increasing internationalization of financial transactions, the foreign exchange market has been profoundly 
transformed and became more competitive and volatile. This places the accurate and reliable measurement of market 
risks in a crucial position for both investment decision and hedging strategy designs. This paper deals with the 
measurement of risks from a Value at Risk (VaR) perspective. A Wavelet-ARMA-GARCH refinement method to VaR 
estimate is used and compared with classical ARMA-GARCH approach. Performances of both approaches have been 
tested and compared using Kupiec backtesting procedures. 
Experiment results suggest that the performance of Wavelet-ARMA-GARCH refinement method to VaR estimate 
improves the reliability of VaR estimates at all confidence levels which offers considerable flexibility and potential 
performance improvement for Foreign exchange dealers.  
Furthermore, the appropriate selection and combination of parameters can lead to comprehensive performance 
improvement in reliability. 
Keywords: Value-at-Risk, Foreign exchange rate, ARMA-GARCH, Wavelet, Wavelet Decomposed VAR, Kupiec 
Backtesting procedures 
1. Introduction 
The foreign exchange market plays an indispensable role in providing the essential machinery for making payments 
across borders, transferring funds and purchasing power from one currency to another, and determining the singularly 
important price, the exchange rate. Since the early 1970s, with increasing internationalization of financial transactions, 
the foreign exchange market has been profoundly transformed, not only in size, but in coverage, architecture, and mode 
of operation. The foreign exchange business is naturally risky, because it deals primarily in risk-measuring, pricing, 
accepting when appropriate, and managing it. The success of a bank or other institution trading in the foreign exchange 
market depends critically on how well it assesses, prices, and manages risk, and on its ability to limit losses from 
particular transactions and to keep its overall exposure controlled. 
Market risk is simply price risk or exposure to price change. Various mechanisms are used to control it, and each 
institution has its own system. At the most basic trading room level, banks have long maintained clearly established 
volume or position limits on the maximum open position that each trader or group can carry overnight, with 
separate-probably less restrictive-intraday or daylight limits on the maximum open position that can be taken during the 
course of a trading session.  
Market participants need a more dynamic way of time evolving assessing market risk, rather than measuring risk on the 
basis of a snapshot as of one particular moment, or by looking at the estimated amounts of funds involved. Industry 
members recommended a series of actions to assist in the measurement of market risk. They recommended that 
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institutions adopt a value at risk (VaR) measure of market risk, a technique that can be applied to foreign exchange and 
to other products. It is used to assess both the market risk of the foreign exchange position of the trading room, and the 
broader market risk inherent in the foreign exchange position resulting from the totality of the bank or firm’s activities. 
VaR is a statistical number describing the potential downside risk over a given holding period at a certain confidence 
level. Numerous techniques evolve to extract information from data and estimate accurate and reliable VaR number.  
In this paper we focus on the wavelet analysis to VaR estimate for Foreign Exchange market. Experiments using daily 
time series of CAND/USD, JPY/USD, SZF/USD and SFR/USD exchange rate returns are conducted to statistically 
evaluate the performance of the Wavelet and the more standard ARMA-GARCH approaches to VaR estimates. 
Although this method (the Wavelet analysis) is gradually gaining momentum in financial time series forecasting, it has 
received little attention in the risk management field. More comprehensive researches are needed to investigate what 
wavelet analysis can achieve for VaR estimates and analysis. There have been some attempts to apply wavelet analysis 
to VaR estimates, but their focus is on investigating the distribution of potential market losses embedded in VaR 
numbers across the time horizons. Their approach is based on the assumption that wavelet decomposed variances at 
different scales represent investors’ preferences. However, they seem to have ignored the impact of different wavelet 
families chosen for analysis, which leaves their findings largely inconclusive (Chen, S.et al., 2006). For that reason 
three families of wavelets and two decomposition levels are used in this paper to investigate the effect of changing of 
wavelet families and decomposition level on the model’s performance. 
Although experimenting is an important step in research, concluding statements can only be made after a thorough 
process of validation. Therefore Experiment results are backtested and compared using Kupiec Backtesting procedures 
to evaluate their accuracy and reliability. 
The goal of this paper is therefore to check whether Wavelet-ARMA-GARCH VaR model performs adequately than the 
standard ARMA-GARCH VaR model and to see the effect of changing of wavelet families and decomposition level on 
the model’s performance. 
The rest of the paper is set out as follows: Section 2 deals with literature review. We present Value at Risk, then the 
wavelet theory and its application in finance and economy and finally the Wavelet-ARMA-GARCH refinement Method 
or the Wavelet Decomposed VaR (WDVaR) as a specific application of wavelet analysis to VaR estimates. Section 3 
presents the empirical analysis: we estimate foreign exchange rate VaR using the ARMA-GARCH standard scheme and 
the proposed Wavelet methodology. Performances of both approaches have been tested and compared using Kupiec 
backtesting procedures. Moreover, three families of wavelets are used: the Db4, the Haar and the Sym6. The forth 
section concludes. 
2. Literature review 
2.1 Value at Risk (VaR) 
VaR estimates the potential loss from market risk across an entire portfolio, using probability concepts by identifying 
the portfolio containing fundamental risks, allowing an underlying quantifiable and managearable risk factors 
decomposition of this latter.  
Standard VaR estimates take the mathematical form as in (1), which means “we are X percent certain that we will not 
lose more than VaRr of my investment in the next t days under normal market conditions (Jorion, P., 2000): 

{ } α−=−≤− 1)()0( VaRrtLLp         (1) 
Where )(•L denotes the value of the portfolio at time t, α is the confidence level. 
Several methods for VaR estimation have mainly been tried through the following three approaches: 
The parametric approach, also called variance-covariance approach is more popular than its more complex and 
sophisticated non-parametric counterpart, the simulation approach. This approach, implemented as either historical 
simulation or Monte Carlo simulation, is computationally demanding and very costly as well. When the approach is 
parametric, it is based on the assumption that returns are distributed normally. The parametric approach is flexible, easy 
to understand and widely accepted (Winer 1997). However, it relies heavily on the assumption of a normal returns 
distribution. This assumption can be wrong in case when the distribution is “fat-tailed”: the frequency of exceptions 
occurring is higher than when the distribution is assumed to be normal (Hull 2000). 
The non parametric approach lets the data speak for it self and extends historical patterns hidden in the data into future. 
Semi parametric emerges recently to strike the balance between the two extremes, where different techniques  
borrowed from other disciplines, such as engineering, computer science, applied mathematics, etc., made their way into 
the field of finance. These may include methods such as Extreme Value Theory, Wavelet Transformation, Fuzzy Logic, 
etc.  
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2.2 VaR Models validation: the Kupiec backtesting procedures 
VaR models are useful in one way only: if they predict the risk well. Model validation is the process of checking 
whether a model performs adequately, which can be done by a set of tools. One of these tools is backtesting. 
Backtesting is a tool which verifies whether projected losses are in line with actual losses, in the form of a statistical 
framework (Jorion 1996). This entails systematically comparing the history of VaR forecasts with the corresponding 
portfolio returns. For VaR users and risk managers, these checks are essential for examining whether their model is well 
calibrated. If not, the model needs to be reexamined, in terms of parameters, assumptions and ways of modelling. The 
theory and corresponding models regarding backtesting, are derived from Jorion (1996) and Hull (2000).  
An observation is a moment where the actual return over an horizon of h days is compared with the forecasted VaR 
number for this same horizon. The number of observations exceeding the VaR is also known as the number of 
exceptions. With too many exceptions, the model underestimates the risk. With too few exceptions, the model is in fact 
conservative, leading to an inefficient allocation of capital. 
As already mentioned, backtesting involves systematically comparing the history of VaR forecasts, with the actual, 
subsequent returns. With perfectly calibrated model, the number of exceptions should be in line with the confidence 
level. With a 95% confidence level, one expects 5% exceptions. At some point, there must be a decision made to accept 
or reject the current model. The decision can be made based on the results of a statistical test.  
One way to verify the accuracy of the model is to examine the failure rate of the model.   
The failure rate is the proportion of times the VaR figure is exceeded in a given sample. As at a given moment, a VaR 
number is specified given a certain confidence level c for a total of T observations, N is defined as the number of 
exceptions - i.e. the number of observations where the actual loss exceeds the VaR - and NT is the failure rate (Jorion 
1996).  
Among various hypothesis based backtesting procedure available, the one proposed by Kupiec in 1995 is the simplest 
and the most popular and available. It is based on the simple notion that the model validation process can be treated as a 
series of Bernouilli trials testing sequences of success and failure. VaR exceedance N in large sample T should 
converge to the binomial distribution. The likelihood ratio statistics is developed by Kupiec as in (2) for testing the 
specific confidence intervals.  

[ ] [ ]{ }NTNNTTNNpNTpucLR )/()/(1log2)1(log2 −−+−−−=                              (2) 

Where ucLR denotes the test statistics that has on asymptotic )1(2χ  distribution. T is the total number of observations 
that are used in test set. p is the probability of an VaR exceedance occurrence. 

2.3 Wavelet analysis and its application in economics and finance 
2.3.1 wavelet analysis development 
Wavelet analysis is a relatively new tool in the field of applied mathematics. Daubechies (1992), Chui (1992) and Graps 
(1995) provide the fundamentals of the wavelet theory. Wavelet analysis provides the opportunity to make 
semi-parametric estimations of highly complex structures without knowing the underlying functional form.   
Wavelet analysis, in contrast to Fourier analysis, gives insight in local behavior, whereas Fourier analysis gives insight 
in global behavior. The Fourier transforming processes time-series by transforming the signal from the time domain into 
the frequency domain. The new processed signal provides insight in the amount of frequencies and the amount of 
energy in each frequency existing in this time-series. However, local effects are only visible in the time domain and not 
in the frequency domain. Wavelet analysis makes use of a fully scalable window, which is shifted along the signal in 
order to capture local behavior in the time domain. This process is repeated several times with different window-sizes, 
with a collection of time-frequency representations of the signal as a result. The transformation of the signal into the 
several resulting wavelet coefficients, each provides information at different scales, is more often referred to as 
time-scale decomposition. However, as there is no direct connection between the Fourier frequency parameter and the 
Wavelet parameter, the term scale is preserved for wavelet analysis, whereas the term frequency is preserved for Fourier 
analysis. 

Wavelet analysis utilizes the wavelet basis function )(tψ , or commonly referred to as wavelets in the literature for 
brevity, to transform the original data. Wavelet can be described as a function of time t that exhibits certain appealing 
properties beyond those offered by ‘big waves’ functions including sins and cosines. 
Mathematically wavelets are defined as functions that satisfy admissibility condition as in (3) 

∞∫=
∞ pdfffC 0 /)(ϕψ                          (3) 

Where ( )fϕ  is the Fourier transform of wavelet. ( )tΨ in the frequency domain. 



International Journal of Economics and Finance                                              August, 2009 

 177

There are different families of wavelets available. Each of them is capable of adapting to and accentuating certain data 
characteristics. Typical wavelets include Haar wavelet, Daubechies wavelet, Symlets wavelet, Coiflets wavelet, 
ect.(Genacay,R,F.Selcuk,and B.Whitcher). 
Using wavelets functions, we can perform wavelet transform on the signal ( )tx . The transformation is conducted as in 
(4). 

( ) ( ) dtttxsuW su )(, ,ψ∫=
∞
∞−      (4) 

Where )/(/1)(, sutstsu −Ψ=ψ , u is the wavelet parameter translating the original wavelet function, s is the scale 
parameter dilating the original wavelet function. 
Wavelets transform analyzes and decomposes the original time series x(t) into series at different scales. Reconstruction 
of the original return series from decomposed wavelet coefficients could be performed as in (5) accordingly if the 
admissibility condition is satisfied. 

( ) ( ) ( ) 2
,

0
/,/1 sdsdutsuWCtx suΨ∫∫= ∞+

∞−

+∞

Ψ      (5)  

2.3.2 Wavelet in finance and economics  
Ramsey (1999) gives an overview of the contribution of wavelets to the analysis of economic and financial data. The 
ability to represent highly complex structures without knowing the underlying functional form proved to be a great 
benefit for the analysis of these time-series. In addition, wavelets facilitate the precise location of discontinuities and the 
isolation of shocks. Furthermore, the process of smoothing found in the time-scale decomposition facilitates the 
reduction of noise in the original signal, by first decomposing the signal into the wavelet components, then eliminating 
all values with a magnitude below a certain threshold and finally reconstructing the original signal with the inverse 
wavelet transform (Walker 2000). Stevenson (2000), for example, used wavelet analysis for the filtering of spot 
electricity prices in the deregulated Australian electricity market. By examining both the demand and price series at 
different time locations and levels of resolution, Stevenson was able to reveal what was signal and what was noise. 
Ramsey and Lampart (1998) used wavelet analysis for time-scale decomposition. They researched both the 
relationships between consumption and income and money and GDP. The time-scale decomposition yielded a new 
transformed signal built up from the several wavelet coefficients representing the several scales. At each scale, a 
regression was made between the two variables. Chew (2001) researched the relationship between money and income, 
using the same technique of wavelet-based time-scale decomposition as Ramsey and Lampart (1998) did. This research 
yielded a greater insight in the money versus income nexus in Germany. Arino (1996) used wavelet-based time-scale 
decomposition for forecasting applications. The approach used was to apply forecasting methods on each of the resulted 
coefficients from the time-scale decomposition. After applying forecast methods on each of these coefficients, the final 
forecast of the complete series was obtained by adding up the individual forecasts. 
Aussem and Murtagh (1997) used neural networks to examine the individual coefficients. The trained neural network 
with its approximated variables in the target function was used for the final forecast. In the area of finance, 
multi-resolution analysis appears useful, as different traders view the market with different time resolutions, for 
example hourly, daily, weekly or monthly. The shorter the time-period, the higher the frequency is. Different types of 
traders create the multi-scale dynamics of time-series. 
Struzik (2001) applied the wavelet-based effective Holder exponent to examine the correlation level of the Standard & 
Poor’s index locally at arbitrary positions and resolutions (time and scale). 
Norsworty et al. (2000) applied wavelets to analyze the relationship between the return on an asset and the return on the 
market portfolio, or investment alternative. Similar to other researches in the field of finance and economics, they 
applied wavelet-based time-scale decomposition to investigate whether there are changes in behavior for different 
frequencies. The research indicated that the effect of the market return on an individual asset’s return will be greater in 
the higher frequencies than in the lower. 
2.4 Wavelet Decomposed VaR theory 
In recent years, more rigid statistical test frameworks and researches have suggested that further performance 
improvement can not be achieved with the single model approach alone since data exhibit complex behavior that 
combine the characteristics of heteroscedasticity, leptokurtosis, long memory and even chaos. Thus, as the demand for 
estimation accuracy moves on to a new level, forecasting community increasingly looks for help from new modeling 
approaches. A first one is the linear combination approach, which combines the forecasting powers of different models, 
is intuitively straightforward and easy to implement. However, it is based on the assumption of individual model 
capability to strictly separate out data features of interest and the non interference of such models. This assumption is so 
strong that two issues stand out in practice. Firstly, the fitting and estimation of model parameters is distorted for ill 
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behaved data. Secondly, the first model during the fitting process occupies a privileged position and may destroy data 
features that the second model is meant to capture. 
To tackle the second issue, the nonlinear ensemble approach is introduced. Each individual model is fitted to the data 
separately, to avoid distortions. Then artificial intelligence algorithms such as neural network and genetic algorithm are 
employed as combination mechanisms to find out the time varying weights that the data features captured by each 
individual model contribute to the evolution of the entire series. However, despite its recent popularity in the hybrid 
modeling community, due to its inherent black box approach, it can offer only limited insights into the underlying 
driving factors evolution for complicated time series (In, F. and Kim, S., 2005). 
The previous approaches can all be categorized as ex-post continuous filtering or processing of time series data. The 
success of the operation of these methods depends on the assumption that each filter is capable of fully extracting the 
features it was designed to capture. But since noisy and ill-behaved data in practice frequently violate the assumptions 
of these models, significant bias results during the forecasting process and further performance improvement would 
critically depend on the accuracy of the individual forecasters. If excessively large biases exist during individual 
forecasting processes, impact of artificial intelligence techniques used to achieve maximum sample estimation accuracy 
wouldn’t be adequate, the model would perform poorly out of sample. (Chen, S.et al., 2006) 
Traditionally various models have been attempted to describe the complex risk evolution process. They aim to capture 
particular data characteristics. This result in the quick deterioration of model’s performance once they are outside the 
problem domain being investigated. 
Although a handful of statistical tests have been utilized to help in identifying the existence of particular data 
characteristics, these tests usually lack sufficient discriminatory power for noisy data and may not cover all the data 
features under investigation. Thus, semi-parametric approaches have received considerable attentions recently 
introducing Wavelet Decomposed techniques as a promising direction for risk estimate (Chen, S.et al., 2006). 
The implementation of the method is laid down as follows:   
When the data distribution can be characterized using the first and second moment, the VaR is estimated following (6) 

μσ ˆˆ)( /1 −= + ttaFVaR (6) 

Where )(aF refers to the corresponding quantile (95th, 97.5th or 99th) of the assumed distribution. tt /1ˆ +σ  refers to 

the forecast of conditional standard deviation at time t+1 given information at time t. μ̂  refers to the forecast of 
sample mean. 
Therefore, the estimation of VaR boils down to the estimation of conditional mean and conditional volatility which 
involves four steps: 
1.  by applying wavelet transformation to return series data, the original data are decomposed into sub return series 
data at different scales j as in (7): 

∑+=
=

J

j DA tftftf jj
1

)()()(                                      (7) 

Where f (t) is the original signal. )(tf
jA  is the decomposed time series data by applying scaling function at scale j. 

)(tf
jD  is the decomposed time series data by applying wavelet function at scale j. jA  is in the literature often 

referred to as the level-j approximation of the original signal, whereas jD  is often referred to as the level-j detail of 
the original signal. 
2.  The VaR estimated to cover portfolio losses is then expected to cover losses at each individual scales as in (8):    

∑+=
=

J

j DA jj VaRVaRVaR
1

(8) 

Expanding (6) into (8)  

∑ +−+=
=
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J

j DDttAAtt jjjj aFaFVaR
1 ,/1,/1

ˆˆ)((ˆˆ)( μσμσ            (9) 

3.  Estimation of conditional mean is made by fitting ARMA model to the training set which is used to estimate the 
model parameters. The estimated model is then used to make the out-of-sample forecast, one day in advance. This is 
given in (10).  
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4.  The conditional volatility is modeled as a mixture of GARCH (1, 1) processes at each scale. This is also given in 
(11). 
GARCH (1, 1) is used to fit each individual data series, estimate specific coefficients, and make one step ahead 
forecasts. Then variances for return series are reconstructed from coefficient variances at the individual level by 
following one of the special properties of wavelet analysis called preservation of energy, i.e. the variances are preserved 
across time-scale domain during wavelet decomposition. 
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3. Empirical Analysis 
In this section we present the data set, the descriptive statistics, forecast performance results and the interpretations of 
experiments results. 
Presentation of data  
The data set used here consists of four daily average quoted rates on American exchange market against the American 
Dollar: CAD/USD, JPY/USD, SZF/USD and SFR/USD. Our choice of data is justified by the fact that the dollar is by 
far the most widely traded currency. According to the 1998 survey, the dollar was one of the two currencies involved in 
an estimated 87 percent of global foreign exchange transactions, equal to about $1.3 trillion a day. In part, the 
widespread use of the dollar reflects its substantial international role as: “investment” currency in many capital markets, 
“reserve” currency held by many central banks, “transaction” currency in many international commodity markets, 
“invoice” currency in many contracts, and “intervention” currency employed by monetary authorities in market 
operations to influence their own exchange rates. The other currencies represent 4 countries witch are respectively: 
Canada, Japan, Switzerland and South Africa. They are almost representing different continents. 
It consists of a daily data from January 1971 to December 2002. 60% of the data set serves as the training set, while the 
40% is used as the test set. One step ahead out of sample forecast is conducted to evaluate the accuracy and reliability of 
various models under investigations. The original observations are log differenced (i.e. )log()log( 1−− tt xx ) for 
further processing and modeling attempts. 
Figures 1, 2, 3 and 4 display the time series of CAD/USD, JPY/USD, SFR/USD and SZF/USD exchange returns from 
January 1971 to December 1989. 
According to these figures, we observe that the average of exchange rates appears constant and no change in the 
average is observable. We also notice the presence of periodic clusters of the volatility, in particular large variations 
have the tendency to be followed by high variations of having variable signs and periods of tranquility alternate with 
periods of elevated volatility. For the CAD/USD, and SZF/USD we notice more steep changes than JPY/USD and 
SFR/USD. We will perfect these remarks by the survey of the statistical properties of series of exchange rates returns.  
Descriptive statistics and hypothesis testing 
Table 1 summarizes the descriptive statistics for the exchanges rates returns along the whole period. We remark that 
these facts suggest a highly competitive and volatile market which makes adequate risk management and control 
necessary. Firstly, there are significant price fluctuations in the markets as suggested by positive standard deviations. 
The substantial difference between the minimum and maximum level also indicates considerable losses, as foreign 
exchange dealers could face large gains as well as huge losses if risks are not properly measured and managed. 
Secondly, we can remark that there is a higher probability of losses in the second and the fourth market as indicated by 
the negative Skewness. 
Thirdly, the high level of excess kurtosis ranging from 3.78416 to 73.74597 suggests that the markets are volatile, with 
high probability of extreme events occurrences. 
The nonlinear and volatile nature of the foreign exchange markets are further confirmed by formal statistical tests 
conducted. The rejection of Jarque-Bera test of normality suggests that the returns deviate from normal distribution 
significantly and exhibit leptokurtic behaviors. 
Forecast performance results 
For hypothesis testing approach, the null hypothesis suggests that the VaR models exhibit statistical properties that are 
characteristics of accurate VaR estimate. The test statistics is calculated and compared to critical values corresponding 
to certain confidence level to decide whether or not to reject the model at that confidence level.  
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Backtesting results for ARMA-GARCH-VaR 
The order is set to 1 for GARCH model since empirical researches suggest that GARCH (1, 1) suffices for most of the 
situations. The order is set to 1 for ARMA process. For 1 day horizon, the complete set of daily volatilities is generated 
by using GARCH (1, 1). VaR values are forecasted on the basis of the estimated volatilities.  
As suggested by experiment results in table 2, ARMA(1,1)-GARCH(1,1) performs rather well and is accepted under all  
circumstances. The performance of ARMA(1,1)-GARCH(1,1) gradually deteriorates under higher confidence levels for 
all markets. ARMA(1,1)-GARCH(1,1) provides much better coverage of risks under lower confidence level. This 
implies that ARMA(1,1)-GARCH(1,1) model may underestimate risk measurement and serve as a generally aggressive 
risk measures. 
The high level of acceptance of ARMA-GARCH VaR supports and confirms the popularity of linear combining power 
of ARMA and GARCH models during the estimation process. However, increasing competition in the markets pushes 
operators to work on slight margins, implying that additional accuracy and flexibility have to be pursued.  
Backtesting results for WDVaR (Haar, 2) 
Two new parameters are introduced during estimations. The first is the wavelet family chosen to decompose the 
original return series. The second is the decomposition level. The decomposition level is set to 2 and Haar wavelet is 
chosen as the first wavelet family to decompose the original return series.  
As shown by experiment results in table 3, WDVaR (Haar, 2) is now accepted at about all confidence levels for four 
markets, whereas it failed in the 95% confidence level in SFR/USD. We can see also that WDVaR (Haar, 2) shows 
inferior performance compared to ARMA-GARCH, i.e. the p values are lower. This finding can’t be surprising but it 
indicates that ARMA-GARCH VaR is an overly conservative risk measure. In fact the decreasing level of p value by 
switching from ARMA-GARCH VaR to WDVaR is resulted by improvement in forecasting accuracy. 
Moreover, this generally inferior performance of WDVaR (Haar, 2) could be caused by inappropriate setting of 
parameters, i.e. the wavelet family and decomposition level chosen. 
Backtesting results for WDVaR (Db4, 2) and WDVaR (Sym6, 2) 
Experiment results in table 4 and 5 show that compared to ARMA- GARCH, WDVaR (SYM6, 2) and WDVaR (Db4, 2) 
gain performance improvement (the improvement in p value) in three markets (JPY/USD, SFR/USD and SZF/USD) at 
all confidence levels. Thus WDVaR is less aggressive than ARMA-GARCH approach and provides better coverage of 
market risks. It offers more flexibility and also greater need for control.   
However, the performance of WDVaR for the first foreign exchange rate does deteriorate compared to the performance 
of ARMA-GARCH model. i.e. The p values are lower. WDVaR (Sym6, 2) and WDVaR (Db4, 2) seem to provide more 
conservative coverage of market risks. 
Moreover, experiments based on WDVaR (Db4, 2) and on WDVaR (Sym6, 2) are conducted at all confidence levels 
across to investigate the effect of changing of wavelet families on the model’s performance. Experiment results show 
that they gain performance improvement (the improvement in p value) in all markets at all confidence levels by 
switching from Haar to Sym6 and DB4 wavelet families. This finding confirms that changing wavelet families 
improves the model’s performance. 
Backtesting results for WDVaR (Db4, 5) 
Experiments based on WDVaR (DB4, 5) are conducted at all confidence levels across all four foreign exchange markets 
to investigate the effect of changing decomposition level on the model’s performance.  
Analysis of experiment results in table 6 indicates that changing decomposition level from 2 to 5 doesn’t ameliorate 
model’s performance in term of p-values. 
In fact the performance improvement by increasing the decomposition level comes not from higher p-value, but from 
higher forecasting accuracy.    
4. Conclusions 
More recently, several ideas have been put forward for a portfolio approach to the value-at-risk approach to market risk. 
There have been some attempts to apply wavelet analysis to VaR estimates. Their approach is based on the assumption 
that wavelet decomposed variances at different scales represent investors’ preferences. However, they seem to have 
ignored the impact of different wavelet families chosen for analysis, which leaves their findings largely inconclusive. 
In this paper, experiments using daily time series of CAND/USD, JPY/USD, SFR/USD and SZF/USD exchange rate 
returns are conducted to statistically evaluate the performance of the Wavelet and the more standard ARMA-GARCH 
approaches to VaR estimates. 
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ARMA(1,1)-GARCH(1,1) performs rather well and is accepted under all circumstances but  performance of 
ARMA(1,1)-GARCH(1,1) gradually deteriorates under higher confidence levels for all markets. This implies that 
ARMA(1,1)-GARCH(1,1) model may underestimate risk measurement and serve as a generally aggressive risk 
measures. 
WDVaR (Haar, 2) shows inferior performance compared to ARMA-GARCH(the p values are lower). This finding 
indicates that ARMA-GARCH VaR is an overly conservative risk measure. Because the decreasing level of p value by 
switching from ARMA-GARCH VaR to WDVaR, is caused by improvement in forecasting accuracy. 
In addition, the appropriate selection and combination of parameters can lead to comprehensive performance 
improvement in reliability (as measured by p value). In fact, based on findings from previous experiments, it is argued 
in this paper that WDVaR has demonstrated its capability to improve the reliability of VaR estimates at all confidence 
levels which offers considerable flexibility and potential performance improvement for Foreign exchange dealers.  
However, a comparison with other models could be investigated and further researches can be conducted to investigate 
for example the effect of multi-fractal VaR models’ performances especially with the specific features observed in our 
data. 
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Table 1. Descriptive Statistics & Statistical Tests 

 CAD/USD JPY/USD SFR/USD SZF/USD 
Mean 0.0000173011 -0.0000592292 0.00012019289 -0.0000593449 

Maximum 0.0082644000 0.0271680000 0.0857000000 0.0253058653 
 

Minimum -0.0080960000 -0.0412790000 -0.0626000000 -0.0191450342 
Standard deviation 1.417729e-06 7.854678e-06 1.298358e-05 1.008306e-05 

Skewness 0.10611 -0.82078 1.19116 -0.00271 
Kurtosis 3.99114 11.65273 73.74597 3.78416 

Jarque-Bera 5451.86220 47262.35153 1858040.64247 4887.27396 
Test (p-value) 0.00000000 0.00000000 0.00000000 0.00000000 

 
Table 2. Experiments results for ARMA-GARCH VaR 

 

Exchanges 
Rates 

Returns 
Confidence level ARMA-GARCH VaR 

Exceedances 

Kupiec Test 
( P-value) 

 
ARMA-GARCH Acceptance 

CAND/USD 
99% 

97,5% 
95% 

280 
367 
479 

0.0854 
0.1120 
0.1462 

  
  
  

JPY/USD 
99% 

97,5% 
95% 

187 
244 
324 

0.0571 
0.0745 
0.0989 

  
  
  

 
 

SFR/USD 

99% 
97,5% 
95% 

91 
138 
194 

0.0278 
0.0421 
0.0500 

  
  
  

SZF/USD 
99% 

97,5% 
95% 

150 
219 
296 

0.0458 
0.0668 
0.0903 
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Table 3. Experiments results for WDVaR (Haar,2) 
Exchange rate 

returns Confidence level WDVaR (Haar) 
Exceedances 

Kupiec Test 
(P-value) 

WDVaR (Haar) Model 
Acceptance 

CAND/USD 
99% 

97,5% 
95% 

210 
302 
414 

0.0641 
0.0922 
0.1263 

  
  
  

JPY/USD 
99% 

97,5% 
95% 

178 
241 
315 

0.0543 
0.0735 
0.0961 

  
  
  

SFR/USD 
99% 

97,5% 
95% 

81 
130 
178 

0.0247 
0.0397 
0.0443 

  
  

×  

SZF/USD 
99% 

97,5% 
95% 

96 
150 
227 

0.0293 
0.0458 
0.0693 

  
  
  

 
Table 4 . Experiments results for WDVaR (Sym6,2) 

 
Table 5. Experiments results for WDVaR (Db4,2) 

Exchange rate returns Confidence 
level 

WDVaR (db4) 
Exceedances 

Kupiec Test 
(P-value) 

WDVaR (db4) Model 
Acceptance 

CAND/USD 
99% 

97,5% 
95% 

263 
363 
470 

0.0803 
0.1108 
0.1434 

  
  
  

JPY/USD 
99% 

97,5% 
95% 

322 
377 
421 

0.0983 
0,1150 
0.1285 

  
  
  

SFR/USD 
99% 

97,5% 
95% 

633 
725 
803 

0.1932 
0.2212 
0.2450 

  
  
  

SZF/USD 
99% 

97,5% 
95% 

215 
263 
330 

0.0656 
0.0803 
0.1007 

  
  
  

 
Table 6. Experiments results for WDVaR (Db4,5) 

Exchange rate returns Confidence 
level 

WDVaR (Db4,5) 
Exceedances P-value WDVaR (Db4,5) Model 

Acceptance 

CAND/USD 
99% 
97,5% 
95% 

251 
363 
456 

0.0766 
0.1108 
0.1392 

  
  
  

JPY/USD 
99% 
97,5% 
95% 

289 
349 
412 

0.0882 
0,1065 
0.1257 

  
  
  

SFR/USD 
99% 
97,5% 
95% 

631 
706 
779 

0.1926 
0.2154 
0.2377 

  
  
  

SZF/USD 
99% 
97,5% 
95% 

195 
249 
326 

0.0595 
0.0760 
0.0995 

  
  
  

Exchange rate returns Confidence 
level 

WDVaR (Sym6) 
Exceedances 

Kupiec Test 
(P-value) 

WDVaR (Sym6) Model 
Acceptance 

CAND/USD 
99% 

97,5% 
95% 

259 
347 
437 

0.0790 
0.1059 
0.1334 

  
  
  

JPY/USD 
99% 

97,5% 
95% 

322 
369 
426 

0.0983 
0.1126 
0.1300 

  
  
  

SFR/USD 
99% 

97,5% 
95% 

507 
593 
679 

0.1547 
0.1810 
0.2072 

  
  
  

SZF/USD 
99% 

97,5% 
95% 

210 
279 
339 

0.0641 
0.0851 
0.1034 
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Figure1. Return series for CAD/USD 
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Figure 2. Return series for JPY/USD 
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Figure 3. Return series for SFR/USD 
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Figure 4. Return series for SZF/USD 

 
 
 
 




