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Abstract  
A survey of the risk management literature shows that few studies have attempted to take into account financial crisis in 
market risk measurement, in particular when using a Value-at Risk (VaR) analysis. In this paper, we use models to 
investigate the effects of subprime crisis on the Value-at-Risk estimation. In this framework, we investigate GARCH 
family models such as, GARCH, IGARCH, and GJR-GARCH. Each is adjusted based on three residuals distributions; 
normal, Student and Skewed Student-t. Using American stock market data, we show that dynamic volatility is different 
between the stability and during crisis periods. The estimation results indicate that the amount of VaR is different 
during these two time periods. This finding could be explained by the volatility clustering effect. The empirical results 
show also that GJR-GARCH model performs better in both sub-sample periods, in comparison with GARCH and 
IGARCH models. Moreover, we conclude that Student-t and Skewed Student-t distributions are preferred in the stable 
period while the normal distribution is recommended during the turbulent period.    
Keywords: Value-at–Risk, Subprime crisis, Risk management, Market risk, Risk measure, GARCH, Volatility 
asymmetry. 
1. Introduction  
In the last few years, risk management has known an important advance. In response to the financial crisis of the early 
1990’s, risk management was started by Value-at-Risk which has become one of the key measures of financial market 
risk. VaR is defined as an estimate of the maximum potential loss to be expected by a financial institution over a given 
period with a fixed probability. The Basle Committee prescribes its use as an internal management for financial 
institutions and risk managers. This technique of risk measurement has known such advances in the field of risk 
management and being now used to control and manage risk actively. Statistically, VaR, for a given portfolio, is simply 
an estimate of a specified percentile of the probability distribution of the portfolio’s value change over a given holding 
period. The specified percentile is usually taken in the lower tail of the distribution (for e.g., 95th percentile or the 99th 
one).  
In the literature, several approaches have been used in Value-at-Risk estimation and prediction, such as RiskMetrics 
model, known as the benchmark approach. Alternatives have been developed and have outperformed the benchmark 
RiskMetrics model in the VaR prediction. Indeed, Danielson and de Varies (1997), McNeil and Fray (2000) and Ho et 
al (2000) use extreme value theory to estimate Value-at-Risk. Later, Engle and Manganelli (2004), utilize a quantile 
regression method. Other approaches, based on Markov switching techniques (Billio and Pelizon, 2000) and high 
frequency data (Beltratti and Morana, 1999) are also used.  In addition, the concept of ‘‘realized volatility’’ has 
emerged as a new technique using the intra-day data as a better alternative to standard VaR model (Andersen, et al, 
1999, Moosa and Bollen, 2002)(Note 1).  
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As far as VaR estimation is concerned,  the GARCH family models constitute one of the most interesting framework  
for VaR prediction which could capture the time-varying volatility feature and provide an efficient variance prediction 
(Wong and So, 2003; So and Yu, 2006). In the ARCH specification by Engle (1982) and later its generalization 
(GARCH), by Bollerslev (1986), the residual series was supposed to be normally distributed. However, this assumption 
was often criticized and comprises at least three drawbacks.  First, the normal distribution for asset returns can not 
describe the extreme events. Second, recent empirical studies find that normal distribution for residual series driven 
from GARCH type models may generate substantial bias in VaR estimation which mainly concerns the tail properties of 
this series distribution. Third, return distribution has usually a heavier tail than a normal distribution (Pollitis, 2004).  
This is mainly due to asymmetry and leptokurtosis of the data distribution. Therefore, several propositions have been 
made as alternatives to the normal distribution, such as the Student t-distribution (Bollerslev, 1987; Hansen, 1994), 
generalized error distribution (Nelson, 1991), generalized hyperbolic distribution (Eberlein and Keller, 1995; 
Barndorff-Nielsen, 1997), stable distribution (McCulloch, 1996), non-central Student t distribution (Harvey and 
Siddique, 1999), Gram–Charlier distribution (Rockinger and Jondeau, 2001), Pearson’s Type IV distribution 
(Premaratne and Bera, 2001; Yan, 2005; Bhattacharyya et al, 2007), skewed t distribution (Jondeau and Rockinger, 
2003), Johnson’s SU distribution (Yan, 2005), and mixture of normal distributions (Alexander and Lazar, 2006). 
To the best of our knowledge, most empirical studies dealing with VaR calculation have focused on stock market risk 
(Brooks and Persand, 2002; Giot and Laurent, 2003b, 2004; Huang and Lin, 2004; Chiu et al., 2005). A very few 
studies have attempted to take into account financial crash and crisis in market risk measurement, especially in VaR 
context. In this paper, we use GARCH models in order to investigate the effects of subprime crisis, which have affected 
the American stock markets in July 2007, on VaR estimation. For this purpose, we investigate three GARCH 
specifications, GARCH, IGARCH and GJR-GARCH models. Each will be adjusted by three residuals distributions; 
namely normal, Student and Skewed Student distribution.  
The remainder of this paper is organized as follows. The VaR concept is described in section 2. Section 3 presents the 
GARCH family models used for VaR prediction. Section 4 investigates the GARCH family estimation which depends 
on three residual distributions. Section 5 focuses on model based VaR evaluation techniques. The last section presents 
the data set, preliminary studies and empirical findings. Finally, we conclude the paper.  

2. General concept of long and short position Value-at-Risk 
The VaR technique was introduced by JP Morgan in 1990 to measure the risk of declining values of financial assets. As 
in Giot and Laurent (2003), we focus on modelling VaR for portfolios defined on long and short trading positions. 
2.1 Long trading positions VaR 

Following Giot and Laurent(2003), traders or portfolio managers have long trading positions if they bought the traded 
asset and are concerned when the price of the asset falls. To define the long position VaR, let be the price of a 
financial asset on day t. A k-day long position VaR on day t is defined as the amount for which the probability, that it 
exceeds the loss , is equal to a confidence level . This could be formulated as follows: 

 . (1) 

For one-day , this could be rewritten very simply: 

 . (2) 

Financial time series of returns are defined as: 

 . (3) 

Under the assumption, that asset’s scaled returns follow a given distribution noted  (Note 2), then the long position 
one-day VaR at level   is given by 

 , (4) 

where  is the mean of return series,  denotes the  percentile according to the statistical distribution  and  
indicates the standard deviation or volatility on day t, which could be obtained via GARCH family models.  

2.2 Short trading positions VaR 

The short position VaR is defined when traders incur losses when stock prices increase. Giot and Laurent (2003) indicate 
that in the case of short position VaR, the trader loses money when the price increases because he would have to buy back 
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the asset at a higher price than the one he got when he sold it. Thus, we consider also a short position in the investment 
which is defined as follows: 

 .        (5) 

We obtain:  

 , (6) 

Where  denotes the  percentile according to the statistical distribution .  

From equations (4) and (6), we note that VaR depends on three components: the mean , the quantile  and conditional 
standard deviation . In the next sections, we will attempt to model these components. Indeed, for the mean and 
conditional standard deviation, we use GARCH type models, and for the quantile, we adjust residual series by three 
distributions such as normal, student t and skewed student t distributions. 

3. GARCH family models and volatility dynamics 
We consider the return series defined by equation (3). Let the information up to time t be designed by . The standard 
GARCH(p,q) model developed by Bollerslev (1986) is defined by 

  
, 

(7) 

where  denotes the lag polynomial with  order according to ARCH part, 
with .  is the lag polynomial with  order according to GARCH 
part, with  

 is the lag operator such as    and    is a conditional 

density with zero mean and variance  which can be supposed taking many specifications. In this work, we consider 
three conditional distributions, namely the normal, student t and skewed student t. 

3.1 The standard GARCH(1,1) model  
Bollerslev et al. (1992) show that GARCH(1,1) specification yields to better results in most applied situations. More 
recent empirical research illustrates that GARCH (1,1) model could adjust financial asset returns with very successful 
variance prediction. In this study, we apply the GARCH(1,1) family models and their extensions to estimate the 
Value-at-Risk. The GARCH(1,1) could be presented as follows: 

  
, 

(8) 

where ,  and  are non-negative parameters with the restriction of  to ensure the positivity of 
conditional variance  and stationarity as well (Bollerslev,1986).  

3.2 The IGARCH(1,1) model 
Engle and Bollerslev (1986) introduce the IGARCH (Integrated GARCH model) in order to take into account the 
existence of a unit root in the variance. Therefore, the IGARCH (1, 1) model is defined as follows: 

  
. 

(9) 

This model is a better alternative to GARCH (1, 1) specification. When μ = 0 and  (smoothing parameter), the 
IGARCH (1, 1) model reduces to the so called “RiskMetrics” model of JP Morgan (1996) which is defined by:  

  
, 

(10) 
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where . To improve the performance of RiskMetrics model, we need to set the smoothing parameter equal to 
0.94 for daily data and to 0.97 for monthly data. It was shown that λ = 0.94 produces very good forecasts for 1-day 
volatility (RiskMetrics, 1996; Fleming et al., 2001). 

3.3 The GJR-GARCH model 
An alternative approach allows for capturing the effect of asymmetry of the disturbances on the conditional variance 
based on GJR-GARCH model. This model was introduced by Glosten, Jagannathan and Runkle (1993). This 
specification is equivalent to the GARCH one, with the only difference being the incorporation of a dummy variable 
multiplied by the squared of residual terms in the variance equation. Formally, the GJR-GARCH (1.1) model is given 
by: 

  
, 

(11) 

where   and . 

The GJR-GARCH is a model with threshold where the dummy variable is equal to 1 if the residual of the previous 
period is negative and equal to zero otherwise. Thus, the conditional variance follows two different processes according 
to the sign of the error terms.   

4. Modeling residual series and GARCH family models estimation 
Various probability distributions could be used in the framework of the MLE procedures to estimate the parameters of 
GARCH family models. In this paper, we investigate the normal, the Student t and the skewed t distributions.  

4.1 The normal distribution 
The use of normal density offers the advantage of simplicity. Recent studies recognize that the properties of the normal 
distribution are not compatible with the stylized facts (leptokurtic and asymmetrical conditional distribution) generally 
observed in financial asset return series. 

For instance, under normality hypothesis, the residual terms is normally distributed, and we write:  

 . (12) 

Under this hypothesis, the Log-likelihood function for  family models is defined by  

 

 
(13) 

Where  and  are respectively the parameters vector and conditional variance corresponding to each GARCH 

specification, developed previously, and .    

Under the normality hypothesis, the one-day VaR, for each GARCH specification is obtained by replacing the 
percentile , in equation (4), by the one relevant to the standard normal distribution . Then, the long and 
short position  under the normality hypothesis are given by:   

 

 

 
 

 
(14) 

with  is specific to each model described previously and  and denote respectively the  
and  percentile according to the standard normal distribution. We note that the normality hypothesis could lead 
to convergent estimates of the parameters of GARCH model (principle of the pseudo-maximum likelihood). Nevertheless, 
the specification of the conditional distribution does not only relate to the problem of parameters estimation of GARCH 
models, but also and in more direct way to the determination of the fractile of the conditional distribution.  The choice of 
a normal specification may have significant effect on the  estimates and forecasts. 
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4.2 The Student distribution 
The Student distribution offers the possibility of modeling tails of distribution thicker than those of the normal one 
(leptokurtic distribution). More precisely, the Kurtosis of the Student distribution is determined by its degree of 
freedom . Consequently, within the GARCH framework, this estimated parameter allows to capture the excess of 
Kurtosis which could not be explained even by GARCH model itself.  Under this hypothesis, the standardized residual 
series follows the standard Student t distribution defined by  

 

 

(15) 

With  and . In this case, the Log-likelihood function for GARCH family 

models is defined by: 

 
, (16) 

where  and  are respectively the parameters vector and conditional variance corresponding to each GARCH 
specification developed previously.  

The standardized Student distribution is symmetric and the skewness is null if . Moreover, this distribution is 
leptokurtic if . Under the hypothesis that the residual series follows the Student distribution , the one-day , 
for each GARCH specification is obtained by replacing the percentile , in equation (4), by the one relevant to the 
standard Student t distribution . Then, we obtain   

  

 
(17) 

with  is the conditional standard deviation relevant to each GARCH specification described previously and  and 
 denote respectively the  and percentile of a Student distribution with  degree of freedom.  

4.3 The skewed Student t distribution 
Fernandez and Steel (1998) attempt to extend the Student-t distribution by adding a skewness parameter (Note 3) in 
order to accommodate the excess of skewness and kurtosis. They allow the introduction of skewness in continuous 
unimodal and symmetric distribution  by changing the scale at each side of the mode. The main drawback of this 
density is that it is expressed in terms of the mode and the dispersion. Lambert and Laurent (2001) re-expressed the 
skewed student-t density in such a way that the innovation process has zero mean and unit variance. The conditional mean 
equation could be written as follows:   with . 
where  follows the GARCH(1, 1),  IGARCH(1,1) and GJR-GARCH(1,1) processes. It is widely observed that 
the distribution of residuals tends to appear asymmetric and leptokurtic. To capture excess kurtosis and skewness, we use 
the skewed Student-t distribution of Lambert and Laurent (2001). 
Following the work of Giot and Laurent (2003) (Note 4), we use a standardized version of the skewed Student-t 
distribution introduced by Fernandez and Steel (1998). According to Lambert and Laurent (2001), and provided that 

, the innovation process  is said to be (standardized) skewed Student-t distributed, i.e.  , if: 

                                            (18) 

where is the symmetric (unit variance) Student-t density (Note 5) and  is the asymmetry parameter (Note 6). 
The parameters  and  are respectively the mean and the variance of the non-standardized skewed student-t 
distribution: 

                                                                           (19) 
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and                            (20) 

       

The sign of   indicates the direction of skewness, and represents the degree of asymmetry of residual 
distribution. Hence, if , the skewness is positive (negative) and the probability  density 
function is skewed to the right (left). When , the skewed Student-t distribution is equal to the standard student-t 
distribution. 

The functions and  are respectively the left and the right quantile at for the skewed 
Student-t distribution with  degrees of freedom and asymmetry coefficient   The log-likelihood function of a 
standardized (zero mean and unit variance) skewed Student-t distribution is given by: 

   

(21)           

where                                                                              (22) 

with  is the asymmetry parameter,  is the degree of freedom of the distribution and satisfies the equations of 
the GARCH volatility models considered in our study. 
The one-step-ahead forecast of the conditional mean and conditional variance  is computed based on past 
information. Hence, the one-day-ahead  computed at time , under the skewed Student-t distribution, for long 
and short trading positions are: 

                                                                               (23) 

Lambert and Laurent (2001) show that the quantile function  of a non standardized skewed student density is:  

                                  (24) 

where  is the quantile function of the (unit variance) Student-t density. We simply obtain the quantile function of the 

standardized Skewed student-t: 

  ,                                                            (25) 

The value of parameter  measures the degree of fat tails in the  density. If , the density has fat tails. The 

value of  determines the degree of asymmetry in the  density. If  ( ,    

and we will get a bigger  for long position than short position, i.e. the VaR for long trading positions will be larger 
for the same conditional variance than will the  for short trading positions. When , ( , 

 and we will get the reverse result.  

5. Evaluation methods of model-based VaR  
There are several methods for determining accuracy and efficiency of model-based  measurement. These methods 
are based on risk management loss functions such as the binary and quadratic loss functions (Lopez, 1999), on LR test 
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of unconditional and conditional coverage (Kupiec, 1995; Christoffersen, 1998) (Note 7) and on Mean relative scaled 
bias (MRSB) proposed by Hendricks (1996). In this paper, we use two approaches to evaluate model’s capacity and 
accuracy in Value-at-Risk estimation, namely the Sample coverage used by So and Yu (2006) and  test of Kupiec 
(1995). 

5.1 Sample coverage approach  
The sample coverage is used in the literature to evaluate Value-at-Risk estimation. This approach is based on the 
computation of the empirical failure rate which is defined by , where  is the total number of observations, 

 denotes the number of exceptions; i.e. the number of times returns exceed (in absolute value) the forecasted 
 in the sample,  and  is a Bernoulli random variable defined by 

 
 , (26) 

In a risk management context, represents the binary loss function. If the predicted  estimate is unable to cover 
the realized loss, this is called an exception. Equal weight is accorded to each loss that exceeds the  estimate; and 
all other profits and losses have a zero weight. We expect that  is close to  for a good  estimation method. 
Therefore, the smaller the discrepancy between  and , the better performance is the estimation method. To assess the 
overall performance of each model, we rank the methods according to  for each case. 

5.2 Kupiec test for unconditional coverage  
The Kupiec test is the second method used to test the accuracy of the computed  values. A likelihood-ratio test is 
proposed by Kupiec (1995) in order to test if the sample point estimate is statistically consistent with the  model's 
prescribed confidence level. Statistically, testing the accuracy of the model is equivalent to testing the hypothesis 

 versus . Under the null hypothesis, the likelihood-ratio statistic, denoted by  , follows the 
chi-square distribution with one degree of freedom. That is: 

 
 

(27) 

6. Empirical analysis  
6.1 Data description and preliminary analysis   
In this paper, we consider daily NASDAQ stock market index data. The choice of this index is attributable to the 
subprime crisis that has started in the US since 2007. The return series cover the period going from 01/01/2003 to 
10/07/2008. In order to investigate the effect of this crisis on the VaR estimation, we break up our sample into two 
periods: the first covers the stability period (calm period) with a number of 1140 observations (from 01/01/2003 to 
16/07/2007) and the second period covers the crisis period having 247 observations (from 17/07/2007 to 10/07/2008). 
We introduce and characterize our dataset at this stage to set the statistical properties of the series during the two 
periods. More specifically, we consider return series of closing prices expressed in (3) (Note 8). Table 1provides the 
descriptive characteristics for the return series, while descriptive graphs (price, daily returns) are included in Figure 1.  
Summary statistics clearly indicate that the index is more risky and less profitable in the crisis period than in the normal 
(stable) one. Indeed, means values are positive in the stability period and negative in crisis one, and standard deviations 
are higher for this turbulent period. During this period, the return series are extremely volatile which lead to a 
succession of extremely large positive and negative returns within a very short time span.  
The application of some unit root tests indicates that the series are stationary for the two sub-samples series.  In 
addition, it is clear that the normality hypothesis is rejected for the first sub-sample, and accepted for the second one 
(crisis period). Indeed, we notice that in the stability period, skewness is significantly negative. Moreover, excess 
kurtosis is significantly different from zero. This situation indicates that the empirical distribution of returns displays 
fatter tails than the Gaussian distribution in this period. That is, large changes are more often to occur than a normal 
distribution would imply. For the crisis period, the skewness, kurtosis and Jarque-Berra statistics indicate that the 
normality hypothesis could not be rejected.  
6.2 GARCH family models fitting  
In our empirical study, we use first the maximum likelihood method to give parameters estimates for each model 
defined presciently (Note 9). These estimates could be used to assess the in-sample performance of various GARCH 
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models in forecasting VaR for long and short positions. In this subsection, we estimate three GARCH family models 
(GARCH(1,1), IGARCH(1,1) and GJR-GARCH(1,1)) under the normal, Student-t, and skewed Student-t distributions 
innovations return series. Table 2 compares the estimation results of these models estimations. According to this table, 
we verify that stationarity condition is obtained, i.e.  and  is close to unity for all GARCH 
specifications during the two periods. In addition, estimated parameters  and  are all positive and significantly 
different from zero almost in all considered specifications. We find that   increases when a student 
error model is fitted instead of normal error. In the case of Student error fitting, we observe that the coefficient  is 
statistically significant at 5% confidence level for the first sub-sample. Consequently, this result indicates that 
NASDAQ return series is fat tailed and exhibits a leptokurtic characteristic especially in the first period, due to the 
rejection of the normality hypothesis for return series. However, we observe a large degree of freedom which isn’t 
statistically significant when the data cover the crisis period. This is explained by the presence of normality detected in 
this period. 
For the skewed student-t distribution, the asymmetric parameters are negative and statistically significant in the stability 
period confirming the fact that the density distribution of NASDAQ return series is skewed to the left side. However, 
the asymmetric parameters are also negative in the crisis period but insignificantly different from zero. Besides, the 
empirical results showed that fat-tail phenomenon is strong in the calm period than in the crisis one because the student 
parameters are significantly different from zero under the three models. As a result, we may conclude that the 
skewed-student-t-GARCH family models considered outperformed the other models with the normal and student-t 
distributions innovations in capturing the asymmetry and fat tails of the NASDAQ return distribution.  
In order to compare the quality of fitness among the three  specifications, we report the ranking of these 
models based on AIC (Akaike’s information criterion), SH (Schwartz), and HQ (Hannan-Quinn) information criterions 
(Table 3). According to these criterions, we rank the best models. We use the mean ranks to indicate the average rank 
for each specification. The model selection procedure is based on two steps. First, we choose the best innovation 
distribution for each model and we select the best one based on the mean ranks. Then, we choose the best GARCH 
specification for the three best distributions. Generally, student-t error models perform better than the normal and 
Skewed Student-t error models in the stability period. However, in the crisis period, results show the superiority of the 
normal distribution (table 3). From the empirical analysis of these models, the GJR-GARCH model performs the best in 
the two periods. Thus, we select this model in order to compute in-sample  estimations during these two periods. 
This result could be explained by the asymmetry in volatility which could be detected by the GJR-GARCH 
specification in the two considered periods.  
By taking into account for the volatility asymmetry, we notice that the parameter describing the asymmetric feature in 
the volatility is positive and statistically significant in the two considered periods. This evidence indicates that 
unexpected negative returns resulted in more volatility than unexpected positive returns of the same magnitude. In 
addition, it is clear that volatility clustering is observed in the daily returns graphic, especially in crisis period (graph 1). 
The GARCH coefficient is statistically significant for all models considered and is found to be around 0.87, 0.9 and 0.8 
for GARCH, IGARCH and GJR-GARCH models respectively, under the three distributions for our daily financial time 
series relative to turbulent period. Given the values of this coefficient, it is obvious that large values of  will be 
followed by large values of , and small values of will be followed by small values of . 
6.3 Assessing the VaR model performance   
In order, to assess the performance of based Value-at-Risk model (GJR-GARCH), we present a range of summary 
statistics that address a number of these different aspects of VaR models to risk managers. Two types of performance 
criterion are employed: sample coverage and Kupiec LR test for unconditional coverage.  
By adopting VaR as a quantitative measurement of downside risk, risk managers desire to achieve a failure rate equal to 
the fixed level confidence .  
6.3.1 VaR model performance in stability period 
During the first period (stability period), the VaR results computed by the normal, Student-t, and skewed Student-t via 
the best GJR-GARCH(1,1) model for the long and short trading positions are given in Table 4. The first remark is that 
the LR Kupiec test accepts the null hypothesis for all confidence levels, for the three distributions in long and short 
position VaR (except of the 0.5% confidence level). Then, the failure rate is significantly equal to the prescribed 
confidence levels. This result clearly indicates that the GJR-GARCH(1,1) is very successful in VaR estimation for our 
data set.  
If comparing between distributions, we observe that these later perform better at low confidence levels. Indeed each 
innovation distribution has the lowest value of sample coverage in the 0.25% confidence level for long and short trading 
positions. On other hands, the comparison between the three distributions shows that Student-t and skewed Student-t 
perform better than the normal distribution according to the lowest value of sample coverage (0.0747% versus 1.006%). 
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6.3.2 VaR model performance in crisis period 
As mentioned in Table 5, we obtain the same conclusion for the Kupiec’s LR test. Indeed, the null hypothesis is rejected 
only for 0.5% confidence level and for long trading position. In addition, some values of LR test are not available, due 
to the absence of exceptions especially for skewed Student-t distribution for long position VaR. Moreover, we note that 
the Kupiec’s LR test accept its null hypothesis for all confidence levels under the three distributions. This result shows 
that the selected GJR-GARCH model is also successful in VaR calculation in the crisis period. It is clear that the normal 
distribution performs better in this period. This result could be explained by the return series normality in the turbulent 
period (Table1).  
6.4 Effects of subprime crisis on value at Risk estimation 
To investigate the effects of subprime crisis on the VaR’s amounts computed by the selected GJR- GARCH(1,1) model, 
we analyze the descriptive statistics of  VaR values in the two sub-periods considered. According to tables 6 and 7, we 
deduce that the means and standard deviations VaR values, in crisis period, are larger, in absolute value, than those in 
stable period for the case of long and short trading positions. These findings could be explained by the speculative 
behavior of investors in the US stock market and in particular to moves of taking buy and sell positions in order to 
realize short term gains. These speculative actions may lead to generalized increases in almost of all the of financial 
assets prices to levels that do not reflect market reality but rather to the formation of a speculative bubble. These 
bubbles lead to a situation where asset prices are significantly different from their fundamental values.  
The subprime crisis has led to the deterioration of the American mortgage market. It has been initiated due mainly to an 
excess liquidity and quickly degenerated into a credit crisis followed by stock market crisis. The stock market prices 
have rapidly and greatly decreased while the trade volumes ought to increase. Consequently, the volatility of 
Nasdaq100 index return series, induced by the stock market speculation, has increased during the subprime crisis 
generating the rise in VaR values. 
Finally, we conclude that the subprime crisis has significant effects on Value-at-Risk estimates as it pushes up the 
amount of maximum losses supported by speculative investors.   
7. Conclusion  
GARCH type models are widely used to model financial market volatilities in risk management applications. They may 
be used to model risk attributes such as volatility clustering and the long-range dependence structure that exists in 
financial indices. In this research work, the GARCH , IGARCH( , and GJR-GARCH  models with the 
normal, Student-t and skewed Student-t error distributions are investigated to estimate one-day-ahead VaR for daily 
NASDAQ index returns. We focus on the investigation of the effects of American subprime crisis on Value-at-Risk 
estimation using some GARCH family models listed above. Also, we have assessed the performance of VaR models 
using the sample coverage and Kupiec LR test for unconditional coverage. The first empirical result confirms that the 
GJR-GARCH(1,1) specification is chosen in terms of information criterion in the two considered periods. This choice 
led us to a very successful one-day-ahead VaR calculation. Indeed, the LR Kupiec test shows that this model accept the 
null hypothesis of equality between the failure rate and the specified VaR confidence levels for in the case of long and 
short trading positions. If we choose between distributions innovations, we conclude that Student and Skewed Student 
are preferred in the calm period and that the normal distribution performs the best for the turbulent period due to the 
observed normality in the return series. Finally, we conclude that the subprime crisis has significant effects on 
Value-at-Risk estimates as it pushes up the amount of maximum losses supported by speculative investors.   
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Notes 
Note 1. For comprehensive overview of VaR, See Duffie and Pan (1997), Jorion (2001). 
Note 2. In this study, we will consider normal, Student and skewed Student-t.distribution for index return series.  

Note 3. Hansen (1994) and Paolella (1997) have proposed other asymmetric Student-t densities. 
Note 4. AR-APARCH  model with a skewed Student density forecasts correctly (both in- and out-of-sample) the 
1-day-ahead VaR for three international stock indexes and three US stocks of the Dow Jones index (Giot and Laurent, 
2003).  
Note 5. The density  is the symmetric of  with respect to the mean, hence  is better 
solution to indicate sign of the skewness.  

Note 6. The asymmetry coefficient  is defined such that the ratio of probability masses above and below the mean 

is  

Note 7. For details see Hung et al(2007). 

Note 8. We chose to multiply return series by 100 to express the returns on percentage  
Note 9. We use the G@RCH 2.3 Ox package for the model estimation. 

 



International Journal of Economics and Finance                                              August, 2009 

 99

Table 1. Summary statistics on daily returns during two periods  

  Stability period Crisis period

Summary statistics   

Obs 1139 247
Min -4.301 -4.496
Max 5.925 4.284
Mean 0.059 -0.047
St Dev 1.155 1.574

Unit root tests    

ADF  -35.308 -17.834
P-P -35.399 -18.009
KPSS 0.094 0.113
Z-A -13.561 -8.629

Normality    

Skewness  0.039 -0.009
(p-value) (0.594) (0.949)
Excess Kurtosis 1.34 0.048
(p-value) (0.000) (0.879)
JB stat 85.551 0.028
(p-value) 
 

(0.000) 
 

(0.986)

Note: this table reports summary statistics on daily stock market returns before and on crisis period. ADF, P-P, KPSS 
and Z-A denote the augmented Dickey Fuller, Phillips-Perron, Kwiatkowski-Phillips-Schmidt-Shin and Zivot and 
Andrews unit root tests respectively 
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Table 2. GARCH family parameter estimation in the two period 

Period  Stability period Crisis period 

 Distribution  Normal Student Skewed t Normal Student Skewed t 

GARCH model        
  0.0565 0.0632* 0.0493*  0.0176 0.0216 0.0140 
  (1.838) (2.080) (2.440)  (0.204) (0.251) (0.164) 

  0.0062 0.0043 0.0075*  0.1161 0.1181 0.0807* 
  (1.413) (1.029) (1.729)  (1.182) (1.192) (2.270) 

  0.0249* 0.0235* 0.0471*  0.0752* 0.0758* 0.0807* 
  (3.154) (2.789) (3.726)  2.084 2.060 (2.270) 

  0.9691* 0.9722* 0.9392*  0.8796* 0.8782* 0.8825* 
  (97.58) (96.18) (55.27)  (15.95) (15.84) (17.39) 

 Student DF,  --- 13.763* ---  --- 59.022 --- 
   (2.817)    NaN  

 Assymetry,  --- --- 10.854*  --- --- 53.909 
    (3.433)    (0.393) 

 Tail,  --- --- -0.0761*  --- --- -0.1241 
    (-2.007)    (-1.485) 

IGARCH model       
  0.0556 0.0636* 0.0471*  0.0154 0.0210 0.0085 
  (1.807) (2.091) (2.319)  (0.179) (0.255) (0.101) 

  0.0007 0.0003 0.0020  0.0302 0.0317 0.0288 
  (0.484) (0.238) (1.263)  (1.231) (1.300) (1.247) 

  0.0266* 0.0248* 0.0503*  0.0909* 0.0932* 0.0927* 
  (3.338) (2.948) (3.793)  (2.239) (2.328) (2.461) 

 Student DF,  --- 12.539*   --- 53.843 --- 
   (2.995)    NaN  

 Assymetry,  --- --- 9.176*  --- --- 57.948 
    (3.904)    NaN 

 Tail,  --- --- -0.0814*  --- --- -0.1401 
    (-2.106)    (-1.658) 

GJR –GARCH model       
  0.0439 0.0531 0.0284  -0.0227 -0.0172 -0.0552 
  (1.408) (1.738) (1.407)  (-0.266) (-0.197) (-0.629) 

  0.0047 0.002 0.0053  0.1917 0.1939 0.2763* 
  (1.239) (0.609) (1.444)  (1.544) (1.609) (2.370) 

  0.0085 0.0036 -0.0115  -0.0465 -0.0516 -0.1074 
  (1.014) (0.424) (-1.114)  (-0.967) (-1.006) (-1.820) 

  0.9701* 0.9743* 0.9547*  0.8473* 0.8464* 0.7968* 
  (112.7) (117.3) (53.52)  (12.69) (13.04) (12.35) 

  0.0314* 0.0386* 0.0949*  0.244 0.2546 0.4523 
  (2.093) (2.379) (3.761)  (1.905) (1.898) (1.923) 

 Student DF,   13.145* ---  --- 38.604 --- 
   (2.995)    (0.317)  

 Assymetry,   --- -0.1008*  --- --- -0.1955 
    (-2.616)    (-1.840) 

 Tail,   --- 12.971*  --- --- 14.808 
    (2.970)    (0.983) 

Notes: The numbers in the parentheses represent the t-Student statistic of corresponding tests significance. The log-likelihood is the maximized value 
of the log likelihood function. (*) indicates that the parameter is statiscally significant at 5% level. 

 



International Journal of Economics and Finance                                              August, 2009 

 101

Table 3. Model selection based on the information criteria and ranking  
 Stabilty period Crisis period 

  AIC SC HQ Mean rank AIC SC HQ  Mean rank 

GARCH-Normal 3.0328 (3) 3.0505 (2) 3.0395 (3) 2.66 3.6676 (1) 3.7201 (1) 3.6887 (1)  1 (3) 
GARCH- Student 3.0245 (2) 3.0466 (1) 3.0328 (1) 1.33 (3) 3.6746 (3) 3.7401 (2) 3.7009 (2)  2.33 
GARCH-Skewed 3.0243 (1) 3.0509 (3) 3.0343 (2) 2 3.6738 (2) 3.7526 (3) 3.7054 (3)  2.66 
          
IGARCH- Normal 3.0341 (3) 3.0474 (3) 3.0391 (3) 3 3.6669 (1) 3.7063 (1) 3.6827 (1)  1 (2) 
IGARCH- Student 3.0242 (2) 3.0419 (1) 3.0309 (1) 1.33 (2) 3.6739 (3) 3.7264 (2) 3.6949 (2)  2.33 
IGARCH- Skewed 3.0239 (1) 3.0460 (2) 3.0323 (2) 1.66 3.6714 (2) 3.7370 (3) 3.6977 (3)  2.66 
          
GJR- Normal 3.0304 (3) 3.0525 (3) 3.0387 (3) 3 3.6419 (1) 3.7075 (1) 3.6683 (1)  1 (1) 
GJR- Student 3.0206 (2) 3.0471 (1) 3.0306 (1) 1.33 (1) 3.6486 (3) 3.7273 (2) 3.6802 (3)  2.66 
GJR-Skewed 
 3.0192 (1) 3.0501 (2) 3.0309 (2) 1.66 3.6428 (2) 3.7346 (3) 3.6796 (2)  2.33 

 
Table 4. Long and Short position VaR calculated by GJR-GARCH(1,1) before crisis period  

   Long position VaR   Short position VaR 

 Quantile  Sample coverage LR statistic  Quantile Sample coverage LR statistic 

                  
Normal distribution               
  5%   0.5215% 0.6328   95% 0.0833% 0.0166 
  2.50%   0.3922% 0.686   97.50% 0.5675% 1.4075 
  1%   0.1394% 0.2142   99% 0.3146% 1.0382 
  0.50%   4.2989% 68.8550*   99.50% 0.1494% 0.5722 
  0.25%   0.1006% 0.4109   99.75% 0.0747% 0.2854 
Student distribution               
  5%   0.5302% 0.6993   95% 1.0561% 2.8796 
  2.50%   0.5719% 1.6597   97.50% 0.8348% 3.6903 
  1%   0.3865% 1.9971   99% 0.7371% 8.8672* 
  0.50%   4.7371% 93.0795*   99.50% 0.4124% 5.9468 
  0.25%   0.0747% (1) 0.2854   99.75% 0.1624% 1.6116 
Skewed Student distribution            
  5%   1.8449% 9.3567*   95% 0.0833% 0.0166 
  2.50%   1.3606% 10.8340*   97.50% 0.1293% 0.0769 
  1%   0.5618% 4.6058*   99% 0.3865% 1.9971 
  0.50%   4.7371% 93.0795*   99.50% 0.3247% 3.2293 
  0.25%   0.0747% (1) 0.2854   99.75% 0.1624% 1.6116 
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Table 5. Long and Short position VaR calculated by GJR-GARCH(1,1) in crisis period  

Long position VaR   Short position VaR 

  Quantile   Sample coverage  LR statistic   Quantile Sample coverage  LR statistic 

Normal distribution               
  5%   1.8841% 1.8551   95% 1.01% 0.6408 
  2.50%   0.0362% 0.0015   97.50% 0.33% 0.1259 
  1%   0.4493% 0.4941   99% 0.09% 0.0205 
  0.50%   4.2754% 16.3972   99.50% 0.22% 0.2457 
  0.25%   0.1123% 0.1225   99.75% 0.25% NaN 
Student distribution               
  5%   0.7971% 0.352   95% 1.38% 1.2131 
  2.50%   0.3261% 0.1259   97.50% 0.33% 0.1259 
  1%   0.4493% 0.4941   99% 0.09% 0.0205 
  0.50%   4.6377% 20.9656   99.50% 0.14% 0.1164 
  0.25%   0.2500% NaN   99.75% 0.25% NaN 
 
Skewed t distribution             
  5%   1.3768% 1.2131   95% 1.52% 1.233 
  2.50%   1.4130% 2.8588   97.50% 1.49% 2.123 
  1%   1.0000% NaN   99% 1.17% 2.8769 
  0.50%   5.0000% NaN   99.50% 0.59% 1.4287 
  0.25%   0.2500% NaN   99.75% 0.47% 1.6431 

 
Table 6. Descriptive statistics calculated by GJR-GARCH-Student in the stability period and  by GJR-GARCH- normal 
in the crisis period 

Quantile 

Long position VaR   Short position VaR 

mean Standard deviation mean Standard deviation 

Stability Crisis Stability Crisis Stability Crisis Stability Crisis 

5% -1.9132 -2.5138 0.4323 0.5480 2.0471 2.4684 0.4383 0.5480 

2.50% -2.3456 -2.9911 0.5273 0.6530 2.4969 2.9456 0.5372 0.6530 

1% -2.8896 -3.5459 0.6469 0.7751 3.0710 3.5005 0.6634 0.7751 

0.50% -3.2915 -3.9238 0.7352 0.8582 3.5015 3.8783 0.7581 0.8582 

0.25% -3.6915 -4.2739   0.8232 0.9352   3.9355 4.2285  0.8535 0.9352 

 

Table 7. Descriptive statistics calculated by GJR-GARCH-Student in the stability period and  by GJR-GARCH- normal 
in the crisis period 

Quantile 

Long position VaR   Short position VaR 

mean Standard deviation mean Standard deviation 

Stability Crisis Stability Crisis Stability Crisis Stability Crisis 

5% -2.0664 -2.5138 0.4707 0.5480 1.8718 2.4684 0.4082 0.5480 

2.50% -2.5357 -2.9911 0.5755 0.6530 2.2779 2.9456 0.4989 0.6530 

1% -3.1318 -3.5459 0.7085 0.7751 2.7905 3.5005 0.6133 0.7751 

0.50% -3.5761 -3.9238 0.8077 0.8582 3.1708 3.8783 0.6982 0.8582 

0.25% -4.0214 -4.2739   0.9071 0.9352   3.5510 4.2285  0.7830 0.9352 
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Figure 1. Graph of prices and return series in the two periods 
 

 

Figure 2. Returns (X) and long position VaR calculated by GJR-GARCH(1,1) with skewed Student t in the stability 
period 

 

 

Figure 3. Returns (X) and long position VaR calculated by GJR-GARCH(1,1) with Student in the stability perio 
 
 
 
 
 

 

 

Figure 4. Returns (X) and short position VaR calculated by GJR-GARCH(1,1) with skewed Student t in the stability 

period 



Vol. 1, No. 2                                             International Journal of Economics and Finance 

 104 

 

Figure 5. Returns (X) and short position VaR calculated by GJR-GARCH(1,1) with Student t in the stability period 
 

 

Figure 6. Returns (X) and long position VaR calculated by GJR-GARCH(1,1) with normal in the crisis period 
 

 

Figure 6. Returns (X) and short position VaR calculated by GJR-GARCH(1,1) with normal distribution in the crisis 
period 

 
 
 




