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Abstract

We use a binomial model to derive the optimal trading strategy for a hedge fund manager facing different
constraints such as the possibility of the fund liquidation and a minimum net-of-fees return to deliver in order to
meet investors expectations. Our model enables us to link the optimal trading strategy and the optimal volatility
of the fund to the management and incentive fee rates, the minimum net-of-fees return required by investors, the
size of the fund and the moneyness of the option-like contract held by the manager. We find that even if the
optimal volatility of the fund increases when the option is out of the money, there is a certain point at which it
starts to decrease; and this point can vary from one manager to another given that it is related to factors such as
his ownership in the fund and his tolerance for risk. These results give further insights on why some empirical
studies such as Brown, Goetzmann and Park (2001) and Clare and Motson (2009) fail to find a general trend in
hedge fund managers’ risk-taking behavior when their option is out of the money.
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1. Introduction

Several studies have addressed the issue of the risk-taking behavior of managers who have asymmetric
compensation packages (incentive fees) and the conflicting results show how difficult it is to come up with a
satisfactory answer. The incentive contract resembles a call option given that the manager receives incentive fees
when the asset value exceeds the high water mark. Using a TASS database, Brown, Goetzmann and Park (2001)
find that hedge fund managers tend to increase (decrease) risk in response to performance relative to their peers,
but not in response to their absolute performance. They argue that the positive relationship between volatility and
termination provides a disincentive for fund managers to gamble excessively when their option is out of the
money (OTM). Carpenter (2000) examines the behavior of a mutual fund manager who has an option-like
contract on the asset under management. She finds that the manager will increase the risk of the fund if the
fund's return is below the hurdle rate and will decrease the risk if the return is above the hurdle rate, which also
suggests a "locking in" behavior when the option-like contract is ITM. However, her analysis is over one period
and ignores the possibility of the fund being liquidated in response to poor performance unless its value becomes
zero. A liquidation boundary has been specified by other authors such as Goetzmann, Ingersoll and Ross (2003),
Hodder and Jackwerth (2007) or Panageas and Westerfield (2009). Their models show that the manager has the
incentive to increase risk given that the value of the option increases with the volatility, but as the fund's value
approaches the liquidation boundary, the manager will decrease risk.

In this study, we use a binomial model to assess the risk-taking behavior of a hedge fund manager. As in Hodder
and Jackwerth (2007), we present a theoretical and discrete time-model. Our approach enables us first to assess
the impact that the level of volatility has on the expected manager's fees and the expected investors' wealth. Our
results suggest the manager may not benefit from excessive risk-taking because a high level of volatility reduces
the expected investors' wealth, which may lead to outflows when their objectives are not accomplished and
therefore, may reduce the future compensation of the manager.

Second, we solve for the optimal trading strategy from the manager's prospect on a one-period basis. The
one-period setting is justified because even though the manager's horizon is longer, he implements his optimal
trading strategy period by period to maximize his compensation. He has an incentive to increase risk because his
expected fees increase with volatility, while investors would like to inhibit excessive risk-taking because it
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impacts negatively on their expected wealth and increases the magnitude of potential losses. To account for this
conflict of interest or agency problem, we derive the optimal trading strategy by setting first a liquidation
boundary for the fund, and unlike previous studies, we add a constraint related to a minimum net-of-fees return
to be delivered by the manager in order to renew his contract or avoid outflows due to poor performance. This
constraint can be considered as a benchmark for the manager and shows that the fund should bear a minimum
risk in order to meet investors’ expectations in terms of returns. We also add a third constraint related to the
manager' tolerance for risk. Our results show that the optimal allocation in the risky asset is negatively related to
management and incentive fee rates, and to the size of the fund. However, it is positively related to the minimum
net-of-fees return required by investors and to the moneyness of the option contract, the latter defined herein as
the distance between the high water mark and the fund value. This means that the more the option is OTM, the
higher the incentive to take risk will be. However, because of the liquidation boundary, there is a level of asset
under management where the risk exposure of the fund starts to decrease.

The contribution of our paper to the hedge fund literature is to give further insights on the reason why the
relationship between the volatility strategy of the manager and the moneyness of the option is complex
especially when the latter is OTM. Indeed, Brown et al. (2001) and Clare and Motson (2009) fail to empirically
find a clear behavior of hedge fund managers in response to absolute performance. Clare and Motson (2009) find
that sometimes managers increase risk when their option is OTM, but they do not "put it all on black" in other to
"win" back earlier losses. Our model shows that the manager increases the volatility up to a certain point when
the fund is below the high water mark. Above this point, he decreases the volatility of the fund due to the fear of
liquidation. This point depends on factors such as his tolerance for risk or his ownership in the fund and it is the
reason why the risk-taking behavior will differ from one manager to another, and it will remain difficult to find a
clear increase or decrease of risk when the option-like contract is OTM.

2. The Model

Compensation contracts for hedge fund managers include incentive fees which can be thought of as a call option
on the portfolio that they manage. At the end of each period, the portfolio can take on a continuum of values.
However, whatever the end value, there are only two possible outcomes: either the option is exercised or it is not.
The goal of this study is not to implement a sophisticated model that describes the precise portfolio value at the
end of each period. Our study aims to model the two possible outcomes for the option through time. To achieve
this, we use a binomial model. The binomial approach offers an intuitive and tractable setting for evaluating
options, and provides results that are easy to interpret. It has the advantage of providing a closed-form solution
for the optimal trading strategy and the optimal volatility of the fund.

The binomial model assumes that the asset value can either go up or down by a known amount and we use this
approach for the intuition it offers in modeling the risk-taking behavior of the manager. Indeed, one can consider
a binomial world setting where the manager bets on the market's direction. He can either win or lose. The initial
size of the fund is S). We consider the problem of a hedge fund manager's optimal allocation of portfolio value
into a risky and a riskless investment opportunity. The riskless asset grows at the risk free rate r, and has a
volatility of zero, while the risky asset has a mean x, and a volatility o,. It follows a binomial random walk with
the up and down parameters u and d defined as:

u=1+o, ﬁ (D
d=1-0,T ©)
The probability of a rise p, is defined as follows:

1 T
p, =Ly AT 3)
2 20

and the probability of a fall is 1- p.. The choice of these constants is far from unique and we choose this
specification for estimation purposes. (Note 1)

The manager selects a dynamic strategy by allocating a fraction x, of the fund in the risky asset and the
remaining part (1- x.), is invested in the riskless asset. We allow the manager to control for x, which can be
superior to 1 when he uses leverage. In that case he borrows at the risk free rate . The asset under management
S follows a binomial random walk with a drift 4 = x, ue + (I- x,)r; and a volatility ¢ = x, o,, and at the end of
the evaluation period, its value S7 can have two possible outcomes, either

Sru =x,8,(1+0,NT)+(1-x,S,)(1+7,T) (4)
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or
Sy =%.8,(1= 0 NT)+ (1~ x,8,)(1+r,T) )

The manager owns a fraction a of the fund with 0 <« <1, and investors hold the remaining portion (1 - @) of the
assets. Management fees equal a proportion m > 0 of fund value (1- a)S7 at the end of the evaluation period and
incentive fees are a percentage £ > 0 of the fund's performance in excess of the high water mark Hr, that is
(1-a)kmax {Sr- H5,0}. For some incentive contracts, the high water mark grows at a certain rate of interest. As
Hodder and Jackwerth (2007), we assume that it grows at the risk free rate during the evaluation period such that
Hyp= Hy(1+ r/). The total wealth of the manager W7 is the sum of his ownership in the fund and his fees. At the
end of the evaluation period, it is expressed as follows:

W, =aS, +(1-a)mS, + kmax{S, — H, 0] (6)

Investors wealth is expressed as follows:
I, =(1-a)l(1-m)S, —kmax{S, — H,.,0}] @)
From the above variables, the expected value of the manager's wealth at the end of the period is:
E[W, |= aElS, |+ (1 - a)mE[S, |+ kE[max{S, — H,,0}]

From the binomial model, it follows that:
EW, ]= aS,(1+ uT) + (1= a)\mS, (1+ uT) + kp, max{x, S, (6,NT =, T) = L,(1+7,T).0]  ®

with
Ly = Hy— Sy, the moneyness of the option. (Note 2)

We can note that L, > 0 because the option is always either at the money (H, = S)) or out of the money (H, > Sy)

at the beginning of the year.

The expected investors' wealth is:
Ell, )= (1= @)1= m)S, (1 + uT) — kp, max{x, S, (6, NT —r, T) = L, 1+ 7, T),0} ©)

The moneyness (or more precisely the "out of the moneyness") L, is an important variable of the model, because
it determines how far the fund value is from the high water mark. In other words, it is a measure of how far the
option is out of the money. This measure is interesting because it increases with previous losses and it shows the
path-dependent nature of the manager's payoffs. The larger the value of L, the smaller the expected
compensation of the manager.

3. Impact of the Fund's Volatility Level on Expected Values

Replacing the probability p, by its expression in equation (3), we obtain, depending on whether the option is
expected to be exercised or not, the following expressions for the derivatives of E[ W] and E[/7] with respect to

the volatility of the risky asset:

oE[, ]

JT[x,Syr, T+ Ly (14 7,T)]
do, ’

(o}

e

(10)

:%(l—a)lk xS, NT +2

and
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OE[1, ]

VT [x,Syr, T + L, (14 7,T))]
Jo, ’

(o)

e

an

= —%(1—@1,{ x,S,NT + He

where 1; is an indicator variable such that:
1, = k if the option is exercised
1, = 0 otherwise.

This shows that BE[WT ]/ao'e >0 and aE[I , ]/ do, <0. The sensitivity of the expected manager's wealth and that

of the expected investors' wealth with respect to volatility are equal in amplitude, but of opposite signs; the first
being positive and the latter being negative. Then, for a given expected return, a higher level of risk has a
positive impact on the manager's wealth. In fact, a high level volatility does not change the expected value of the

manager's ownership in the fund, nor that of the management fees at time 7. For a given expected return, these
values remain constant whatever the level of volatility and we have aE[aST ]/a 0,=0 and aE[MfessT ]/ do, =0.

A higher level of volatility only increases the expected value of incentive fees because the distribution of the
possible values of the option-like payoff is truncated at zero and we havedE[W, |/0o, = OE[lfess, |/0o, . As a

consequence, this reduces the expected investors' wealth of the fund by the same amount. The above equations
show that the manager may have an incentive to increase risk, but if he has to choose between two assets having
the same expected return, a rational manager will invest in the one with the lower volatility; because it has a
better risk-adjusted return and also because even if investing in the asset with the higher volatility increases the
expected value of his incentive fees, it reduces the expected value of investors wealth. If the manager wants to
increase his fees, a solution is to increase the proportion of the fund invested in the asset with the best
risk-adjusted return. This will increase the volatility of the whole fund as well as its expected return. As result,
the manager will increase both the expected value of his wealth and the expected investors' wealth. The
question is what is the optimal proportion to be invested in the risky asset, because increasing the risk of the fund

also increases the magnitude of losses in the case where his bet does not come true.

4. Other Factors That Can Impact the Manager's Risk-Taking Behavior

The above results suggest that even if, a priori, we may have reason to believe that hedge fund managers have a
strong incentive to take a high level of risk, especially when their incentive contract is OTM, they may not
necessarily do so given the potential impact that it has on investors wealth. Furthermore, their volatility strategy
may not only be driven by the willingness to exercise their option or to increase the value of their option contract,
but also by other factors. Theory suggests that the value of an option increases with the volatility of the
underlying asset. But this theory does not address the issue of overall wealth when the holder of the option is
also the manager of the underlying asset, and this is the case for hedge fund managers. As Goetzmann et al.
(2003) mention, hedge fund managers cannot do any form of delta hedging. They hold option-like contracts on
assets they manage. If you hold an option contract on an underlying asset traded in the market, you will benefit
from an increase in the volatility of the asset because it implies that your contract is worth more. However, if you
have some interest in the underlying asset, you will be concerned by its risk level, and this is the case for hedge
fund managers because a high volatility of the fund is also associated with a high probability of termination.

Many other factors may affect the risk-taking behavior of the manager such as his relative performance, his
ownership in the fund, the size of the fund and the average risk of his peers. The various categories of hedge
funds do not have the same exposure to risk factors and therefore, do not have the same level of risk. For
instance, the average monthly volatility for Fixed Income Arbitrage funds in the TASS database from January
1994 to June 2011 was 2.60%, while it was 5.93% for Emerging Market hedge funds. (Note 3)

As for the size of the fund, incentive fees do not have the same importance in the manager's compensation.
Incentive fees might be more important for a small fund because management fees (paid from the asset under
management) might sometimes be insufficient to cover operating expenses. On the other hand, incentive fees
might not be as important for a large fund which can cover its operating costs with management fees. Hence, a
manager of a small fund is constrained to assume a higher level of risk in order to survive because for him, the
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relative importance of incentive fees is higher than it is for a manager of a large fund. As the fund grows, the
relative importance of incentive fees decreases and thereby, the need to take riskier positions decreases.

5. Optimal Trading Strategy

The previous equations show that for a given expected return, a higher level of risk has a positive impact on
manager incentive fees and a negative impact on investors wealth. On one hand, the manager has an incentive to
manage a fund with a high level of risk because his option value at each period increases with volatility. On the
other hand however, a higher volatility increases the magnitude of losses and this could be harmful to the
manager's reputation as well as to his ownership in the fund and his compensation because of outflows due to
bad performance. Outflows represent a powerful tool that investors can use in order to prevent excessive
risk-taking by managers. Outflows lower managerial compensation because fewer assets under management
imply smaller management and incentive fees. Outflows can also be costly for the manager because he could be
forced to liquidate certain positions at a suboptimal price in order to meet redemptions. Outflows can even lead
to the liquidation of the fund. The 2008 financial crisis is an example where many hedge funds have been forced
to liquidate due to redemptions. In order to avoid withdrawals, and even attract new investments, the manager
should maintain a good track record. For each period, he should provide the investor with a return after fees
superior to that the latter can achieve on his own, otherwise he is better off investing elsewhere. Indeed, the
reason why investors accept liquidity constraints imposed by hedge funds and the payment of high incentive fees
is the strong expectation that year after year they will provide absolute returns. (Note 4)

Hedge funds define themselves as absolute-return strategies and a positive periodic return can be considered an
implicit feature of the contract. This return may also depend on market conditions. For example, if we assume
that the investor has the choice of investing in either a hedge fund or the risk free rate, this minimum return
should be superior to the risk-free rate. Then, for each period, the manager faces a trade-off between increasing
his fees and meeting investors expectations.

Now, let us solve for the optimal trading strategy of the fund from the manager's prospect. Let's denote r,, the
minimum net-of-fees return required by the investor, which in other words can be considered as a benchmark for
the manager. As we mentioned, it may depend on market conditions, and we should have a specific r, for each
period. We assume that 7, is known at the beginning of each year and does not change during the year. Another
assumption is that the fund can be liquidated in the event of a very poor performance as in Goetzmann et al.
(2003) and Hodder and Jackwert (2007). Therefore, the manager should always watch the downside risk of the
fund even if its expected return is positive. In our binomial model, a loss can occur with the probability (1-p,).
An optimal behavior would be therefore to ensure that in the case of the occurrence of this state of nature, the
value of the fund remains superior or equal to the liquidation boundary, otherwise the fund will be liquidated
(immediately after the payment of management fees). Let's denote By, the liquidation boundary at the beginning
of the year. (Note 5)

Another point to consider is the fact that in the three components of the manager's wealth, only the expected
value of incentive fees increases with volatility as we mentioned previously. The expected value of management
fees and that of his ownership in the fund does not change with a greater volatility. On the contrary, they will not
necessarily benefit from a higher volatility because a higher level of risk also increases the magnitude of losses;
and the higher the losses the lower this part of the manager's wealth will be. We then suppose that, according to
his tolerance for risk, the manager sets a limit variance & for this part of his wealth.

The manager's optimization problem is then to choose an admissible trading strategy that maximizes his
expected wealth at the end of the evaluation period 7, by using

max E[WT]
Xe
st. El]21,0+nT) (c)
Sr4 2B, (c2)
Var[aST + (1 =a)msS, ] <6’ (c3)

The first constraint (c/) is related to the minimum net-of-fees return to achieve in order to meet investors
expectation. If the performance of the fund is below this return, the manager exposes the fund to outflows. The
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second constraint (¢2) is related to the liquidation boundary; if the value of the fund falls below B, this
constraint will be violated, which will imply the liquidation of the fund. The third constraint (¢3) is related to the
limit volatility sets by the manager for the part of his wealth for which a higher volatility represents a higher risk,
namely his investment in the fund plus management fees. Some critical values for x, follow from the three
constraints:

e (cl) implies that, depending on whether the option is expected to be exercised, we should have x, > x,; with

ﬂeﬁ]

S,[a+7,1) -1 -m)a+ rfT)]—%lkLo 1+ rfT)(l +

y = e (12)
cl ﬁ
1
So(=m)(u, =r)T = 1,5, (o NT - rfT)[l 4 He J
) ; o,
where 1; is an indicator variable such that:
1, = k if the option is exercised
1, = 0 otherwise.
e (c2) implies that x, <x., with
_ S0(1+f/»T)—BO (13)
x(tZ P N
Sy(o NT +7,T)
o (c3) implies that x, <x.; with
o
X, = (14)

o, [a +(1- a)m]

Then, x.; represents the lower frontier for x,, and x., and x.; represent its upper frontiers. We can note that x.; is
positively related to , implying that the higher investors expectations in terms of return, the higher should be
the investment of the fund in the risky asset. We can draw the frontiers inside which the manager can maximize
his wealth without violating any of the three constraints. Figure 1 shows these frontiers if we assume the
following values for the parameters: y, = 0.08, o, = 0.2, m = 0.02, k= 0.2, 7,= 0.01, r, = 0.04, T =1, a = 30%,
6 = 0.14, and By= 50. Hy= 100 and the value of S, varies from 100 to 51 corresponding to a moneyness L,
varying from 0 to 49.

Weight of the risky asset

1 1 1 N 1 L L 1 1
5 10 15 20 25 30 35 40 45 50
Moneyness L0

Figure 1. Frontiers for the risky asset weight related to constraints c/, ¢2 and ¢3 and for different levels of
moneyness

The dotted lines represent the frontier for (c/) and (c3), and the full and tiny line, the frontier for (c2). x.;
corresponds to the weight at which the net-of-fees return of the fund is equal to the minimum required by
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investors. We can see that x.; decreases up to the point at which the option is expected to be exercised without
violating constraint (c¢/). This corresponds to a value of Soequal to 88 and a value of 12 for Lo. Above this point,
a lower weight for the risky asset implies a low volatility of the whole fund, insufficient to provide the minimum
net-of-fees return required by investors. So, the manager should stop to decrease the allocation in the risky asset
and x.; becomes constant. For this value of x.;, the option is not exercised and the net-of-fees return of the fund
is 7.

Regarding x.,, we can see that it decreases as the moneyness Lo increases. This suggests that as the value of the
fund decreases and gets closer to the liquidation boundary, the manager should reduce the investment in the risky
asset. As for x.;, it remains constant and does not depend on the moneyness. The hatched area represents the area
in which the manager can invest in the risky asset without violating any of the three constraints. We can see that
beyond a certain level of moneyness it becomes impossible to invest without violating at least one of these
constraints. In the present example, this level of moneyness is about 41, which corresponds to a value of So equal
to 59. Therefore, above this point, it is impossible to have an optimal solution.

The expression of x.; in equation (14) shows that the more the manager is invested in the fund, the less x.; will
be. It is the only frontier that depends on the manager's stake in the fund and it shows how the manager's
propensity of taking risk will be reduced with his involvement in the fund. Figure 2 shows the values of x.; for
values of manager stake equal to 10%, 20% and 30%.

8 X.3. @ = 10% |4
. —-—-=X,a3, @ = 20%
....... Xeq. @ = 30%
— 6 -
P
»
8
> 5k .
e
£ af -
5
S 3F - T T T T T T T -
2
ofTTTTTTTTTTTTTTTTTT CTTTTTTTTT T T T a e ]
1F .
0 L N ) N L ) L s .
5 10 15 20 25 30 35 40 45 50

Moneyness LO

Figure 2. Frontiers related to constraint ¢3 for different values of the manager's ownership a

We can see how x.; decreases with the manager's stake in the fund. For instance, for a = 10%, x.; is almost
equal to 6, meaning that with a 10% ownership in the fund, and according to his tolerance for risk, the manager
can be comfortable in investing a maximum of six times the value of the fund in the risky asset. This represents a
leverage ratio of 5. While for a 30% ownership, x.;=2.23, which reduces considerably the maximum investment
in the risky asset.

Depending on the manager's stake in the fund, the upper limit for x, is x., or x.;. However, even if investing x.,
or x.; in the risky asset provides the manager with the maximum wealth that he can expect without violating
constraint 2 or constraint 3, it does not necessarily represent the optimal trading strategy because it constitutes a
very risky position. For instance, if the manager invests the proportion x,;, in the risky asset, the value of the fund
will fall to the liquidation boundary if his bet does not come true and the survival of the fund will be threatened.
So, the optimal investment in the risky asset is below x., or x.; unless it is necessary. For example, suppose a
certain amount of fees (management fees + incentive fees) for which the manager is comfortable, in other words,
for which he can cover his operating expenses and remain with a certain profit. Then, the proportion of the fund
that he will invest in the risky asset will be the one for which he can expect to earn this amount of fees. Let us
denote this amount v. To solve for the corresponding weight in the risky asset, we have the following equation:

(1-a)ymE[S, |+ (1 - a)kE[max{S, - H, ,0}]=v (15)

The solution is
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v

(1-a)

uAT
O

e

—mS0(1+rfT)+;k[l+ ]L0(1+r/T)

(16)

x, =

T
mS, (1, —r/)T+;k[l + ﬂe(JSO(O'eﬁ—rfT)
. o .
We can see that the above parameters impact differently on x, (the derivatives of x, with respect to these
parameters are presented in the appendix):

e There is a negative relationship between x, and the incentive fee rate k. A higher k& implies a lower x, and a
lower k implies a higher x,. This is consistent with Carpenter (2000) and shows that granting a high-incentive fee
rate to the manager contributes to reducing his appetite for risk

e The same relationship exists between x, and the management fee rate m.

e There is a positive relationship between x, and the level of moneyness Lo, implying that as the option goes out
of the money, the manager should increase risk. Carpenter (2000) also finds a similar relationship.

e There is a negative relationship between x, and the asset under management So. This corroborates what we said
in the previous section; smaller funds will have more incentive to increase risk given the impact of the fund's
size on the manager's compensation.

e Finally, there is a positive relationship between x, the manager's stake in the fund @, meaning that the more the
manager is invested in the fund, the higher x, should be in order to earn the same level of incentive fees given
that they are paid on a lower proportion of the fund (1- a).

Figure 3 shows the values of x, for different levels of moneyness and for different values of a, when for example
v = 5. We can see how x, is an increasing function of a and Lo. As the moneyness increases, x, increases
unboundedly.

Weight of the risky asset

1
5 10 15 20 25 30 35 40 45 50

Moneyness LO

Figure 3. Values of the risky asset weight x, for a = 10%, a = 20% and a = 30% and for different levels of
moneyness

The relationship between x, and a seems to be contrary to the conclusions of others studies which find that as the
manager's ownership in the fund increases, his risk taking behavior is reduced. (Note 6) In fact, it is not the case
because, as we showed earlier, x.;, which is related to manager's tolerance for risk, decreases with a; and x.;
prevails upon x, otherwise, constraint (c3) is violated.

So, even if x, increases with g, its maximum admissible value will be reached earlier for higher values of @ and
as result, the manager's ownership in the fund will contribute to reduce his risk taking behavior. This is
illustrated in figure 4.
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Weight of the risky asset

" L 1
5 10 15 20 25 30 35 40 45 50
Moneyness LO

Figure 4. Values of the risky asset weight x, when constraint ¢3 is taken into account

Moreover, as we mentioned previously, the optimal investment in the risky asset should not be superior to x,;
otherwise, constraint (c¢2) will be violated. Then, the manager will choose the lower of x,, x., and x.; to invest in
the risky asset. In addition, x, should be superior or equal to x.; in order to fill the condition related to the
minimum return 7,. Therefore, the optimal weight for which all the conditions are filled is:

X, = max[xc1 ,min(x,,x,, ,ch)] 17)

We can then obtain the optimal volatility of the fund as follows:

* *

o =x.0 (18)

e

The sign of the relationship between x*e and the parameters k, m, S Lg a holds also for o and these parameters.

\Weight of the risky asset

L N L N L 1 L N L
5 10 15 20 25 30 35 40 45 50
Moneyness I_O

Figure 5. Optimal weight of the risky asset for a = 10%, a = 20% and a = 30% and for different levels of
moneyness
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a=10%
—-—--a=20% ||
——————— a=30%

Volatility of the fund

o 1 " ) N 1 L L N ‘
5 10 15 20 25 30 35 40 45 50
Moneyness L,

Figure 6. Optimal volatility of the fund for a = 10%, a =20% and a = 30% and for different levels of moneyness

Figure 5 and 6 represent the optimal proportion of the fund to be invested in the risky asset and the optimal
volatility of the fund. We can see in figure 5 that for low values of the moneyness L, the manager increases the
investment in the risky asset by using leverage as the probability of exercising his option-like contract is higher;
and the higher his ownership in the fund, the higher the use of leverage. However, the manager starts to decrease
the investment in the risky asset for some levels of moneyness and each of these levels depends on the value of a,
his ownership in the fund. The higher his ownership, the earlier x", starts to decrease and for L, = 11, the
investment in the risky asset becomes the same whatever the ownership of the manager. For L,= 38, the manager
stop using leverage and starts to increase the investment in the risk free asset to reduce the whole risk of the fund
given that asset value gets closer to the liquidation boundary. Beyond the value of L,= 41, it is impossible to
invest without violating at least one of the constraints and it is therefore impossible to have an optimal weight for
the risky asset beyond this value.

6. Conclusion

The option-like compensation contract of hedge fund managers serves as an incentive to superior performance.
However, this particular form of manager compensation can also become an incentive to take more risk in order
to end up with an incentive contract in the money. The purpose of this paper is to evaluate the optimal trading
strategy for a hedge fund manager facing different constraints among others, the possibility of the fund
liquidation or a minimum return to deliver in order to meet investors expectations. To this end, we use a
binomial model and our analysis documents interesting findings.

First, we find that a high level of risk positively impacts the expected manager's incentive fees at the end of the
period but negatively impacts the expected investors' wealth. With a one-year contract and with no investment in
the fund, the manager's optimal behavior would be to maximize the value of his option-like contract by
increasing the volatility of the fund infinitely if he does not have to meet investor expectations. However, the
time horizon of the manager's contract is more than one year and he must make a trade-off between current and
future payoffs because a high volatility level increases the magnitude of potential losses and a decline in the fund
value also implies a decline in his overall future wealth.

Among other interesting results of our model, we find that even if the optimal volatility of the fund increases
with the "out of the moneyness" of the option, there is a certain point at which the optimal volatility starts to
decrease; and this point can vary from one manager to another given that it is related to factors such as his
ownership in the fund and his tolerance for risk. This is consistent with Brown, Goetzmann and Park (2001) and
Clare and Motson (2009) who document in empirical studies that it is difficult to find a general trend in hedge
fund managers risk-taking behavior when their option is OTM.

The results of the present study suggest that incentive contracts, to the extent that they are long-term-oriented,
are designed to encourage good performance. Our conclusions apply not only to hedge funds, but to any form of
contract where the manager's compensation has an incentive feature. With a high water mark provision, as is the
case for hedge funds, the incentive contract will be either at the money or out of the money at the beginning of
each year. Each loss will contribute to increase the "out of the moneyness" of the option-like payoff and the
greater the "out of the moneyness", the lower the expected fees of the manager. In this respect, the very form of
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hedge fund contracts contributes to lower the manager's appetite for risk because he earns incentive fees only
after recovering past losses. With the absence of a high water mark provision, which is the case in many
instances such as corporate executives compensation contracts, the option is at the money at the beginning of
each year which does not help reduce the agency problem. Nowadays, where the compensation of corporate
executives is increasingly called into question, hedge fund compensation contracts, although not perfect, could
be a good source of inspiration.
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Appendix
A.1. Expected Values and the Derivates with Respect to Volatility
From the binomial model we have:
ELS, S, (1+uT,)
With
L= Xele T (l'xe)rf

The expected value of the manager's wealth is expressed as follows:

EW,|=aE[S, |+ (1 -a)mE[S, |+ kE[max{S, — H,0}|

=aS,(1+uT)+(1—a)

p. max{x,S,, —H,(1+r,T),0}
}

S, (1+ul)+k
mSo(l+4T) L(l—pe)max{xesm—H0(1+rfT),o

S T —r,T)=L,(1+7,T)0
:aSo(1+ﬂT)+(l—a)[mSo(l+,UT)+k[pemax{xe o(@ T =1, T) = L,(1+7,7).0} }”

+ (1= pymax{x, S, (-0 NT = r,T) = Ly(1+r,T),0

where Lo= Ho-So.
With Lo > 0 given that Ho> So, we have:

(1= p,)ymaxd{x, S, (o, NT —r,T) = L,(1+7,T),0}=0
and as result,

EWW, 1= aS,(1+ uT) + (1- @)mS, (1 + uT) + kp, maxdx,S, (o, T = r,T) = L,(1+ r,T).0}

With p = 1 + ,ueﬁ , We obtain:
‘2 20,
1 xeSO(O-eﬁ+(ﬂe_rf)T)
EW; 1= aSy(1+ 4T)+ (1= a)| mS, (1+ uT)+ 1, uNTx,Syr, T+ Ly (1+7,7)]

-Ly(1+rT)-

o

e

where 1; is an indicator variable such that:
1, = k if the option is exercised
1, = 0 otherwise.

Then, the derivative of with respect to the volatility of the risky asset is:

oE[, ]
a0,

JT[x,S,r, T + Ly(1+7,T)]

2
O-e

=%(l—a)1k xeS0ﬁ+ﬂe

By the same way we have:
E1; )= (- a1 -m)E[S, ]+ kE[max{S, — 1, 0}]
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xeSO(O-eﬁ-i-(ﬂe _rf)T)
U T [x Sy, T + L, (1+7,T))]

(o}

e

=(1-a) (l—m)S0(1+,uT)—%lk

~Ly(1+r,T)-

Then, its derivative of with respect to the volatility of the risky asset is:

Tlx,S,r, T+ L,(1 T
aE[lT]——l(l—a)lk xsoﬁ+ﬂe\/7[xe oy 2+ o(d+7; )]
a0, 2 o,

A.2. Derivatives of x, with Respect to Parameters k, m, Ly, S, and a
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