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Abstract 

A class of Asymmetric GARCH models  is presented. It shares the same unconditional variance and volatility 
forecast formula as the standard GARCH(P,Q) model under the assumption of a symmetric conditional 
distribution for innovations. use three models of this class to assess their ability to forecast S&P 500 market 
volatility and to make better decisions for the purpose of risk management and investment. Subsequently, a 
comparison is made with respect to competing models (GARCH, EGARCH, GJR). It was found that for the 
in-sample evaluation, the best model is obtained from the Stochastic Unit GARCH (SUGARCH) model where 
leverage effects are introduced through the GARCH (i.e

1 ) parameter. For the out-of-sample evaluation (QLIKE 

loss function), it is better to use the SUGARCH class where the asymmetry appears on the ARCH (i.e 1 ) 

parameter.  
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1. Introduction 

Understanding how the market volatility evolves is challenging for financial investors. This information can be 
used for many purposes among which risk management activities, trading strategies and option pricing. A common 
stylized fact of financial time series is that large absolute returns are more likely to be followed by large absolute 
returns. The same remark also applies for small returns. This stylized fact, known as volatility clustering, had 
motivated the work of Engle (1982) who proposes the ARCH(P) model where the conditional variance depends 
linearly on lagged squared innovations. In financial applications, to obtain a good fit, one needs a big integer for 
the parameter P and therefore more parameters to be estimated. In order to achieve a parsimonious parametrization, 
Bollerslev (1986) introduced the Generalized ARCH(P) model denoted by GARCH(P,Q). This model has the 
ability to sufficiently fit well asset prices even with small integers P and Q. During 1990s, another extension 
appears that integrates the fact that negative and positive return innovations impact differently future volatilities. 
Namely, the empirical evidence shows that impact of negative returns are more important than the positive ones 
(leverage effects). There are nowadays many GARCHs models that take into account this asymmetric effect, see 
Nelson (1991), Glosten, Jagannathan, and Runkle (1993), (GJR for short).  Brownlees et al. (2011) provide also a 
good reference on this issue by make a forecasting comparative study. 

A third extension is to consider many regimes of univariate GARCH models instead of one to generate enough 
skewness and kurtosis to match those of financial asset returns. The  regimes may be independent or chosen 
through a Markov chain and the corresponding models are known as Markov regime switching GARCH models. 
Some papers related to this issue are Klaassen (2002), Marcucci (2005) and references therein. Switching GARCH 
models aim to capture the fact that volatility shocks are not persistent inside a regime (low or high volatility). Also, 
in these models, a small shock may be followed by a big shock and conversely a big shock may be followed by a 
small one. However, it is known that models with many parameters may have some problems of convergence in 
the estimation process or a lack of robustness in the out-of-sample evaluation because of the over-fitting 
phenomenon. For example, Marcucci (2005) demonstrates that Markov regime switching GARCH models do not 
dominate the single GARCH models with respect to VaR-based loss functions. He also finds the same results for 
volatility forecast accuracyfor which no model clearly outperforms the others if short and long run time period are 
considered. Christoffersen and Jacobs (2004), for option pricing purpose, consider several single GARCH models. 
They find that the leverage GARCH model is not dominated with respect to other asymmetric models having more 
parameters in their formulation. All these results motivate us to provide a mathematical model that is based on a 
single Asymmetric GARCH framework. The first contribution of the paper is to propose a stochastic unit GARCH 
(SUGARCH hereafter) model defined by a standard GARCH model where some coefficients are multiplied by a 
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predictable stochastic factor having an expected value of one. In other words, the model may be seen as a GARCH 
model in "mean". In contrast to other asymmetric models, the SUGARCH(P,Q,O) class cannot include an integer 
which is greater than one for its third parameter O. If not, the GARCH model in "mean" property will be lost and 
the latter is the main difference with respect to other asymmetric models. Therefore, the class is always 
SUGARCH(P,Q,1) and may be denoted simply by SUGARCH(P,Q) where P, Q are strictly positive integers. 
Consequently, the model  may be reliable for investors/market participants who want to use a model capturing 
both complexity (time-varying parameter) and simplicity (standard GARCH) for their investment or risk 
management purpose. The second contribution of the paper is empirical. It is found that asymmetric models 
perform well in the in-sample data if leverage effects are introduced on the GARCH parameter β. However, for the 
out-of-sample data, the relative performance is not too good and it is preferable to introduce leverage effects on the 
ARCH parameter α as usually done in the  literature.  

The remaining in this paper is organized around four sections. Section 2 presents the SUGARCH(P,Q) class and its 
competing asymmetric models. Section 3 describes the data and the methodology used in the empirical application. 
Section 4 presents the empirical results and the last section concludes. 

2. Some AGARCH Models 

2.1 The SUGARCH Class 

The idea of SUGARCH class is to capture some properties of the standard GARCH model by taking into account 
the leverage effects. Specifically, I define it as a standard GARCH model with some coefficients multiplied by a 
predictable factor say vt. The latter is such as E(vt)=1. In the next step, to share some properties with GARCH 

models, some additional constraints are introduced on the conditional distribution of innovations which must 
belong to the class of symmetric distributions. This condition is not too restrictive since we may find some of them 
with more kurtosis than the normal distribution  (i.e Student Law,). 

In this study, I am interested on forecasting conditional volatility on short horizon using daily data. So the 

conditional mean is supposed to be constant as in Klaassen (2002) or Marcucci (2005). Let  St and tr  be 

respectively the security prices and security logarithmic returns, μ the conditional mean, then the SUGARCH(P,Q) 
class is defined by  
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may be either constant ( jtjitit   ,,0,0 ,, ) or stochastic. In the latter case, 

their expression is given by  
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The term )1,0(f  represents a (generic) symmetric density function with zero mean and unit variance and   is 

the parameter that models asymmetry between negative and positive shocks. Note that, from Eq. (2), 1)( tvE by 

using Eq. (1c) and a SUGARCH(P,Q) class has 12 1 QP  asymmetric models (Note 1). Hereafter, I will work 
only with the general SUGARCH model where each parameter is stochastic since the other special cases may be 
obtained from the same methodology. In this case, the conditional variance (1b) may be rewritten as  

 

      (3) 

So to obtain an unconditional variance which is equal to the standard GARCH model, we need the expected value 

of the second term of Eq. (3) to be zero. For this, I assume the distribution of t  to be symmetric with mean 0 

which is a sufficient condition. In the appendix, it is then shown:  

    

             (4) 

Since the conditional volatility must be always positive and to obtain a covariance stationary model, the following 
constraints are made:  

.)()( 2

1

2

1
01

2

1

2

1
0

2
jtj

Q

j
iti

P

i
tjtj

Q

j
iti

P

i
t 











  

.
1

)(
11

02

i
Q
ii

P
i

tE










www.ccsenet.org/ijef International Journal of Economics and Finance Vol. 5, No. 1; 2013 

179 
 

1;,1,0;,,1,0,0
11

0  


j

Q

j
i

P

i
ji QjPi                 (5a) 

,,
},,1|,max{|

1
|| 


 


 tt

t

r
Nt 

                      (5b) 

where N  is the number of observation returns.  

Eq. (5a) gives the same GARCH constraints. Eq. (5b) handles the positivity of the stochastic factor   

11  ttv  to ensure the positivity of the conditional variance, see (2). A general bound may be taken for 

the innovations and then for the parameter  . Here, I let the bound to depend on the data. The idea is to allow a big 

range of  since the leverage effects are introduced by this parameter. In practice, since investors generally work 

with high frequency (intra or daily) observations, the conditional mean   in Eq (1a) is often small and so the 

innovations may be approximated by asset returns in Eq. (5b) (Note 2). It is also expected that  will be positive to 

integrate the fact that negative shocks impact more future volatilities than positive shocks. 

On the other hand, when a big shock appears in the innovations, the volatility cannot persist for a long time. This is 

due to the multiplicative factor tv  that alternatively allows large and small volatility movements in a symmetric 

way since )( t behaves as a fair game. Namely, we may have a small shock in a period of high volatility or a big 

shock in a period of low volatility. This feature is also shared by switching GARCH models that allow the 
volatility process to be in different levels. To see formally the link, note that if we have two regimes, as it is often 
the case in financial applications, the standard GARCH coefficients take two different values. Here, for more 

flexibility, the SUGARCH class allows stochastic coefficients tv valued in R  (Note 3)  

Even if the coefficients are random, the framework is still similar to the standard GARCH model; which is an an 
interesting result. We have seen that both models share the same unconditional variance. The difference only 

appears locally where the stochastic factor tv generates asymmetry effects and extreme movements for the 

conditional variance. This is the main feature that differentiates our model to other Asymmetric GARCH models 
which have also time-varying parameters but with an expected value different from 1. Consequently of these 
oscillations, the kurtosis of the distribution increases. Specifically, if the sixth moment of the asset return exists, it 
can be shown, see the appendix, that  
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For the forecast purpose, I use the simplest SUGARCH (1,1) class corresponding to P = Q =1. In this case, a closed 
formula for any multi-step-ahead volatility forecasts exists. Its form is similar to the standard GARCH(1,1) model 
where the difference appears only on the initial condition. Namely, we have for any integer  Nh ,   
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where 2
1t is the conditional volatility defined from (1b) i.e       
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following conditional volatilities:  
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The four remaining asymmetric formulations use at least two stochastic parameters and I find that they do not 
produce any significant difference with respect to formulations (8a), (8b), (8c). Another reason for choosing these 
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three conditional volatilities is that they integrate leverage effects respectively on the constant 0 , ARCH 1  

and GARCH 1  parameter of the standard GARCH model. Therefore, it allows seeing which is the best way to 

capture asymmetry shocks on financial time series. The intuition of these three formulations is to model the 
negative correlation between past shocks (or returns) and future volatility. To the best of my knowledge, this 
problem is not studied in the literature and authors generally use a formulation similar to (8b) i.e asymmetry 
introduced through the ARCH parameter.  

In the next section, I present two competing models (EGARCH, GJR), belonging to the class of asymmetric 
GARCH models. Additionally, I include the symmetric GARCH model which may give good results in the 
out-of-sample evaluation of volatility forecasts. Since the true conditional variance is not observable, square 
returns are used as a conditionally unbiased volatility proxy. The advantage of this proxy is that it ensures the 
correct ranking of predictive models in terms of the QLIKE loss functions, see Eq. (12). The other loss functions 
such that Mean Absolute Error, the Mean Square Errors on standard deviations may give some biases, see A. 
Patton (2011) for more information. 

2.2 Competing Models 

The EGARCH model: The Exponential GARCH (EGARCH) model is proposed by Nelson (1991).  As its name 
indicates, the variable of interest is the logarithm of the conditional variance. It is defined as follows: 
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where t  was defined in Eq. (1c). The asymmetry between negative and positive shocks is modeled by the 

parameters Piii ,,1),,(  . Note that, if we are interested in forecasting, the conditional variance of 

EGARCH must depend on the distribution of t  through |)(| itE  . Since t  has a generic symmetric density 

f(0,1), I consider in this study two normalized distributions. The first is the Normal distribution:  
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The Student's t is the second distribution which has more kurtosis than the normal. Its density is given by 
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At time t, the conditional expectation of Eq. (9b) is given for P = Q = 1 by 
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So, the one-step ahead volatility forecast is obtained by 
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The multi-step-ahead volatility is derived recursively from  )(ln)(ln 2
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2
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where the initial condition is given by (10) and all parameters are estimated by the Maximum Likelihood method.  

The GJR GARCH model: It is proposed by Glosten, Jagannathan and Runkle (1993), for short GJR model. The 
conditional variance of the asset return is defined by  

tttttr   ;  
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is an indicator function that takes the value 1 if 0kt and  0  otherwise. Some constraints 

need to be made to insure strict positivity of the volatility. For the simplest model GJR GARCH (1,1,1), we have  
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Since t  is symmetric, the multi-step-ahead volatility forecast is recursively obtained from  
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The GARCH model: The model is proposed by Bollerslev (1986) as an extension of the ARCH model of Engle 
(1982). It is a special case of SUGARCH (set for any t jtjitit   ,,0,0 ,, ) and GJR-GARCH 

models. Its unconditional variance is given by Eq. (4) and the multi-step-ahead formula may be obtained from Eqs. 
(7) and (8a)  by setting 0 . 

Note that the literature of asymmetric GARCH models allows more than one parameter for the leverage effects 
without significantly affecting the structure of the model. This is not the case of SUGARCH class where the 

parameter O is restricted to be always one. The reason is that if the stochastic factor tv contains more parameters 

,, 32  tt  , the explicit formula for the unconditional variance is lost for some formulations. In this case, the 

second term of Eq. (3) may involve expressions such that )( 2
jtitE   , )( 2

jtitE   with j < i  and those terms 

will be different from zero. Therefore, the acronym SUGARCH will be lost. On the other hand, if a symmetric 

distribution for t  is considered as a strong requirement for financial returns, we can avoid the distributional 

assumptions and estimate the model by using Quasi Maximum Likelihood method. 

3. Data and Methodology 

I consider the S&P 500 daily time series, adjusted for dividends, to evaluate the performance of the different 
models presented above. The sample period is from January 2, 2002 to December 31, 2010 corresponding to 
N=2267 daily observations. Table 1 gives the descriptive statistics of the index with respect to its asset returns 
rt=lnSt−lnSt−1 where St represents the spot price at time t. 

 

Table 1. Descriptive statistics of S & P 500 returns 

 Mean Std. deviation Min Max Skewness 

 0.0038 1.3791 -9.469 10.957 -0.139 

 Kurtosis JB-stat LB(20)-stat LM(10)-stat  

 11.854 7.410 97.171 666  

 (< 0.001) (4.0210
−12

) (0)  

JB-stat represents the Jarque-Bera statistic for normality test. LB(20)-stat corresponds to the residual autocorrelation test of Ljung-Box 

including up to 20 lags. LM(10)-stat is a statistic which examines for the presence of ARCH effects where 10 lags are used for the squared 

sample residuals. I give in brackets the corresponding p-values of the different statistics. 

 
The table shows that the mean return of the S&P 500 index is positive and small. The standard deviation is also 
small (1.38%). The maximum (minimum) return is given by 10.957 % (-9.469 %). Extreme movements appear 
more frequently since the null hypothesis of normal distribution for the unconditional return is highly rejected even 
at the 1% significance level. The same thing appears for the null hypotheses of no serial correlation as well as the 
null of no ARCH effects. Both hypotheses are rejected with p-values close to zero. These results from Table 1 
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suggest to use GARCH models to take into account the excess of kurtosis and the presence of heteroskedasticity. In 
the previous section, I reviewed some of them. To make forecast, I estimate the parameters of each model by using 
the Maximum Likelihood method where the conditional distribution for innovations is either normal or Student-t. 
Then, the future volatilities are forecast and some quantiles (Value-at-Risk) are also determined. The time horizon 
h belongs to {1,2,5,10}, corresponding to 1 day, 2 days, one week and two weeks, respectiveley. The literature 
usually compares the relative performance of volatility models around a statistical loss function or an economic 
loss function. Only the former is considered with the Quasi-Likelihood loss function, as a criterion,  defined as 
follows 
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where T and N are length of the in-sample data and total sample, respectively.  

QLIKE function shares robustness on ranking the models with respect to an unbiased estimator of the unkown 
conditional variance, see for example Patton (2011) . 

The in-sample data spans the period January 2, 2002 to October 2, 2008 corresponding to T = 1699 (0.75*N) and 
the remaining ( 25% of the data) is used as the out-of-sample data. The parameter h gives the horizon forecast 
used to compare models. In this study, I focus only on the QLIKE loss metric for some reasons given by Brownlees 
et al. (2011). The authors note that QLIKE may be rewritten without loss of generality by  
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and so is a combination of i.i.d terms ( t ). Another reason is that QLIKE penalizes small volatility forecast (close 

to zero).  

Even if metric criteria are important, it is useful to have statistical tests that assess if the difference between loss 
functions of two competing models is significant or not. For this, I consider the test of equal predictive ability 

(EPA) of Diebold and Mariano (1995) (DM hereafter). Let td  be the loss differential between the two competing 

forecasts i.e:  
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where   represents the population mean loss differential. The variance is estimated by 
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100)(4 Nq   and 

11  q
k

kw . So the DM test of equal predictive accuracy ( 0 ) is given asymptotically by  

).1,0(
/)(ˆ

N
hndV

d                          (13) 

After assessing the loss functions of competing models and analyzing their statistical significance, I evaluate 
volatility forecasting performance in a financial risk management setting. For this, I calculate the Value-at-Risk 
which is the money-loss in a portfolio that is expected to occur over a pre-determined horizon ( h ) and with a 
pre-determined degree of confidence ( ). It may be seen also as a quantile of the portfolio (conditional) 
distribution. Precisely, consider equation (1a) and let )|(, httht rrPF  F , )|(, httht PG  F  be 



www.ccsenet.org/ijef International Journal of Economics and Finance Vol. 5, No. 1; 2013 

183 
 

the cumulative distribution of tr and t , respectively, given the information set htF . The VaR with a tail 

probability [1,0]  and horizon h, denoted ),( hVaRt  , is calculated at time ht  , by  

.)()(),( 11
,

1
,    GGFhVaR thtthtt  

The last equality is explained by the fact that )( t is i.i.d, see (1c) and so 11
,

  GG ht
. The difference between 

models appears on how t  is forecast from ht  . After getting estimates of ),( hVaRt  , NhTt ,,  for 

each model, I define the following two loss functions for investors with long positions  

)( ),(
1

1

1
ˆ

hVaRr

N

hTt tthTN 





                       (14a) 
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1
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ThN
Q tthVaRr
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hTt
tt

  


 

              (14b) 

The best model with respect to the loss function (14a) is the one that minimizes the function  |ˆ|)ˆ(  d  

even if it is preferable to have low values  ˆ . I refer to Christoffersen (1998) for some statistical tests based 
on the coverage probability. The second loss function was proposed by Koenker and Bassett (1978), hereafter KB. 
It penalizes more heavily the observations for which there is a violation of VaR constraints. I also evaluate the 
performance of the competing models with respect to investors having short positions (Note 4). 

4. Empirical Results 

The results are based on the S& P 500 daily data adjusted for dividends. The data is extracted from yahoo finance 
web site (Note 5). I recall that all parameters are estimated by the Maximum Likelihood method with a Gaussian 
and a Student's t distribution for t and also the in-sample data ranges from January 2, 2002 to October 2, 2008 
corresponding to 1699 daily observations. The labels ASUG, BSUG and CSUG in the Table 2 correspond to the 
conditional variance given by Eqs. (8a), (8b), (8c) respectively. 

As expected, the estimated value of   (leverage parameter) is such that negative shocks impact more future 
volatilities than positive ones. Accordingly, it is positive for SUGARCH and GJR models and negative for the 
EGARCH model. Also, the persistence of shocks on volatility ( 11   ) is high (> 0.990) for all models as it is 
usual in the financial time series. It is noted that introducing leverage effects on the constant of GARCH model 
(ASUG) or on the ARCH parameter (BSUG) does not give significant difference on the estimated parameters with 
respect to a standard GARCH model. However, if the asymmetry between negative and positive shocks is modeled 
through the GARCH parameter (CSUG model), the difference becomes clear since 96.0ˆ

1  , (see Figure 1 for 
illustration).  Figure 1 shows also the necessity to have time varying parameters for the standard GARCH model 
since its parameters have big oscillations through the time evolution. The use of SUGARCH class solves this 
problem due to its stochastic parameters. 
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Table 3. In-sample diagnostic for the different models 

 Models LLF AIC BIC QLIKE 

 ASUG_N -2286.88 2.698 2.714 24656043.71 

 ASUG_T -2267.54 2.676 2.695 2469815.15 

 BSUG_N -2277.87 2.687 2.703 2434990.48 

 BSUG_T -2259.692 2.667 2.686 2440255.29 

 CSUG_N -2256.51 2.662 2.678 2362420.94 

 CSUG_T -2238.72  2.642  2.661 2368878.219 

 EGARCH_N -2258.825 2.665 2.681 2370270.553 

 EGARCH_T -2240.275 2.644 2.663 2375141.984 

 GJR_N -2256.050 2.662 2.678 2360839.063 

 GJR_T -2240.896 2.645 2.664 2367111.968 

 GARCH_N -2287.273 2.697 2.710 2466936.088 

 GARCH_T -2267.389 2.675 2.691 2473089.834 

Note: This table presents the Log likelihood function(LLF), the Akaike information criterion(AIC) and the Schwarz criterion (BIC). QLIKE is 

the loss function defined in Eq. (12). Numbers in boldface indicate the best values.   

 

The student's t distribution for t  gives better fitting than normal distributions. The three best models are given 

respectively by CSUG_T, EGARCH_T, GJR _T for LLF criterion. The ranking order is also the same for  AIC   
and BIC criteria. This point highlights the finding that normalized financial returns ttt r  /)(   still have a 

heavy tail distribution, however with less kurtosis than the unconditional return ( tr ) distribution. If QLIKE is 

considered as a measure, the normal distribution for t  is better than the Student distribution. The three best 

models are given respectively by GJR_N, CSUG_N, GJR_T. Overall, I note that introducing asymmetry through 

1 (CSUG model) instead of  
0  or 

1 (ASUG, BSUG model) improves accuracy in the in-sample fitting. Since 

the model structure has similarities with other (A) GARCH models in the sense that current volatility depends on 
past volatilities (GARCH parameters) and past innovations (ARCH parameters), we may expect that the same 
technique to work also for those models to better approximate financial data. The next step is to see the 
out-of-sample performance of the different models, part that interests more investors and market participants. 

For this purpose, I compare the relative performance of the different volatility models in three ways. The first uses 
a metric loss function, the second is based on directional accuracy tests whereas the third focuses on risk 
management purpose. The out-of-sample data ranges from October 3, 2008 to December 31, 2010 and represents 
twenty six months of data (567 observations).  

Table 4 shows the comparison between competing models for the QLIKE loss function (metric criterion) for all 
horizons 10,5,2,1h . The true m-step-ahead variance is approximated by the squared return of the forecast 
horizon that means 2)ln(ln tht SS 

.   

It is seen that no model outperforms the others. For example, for daily volatility forecasts ( 1h ), TGJR _  model 
gives the best results while for the remaining step-ahead volatility forecasts ( 10,5,2h ), the best model is 

TBSUG _ . Another point is that the assumption of normal distribution for innovations generates satisfactory 
results specifically for daily volatility forecasts. However, for longer horizon, minimal values for the QLIKE loss 
function are obtained with a Student's t distribution. Also, a good in-sample performance does not imply a good 
out-of-sample performance. We see previously that CSUG_T was the best model from in-sample performance 
while it gives here no satisfactory results on the out-of-sample evaluation when multi-step-ahead volatility 
forecasts are considered. Overall, the best model is now BSUG_T.  
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Table 4. Out-of-sample evaluation of volatility forecasts for h=1, 2, 5, 10 

 Models H QLIKE h QLIKE h QLIKE h QLIKE 

 ASUG_N 1 557978.6 2 835203.8 5 1627324.9 10 2911320.9 

 ASUG_T 1 558362.5 2 831520.9 5 1606663.9 10 2863105.6 

 BSUG_N 1 553845.2 2 826436.8 5 1599190 10 2878972.9 

 BSUG_T 1 554372.2 2 820814.5 5 1569805.8 10 2807348.9 

 CSUG_N 1 547919.9 2 863287.7 5 1744494.3 10 3171634.2 

 CSUG_T 1 549464 2 865474.9 5 1746438 10 3185808.7 

 EGARCH_N 1 560398.8 2 836046.7 5 1616423.3 10 2887507.8 

 EGARCH_T 1 563255.8 2 843229.9 5 1675784.8 10 3124184.1 

 GJR_N 1 544429.1 2 837609 5 1648441.4 10 3034470.1 

 GJR_T 1 543582.2 2 824712.4 5 1607949.9 10 2924896.5 

 GARCH_N 1 556372.8 2 835519.6 5 1641501.4 10 2951462 

 GARCH_T 1 557947.8 2 829282.1 5 1594605.2 10 2821015 

Note: This table presents the Quasi likelihood (QLIKE) loss function, see, (12). Numbers in boldface give the minimal (best) value for each 

group. 

 

The Diebold and Mariano test, see Eq. (13) is now adopted to further examine the statistical significance from two 
competing models i  and j . The findings from the DM-test statistics across all models and forecast horizons are 
available. Table 5 presents the results obtained from BSUG _T and GJR _T taken as benchmarks where forecast 
horizons are given respectively by  10,5h  (Note 6). 

 

Table 5. Diebold-Mariano Test with BSUG_T and GJR_T as benchmarks 

 Bench. BSUG_T horizon QLIKE Bench. GJR_T horizon QLIKE 

 ASUG_N 5 -2.87** ASUG_N 1 -2.37* 

P-values  (0.004) P-values  (0.018) 

 ASUG_T 5 -1.73 ASUG_T 1 -2.54* 

P-values  (0.08) P-values  (0.011) 

 BSUG_N 5 -5.50** BSUG_N 1 -2.30* 

P-values  (0.00) P-values  (0.021) 

 CSUG_N 5 -4.85** BSUG_T 1 -2.59** 

P-values  (0.00) P-values  (0.009) 

 CSUG_T 5 -4.40** CSUG_N 1 -0.689 

P-values  (0.00) P-values  (0.49) 

 EGARCH_N 5 -0.67 CSUG_T 1 -0.843 

P-values  (0.49) P-values  (0.40) 

 EGARCH_T 5 -1.21 EGARCH_N 1 -1.84 

P-values  (0.22) P-values  (0.06) 

 GJR_N 5 -4.78** EGARCH_T 1 -1.57 

P-values  (0.00) P-values  (0.11) 

 GJR_T 5 -2.72** GJR_N 1 -0.13 

P-values  (0.006) P-values  (0.84) 

 GARCH_N 5 -3.36** GJR_T 1 -2.09* 

P-values  (0.00) P-values  (0.03) 

 GARCH_T 5 -0.16 GARCH_N 1 -2.63** 

P-values  (0.86) P-values  (0.008) 

Note: Bench. stands for Benchmark. * and ** represent the DM statistics for which one can reject the null hypothesis of equal predictive 

accuracy at 5% and 1%, respectively. 

 

As expected, the Diebold and Mariano (DM) test confirms results obtained from the previous table. For the 
benchmark model GJR_T, it is seen that all DM statistic values are negative showing that its loss function is the 
smallest for 1h . On the other hand, the table shows that the null hypothesis of equal predictive ability is 
rejected for the following competing models ASUG, BSUG, GARCH. For the remaining, the difference between 
loss functions is not significant at the %5  level. When BSUG_T is now the benchmark, similar results are 
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obtained. It performs well in terms of volatility forecasts with respect to other models for the horizons 10,5,2h . 

For example, for 5h , the DM test is negative and the test is statistically significant at %1  level when a 
comparison is made with respect to GJR ,GARCH _N, ASUG_N, BSUG _N, CSUG   models. I have also the 
same conclusion for the other horizons 10,2h . Finally, it is noticed that all the best models for a given horizon 

do not give significant difference with respect to EGARCH model. So even if the latter does not outperform the 
others, it gives satisfactory results. 

Finally, I compare the performance of the different models with respect to the two loss functions defined in (14a), 
(14b). The coverage rate of the VaR is 01.0  and the distribution of t  is assumed to be either Normal or a 

Student. A general finding is that all the models have problems to give good realized VaR forecasts when the 
horizon step is a week or two weeks. If the horizon is however 1 or 2 days, results are satisfactory. For the risk 
management purpose, I only analyze one side of the conditional return distribution since if an investor takes a long 
(short) position, only extreme negative (positive) returns would matter for him. 

 
Table 6. Out-of-sample Evaluation: 99 % VaR, Long Position 

 Models horizon PF KB horizon PF KB 

ASUG_N 1 2.991E-02 4.6927E-02 2 5.300E-02 9.359E-02 
 ASUG_T 1 5.2910E-03 4.9117E-02 2 3.003E-02 6.854E-02 
 BSUG_N 1 2.64E-02 4.670E-02 2 4.77E-02 8.860E-02 
 BSUG_T 1 3.5273E-03 4.927E-02 2 2.826 E-02 6.694E-02 
 CSUG_N 1 3.5273E-02 5.8116E-02 2 6.360E-02 1.165E-01 
 CSUG_T 1 1.23409E-02 5.24609E-02 2 4.5930E-02 9.255E-02 
 EGARCH_N 1 3.1746E-02 5.810E-02 2 6.183E-02 9.99E-02 
 EGARCH_T 1 7.0547E-03 5.8360E-02 2 2.120E-02 7.281E-02 
 GJR_N 1 2.2465E-02 4.6826E-02 2 5.477E-02 9.02E-02 
 GJR_T 1 7.054 3E-03 4.860E-02 2 3.180E-02 6.76E-02 
 GARCH_N 1 2.6452E-02 4.671E-02 2 5.477E-02 9.306E-02 
 GARCH_T 1 5.2910E-03 4.971E-02 2 3.00E-02 6.695E-02 

Note: This table presents the percentage proportion of failures (PF) and Koenker and Bassett (KB) loss function for the 99 % VaR failure 

processes at one and two-step-ahead. Numbers in boldface show the best values. 

 
Table 6 shows that for long position and 1h , CSUG_T gives the best estimation of the theoretical value %1 . 
It is followed by GJR_T and EGARCH_T models. The latter becomes the best model for the two day-horizons 
followed by the BSUG_T model. Since, the PF loss function does not take into account the magnitude of VaR 
violations (same weight), I add Koenker and Basset (KB) loss function to remedy this disadvantage. In this case, 
VaR violations (no VaR violations) are weighted by 1  ( ). So the Koenker and Basset (KB) loss function 
penalizes heavily prediction with VaR violations since   is equal in practice to 1% or 5%. It is found that the 
outperforming model is now BSUG_N followed by GARCH_N for 1h  as well as for 2h . It is also noted 
that for 2h , all models have more VaR violations than the theoretical value %1 . In other words, it is preferable 
to work only on daily observations for the long position.  

 
Table 7. Out-of-sample Evaluation: 99 % VaR, Short Position 

 Models horizon PF KB horizon     PF KB 

ASUG_N 1 1.05E-02 4.77E-02 2 3.00E-02 5.97E-02 
 ASUG_T 1 3.52E-03 4.96E-02 2 7.06E-03 5.10E-02 
 BSUG_N 1 1.05E-02 4.44E-02 2 2.47E-02 5.29E-02 
 BSUG_T 1 0 4.88E-02 2 7.06E-03 5.13E-02 
 CSUG_N 1 5.29E-03 4.03E-02 2 2.65E-02 4.59E-02 
 CSUG_T 1 3.52E-03 4.35E-02 2 7.06E-03  4.46E-02 
 EGARCH_N 1 1.41E-02 4.60E-02 2 2.65E-02 5.52E-02 
 EGARCH_T 1 3.52E-03 5.41E-02 2 5.30E-03 5.53E-02 
 GJR_N 1 1.41E-02 4.37E-02 2 2.47E-02 4.97E-02 
 GJR_T 1 3.53E-03 4.86E-02 2 5.30E-03 4.86E-02 
 GARCH_N 1 1.05E-02 4.79E-02 2 3.18E-02 5.95E-02 
 GARCH_T 1 1.76E-03 4.99E-02 2 7.06E-03 5.10E-02 

Note: This table presents the percentage proportion of failures (PF) and Koenker and Bassett (KB) loss function for the 99 % VaR failure 

processes at one and two-step-ahead. Numbers in boldface give the best value. 
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Table 7 shows results for a short position. For daily VaR predictions, there are three best models for the PF 

criterion given by ASUG_N, BSUG_N and GARCH_N models.  For the same horizon, the best accuracy for 

KB loss function is obtained from CSUG_N. For the horizon  2h , CSUG_T is the model that minimizes 

also the loss function KB. For the PF loss criterion, the best models are a group given by ASUG_T, BSUG_T, 

CSUG_T and GARCH_T model. Overall, BSUG and CSUG models give satisfactory results with respect to 

VaR-based loss functions. 
5. Conclusion 

This paper has sought to re-examine the volatility forecasting literature by improving the standard GARCH model. 
The latter is extended by introducing asymmetry between negative and positive shocks. This extension, in contrast 
to other AGARCH models, does not change significantly the structure of the standard GARCH models. Also, I 
analyze what is the good way to capture leverage effects in financial time series. Our findings are summarized as 
follows. For in-sample fitting, the best model comes from SUGARCH class and it is the one obtained by 
modifying 1  instead of 1  parameter for asymmetric effects. Consequently, the GARCH parameter is more 

flexible than the ARCH parameter and is more suitable for financial asset prices. CSUG  model is also the one 
inside the SUGARCH class that gives estimates significantly different from GARCH model. 

For the out-of-sample evaluation, good results usually come from the SUGARCH class. For example, for the loss 
function QLIKE as a criterion, it is found that GJR is the best model for daily horizon but for 2h , 5h  and 

10h , it is better to work with the BSUG model. 

These findings are also confirmed by the second criterion which is the statistical test defined by Diebold and 
Mariano. The latter test additionally shows that, all best models, in terms of loss ranking, do not give significant 
difference with respect to the EGARCH model.  

Finally, I investigate performance of the different models with respect to loss functions based on Value at Risk 
predictions. The first criterion is based on the coverage probability or the number of VaR violations. The obtained 
results depend on the investor's position. If long positions are considered, CSUG_T and EGARCH_T models gives 
respectively the best results for 1h  and 2h . However, for short position it is preferable to work with the 
SUGARCH class (ASUG, BSUG, CSUG). The second measure (KB loss function) integrates both the number and 
size of VaR violations. So it is more relevant than the coverage probability. For this criterion, the best models 
belong to the SUGARCH class (CSUG or BSUG model) independently on the investor position (long or short). 
These good results from SUGARCH class may be explained by inheritance of the standard GARCH model since 
they almost share the same formula for forecasting volatility where the difference only appears on the initial 
condition that integrates asymmetry. Another explanation is to see that SUGARCH class has some similarities 
with Mixture or Markov regime switching GARCH models and the literature has demonstrated that those models 
may give interesting results especially when economic changes appear on the interval of study as in our case 
(subprime crisis). 
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Notes 

Note 1. Since each parameter may take two forms, the cardinal is 12 QP . The minus 1 corresponds to the 
standard GARCH model where there is no stochastic parameter and so no asymmetry. 

Note 2. In the implementation, I use  .|| },,1|,max{|
9.0

Ttrt    

Note 3. I also tried other formulations of SUGARCH models that are close to regime switching models. Namely, 

I define tv  by )(1 1 tt signv  , so giving two values for tv . The corresponding models give also the 

same unconditional variance than the standard GARCH model and have closed formula for the kurtosis. 

Note 4. The loss function becomes in this case ))(( ),1(1 )},1({1
1 hVaRr tthVaRr

N
hTtThN tt

  
  

Note 5. For robustness, the same treatment is also made for CAC 40 index with similar conclusions. 
Note 6. Due to space constraints, all results have not been included. The other ones can be downloaded from 
http://sites.google.com/site/makonte/ 

Appendix 

Unconditional variance of SUGARCH (P,Q) 

I have due to the hypothesis  )1,0(ft    and the law of iterated expectations  
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Since the t  distribution is supposed to be symmetric, I also have  0)( ][ 12
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equations imply then  
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So, equation (3) gives  
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and equation (4) is obtained by using the fact that  )()( 22
itjt EE      for any integers  ji, . 

Kurtosis of SUGARCH(1,1) class 

For 1P , 1Q , I consider the model of SUGARCH(1,1) class defined by the following conditional volatility  
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The last equation is obtained by the fact that 0)( ][ 22
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2
1101   tttE   which comes from  
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Therefore,  
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It remains to develop the last equality and then to use the following points coming from  )1,0(Nt    
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To obtain (6). The kurtosis is then deduced by the following formula 
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The expression of the kurtosis is not explicit. The unconditional variance )( 2
tE   is known, see (4), but not the 

term )( 4
tE  , see (6), which depends on the unknown moment )( 6

tE  . Anyway, for  0 , I can assert that 

the SUGARCH kurtosis is bigger than the standard GARCH(1,1) model corresponding to 0  since they share 

the same denominator while )( 4
tE   of Eq. (6) is an increasing function of 2 . 

  
 

 


