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Abstract 

Support vector machines (SVMs) are new semi-parametric tool for regression estimation. This paper introduced a 
new class of hybrid models, the nonlinear support vector machines heterogeneous autoregressive (SVM-HAR) 
models and aimed to compare the forecasting performance with the classical heterogeneous autoregressive (HAR) 
models to forecast financial volatilities. It was observed through empirical experiment that the newly proposed 
hybrid (SVM-HAR) models produced higher predicting ability than the classical HAR model.  
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1. Introduction 

Volatility, the standard deviation of the continuously compounded returns of a financial instrument over a specific 
time horizon, is both the boon and bane of all traders, you can’t live with it and you can’t really trade without it. 
Most of the financial researchers are mainly concerned with modeling and forecasting volatility in asset returns to 
quantify the risk of financial instruments over a particular time period so that the risk manager and practitioners can 
realize whether their portfolio will decline in the future and they may want to cell it before it becomes too volatile.  
Therefore, volatility plays the key roles in the theory and applications of asset pricing, optimal portfolio allocation, 
and risk management. 

Researches on time varying volatility using the time series models have been active ever since Engle (1982) 
introduced the ARCH model. The GARCH model, generalized by Bollerslev (1986), has been extended in various 
directions and these extensions recognize based on the various researcher’s empirical evidences that there may be 
important nonlinearity, asymmetry, and long memory properties in the volatility process. The popular extensions 
can be referred to Nelson’s (1991) EGARCH model, Glosten, Jaganathan, and Runkle’s (1993) GJR-GARCH which 
both account for the asymmetric relationship between stock returns and changes in variance (see, e.g., Black 1976, 
the beginning study of the asymmetric effect and Engle and Ng, 1993 for further discussion). Engle’s (1990) 
AGARCH; Ding, Granger and Engle’s (1993) APARCH; Zakoian’s (1994) TGARCH; and Sentana’s (1995) 
QGARCH models also have been developed for the flexibility of the models. The stochastic volatility (SV) 
modeling capitalized on and often contributed in turn to the concurrent development in the Bayesian statistical 
analysis using Markov chain Monte Carlo procedure (see, e.g., Shephard (2005)). 

When GARCH type and SV latent volatility models are used, a well established result in the financial time series 
literature is that the standardized returns do not have a Gaussian distribution. The excess kurtosis factor of time 
series motivates the use of heavy-tailed distributions. For example, Student’s t distribution has been used by 
Bollerslev (1987), GED by Nelson (1991), both Student’s t and GED by Hsieh (1989) as alternative distributional 
models for innovations. The researchers have found that returns usually exhibit empirical regularities including thick 
tails, volatility clustering, leverage effects (see, e.g., Bollerslev et al. 1994). Andersen et al. (2000a, b, 2001, 2003) 
showed that the distribution of the standardized exchange rate series was almost Gaussian when the realized 
volatility (RV) was used. Furthermore, the logarithm of the realized volatilities was also nearly Gaussian. It was also 
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corroborated for stock returns in Andersen et al. (2001a). Other literatures on realized volatility can be referred 
along with many researchers to Aït-Sahalia and Mancini (2006), Ghysels and Sinko (2006), Corradi et al. (2006), and 
recently Corsi et al. (2008).  

In addition, there is significant evidence of long memory in the time series, which has been conventionally modeled 
as an ARFIMA (p,d,q) process (see, e.g., Andersen et al. 2000a,b, 2001a, 2003). A large number of papers in the RV 
literature employ the ARFIMA model without a conditionally heteroskedastic error specification to fit daily RV 
series (see, e.g., Oomen 2001, Giot and Laurent 2004).  

Corsi et al. (2001) and Corsi (2009) proposed the Heterogeneous Autoregressive Realized Volatility (HAR-RV) 
model as an alternative to the ARFIMA model and it has quickly become popular for modeling the dynamics of RV 
and other related volatility measures due to its ease estimation and extendability of the baseline model. The 
HAR-RV model employs a few predictor terms, the past daily RVs averaged over different horizons (typically a day, 
a week, and a month), and is capable to producing slow-decay patterns in autocorrelations exhibited by many RV 
series. Another recent development in the RV literature is the approach due to Barndorff-Nielsen and Shephard 
(2004, 2006), Andersen et al. (2003, 2007) of decomposing the RV into the contribution of continuous sample path 
variation and that of jumps. Extending the theory of quadratic variation of semimartingales, Barndorff-Nielsen et al. 
(2006) provided an asymptotic statistical foundation for this decomposition procedure under very general 
conditions.  

However, all of the models do require specified distribution of innovations in order to estimate the model 
specification and to appropriately forecast future values. The semi-parametric approaches do not require any 
assumptions on data property (return distribution). These models have been successfully used for modeling and 
forecasting time series including volatility. One of such models is Support Vector Machine (SVM), introduced by 
Vepnik (1995), that guarantees to obtain globally optimal solution (see, e.g., Cristianini and Shawe-Taylor, 2000), 
which solves the problems of multiple local optima in which the neural network usually get trapped into. Pẻrez-Cruz 
et al. (2003) predicted GARCH (1,1) based volatility by SVM and showed that the SVM-GARCH(1,1) model 
yielded better predictive ability than the parametric GARCH(1,1) model. Chen et al. (2008) proposed recurrent 
SVM as a dynamic process to model GARCH (1,1) based Volatility and showed through simulated and real data 
that the model produced better performance than MLE based GARCH (1,1) model. More recently, Ou and Wang 
(2010) proposed GARCH-LSSVM, EGARCH-LSSVM and GJR-LSSVM hybrid models based on modification of 
Suykens and Vandewalle (1999) to forecast the leverage effect volatilities of ASEAN stock markets. They showed 
that these models provided improved performances in forecasting the leverage effect volatilities especially during 
the recently global financial market crashes in 2008.  

This paper, closer to Andersen et al. (2003, 2007), aims to apply the SVM approach on HAR-RV models to forecast 
empirically the daily RV of the Nikkei 225 index. Watanabe and Yamaguchi (2007), Ishida and Watanabe (2009) 
among other researchers studied the RV of the Nikkei 225 index and reported empirical findings. But, to the 
author’s knowledge, this paper is the first to apply the SVM-HAR-RV model to RV literature.  

The plan for the rest of the paper is as follows. In section 2, we briefly discuss the realized volatility, realized 
bi-power variation, and jump component extraction. Section 3 describes the data and summary statistics. Section 4 
describes the SVM volatility model. Section 5 describes different HAR-RV models. Section 6 reports the 
forecasting results of the RV and Section 7 concludes with suggestions for further research. 

2. Realized volatility, realized bi-power variation and jump component extraction 

If we consider a simple diffusion process 

ሻݏሺ݌݀                                ൌ ݐሻ݀ݏሺߤ ൅  ሻ                            (1)ݏሻܹ݀ሺݏሺߪ

where ݌ሺݏሻ݀ݐ is the instantaneous log-price, ܹሺݏሻ is a standard Brownian process and ߪሺݏሻ is the standard 
deviation of ݀݌ሺݏሻ, which may be time-varying but is assumed to be independent    of  ܹ݀ሺݏሻ. Then the 

volatility for day t is defined as the integral of  ߪଶሺݏሻ over the interval ሺݐ, ݐ ൅ 1ሻ  i.e., ׬ ݏሻ݀ݏଶሺߪ
௧ାଵ

௧ , which is 
known as integrated volatility and it is unobserved. Let the discretely sampled Δ-period returns be denoted by, 
∆,௧ݎ ൌ ሻݐሺ݌ െ ݐሺ݌ െ ∆ሻ. If the process (in our case the log of Nikkei 225 index level process) is a continuous 
semimartingale then under mild regularity conditions, 

                        ܴ ௧ܸ ؠ ∑ หݎ௧ା௝∆,∆ห
ଶ ௣

՜
ଵ

∆ൗ
௝ୀଵ ׬ as  ∆՝    ݏሻ݀ݏଶሺߪ 0

௧ାଵ
௧                   (2) 

ܴ ௧ܸ is the t-th day realized variance since t has the daily unit and ቀ
ଵ

∆
ቁ is integer. We will hereafter use the terms 

realized volatility or realized variance interchangeably, or their common abbreviation RV.  
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Again, if the process is semimartingale with finite-activity jumps, i.e., only a finite number of jumps occurring in 
any finite time interval, such as Poisson jumps, then the realized variance converges to the quadratic variation, 
which can be decomposed as, 

                     ܴ ௧ܸ
௣
՜ ׬ ݏሻ݀ݏଶሺߪ ൅ ∑ ݇ଶሺݏሻ  as  ∆՝ 0௧ழ௦ஸ௧ାଵ

௧ାଵ
௧                             (3) 

where k(s) refers to the size of the jump occurring at time s. Barndorff-Nielsen and Shephard(2004, 2006) showed 
that even in the presence of jumps the bipower variation  

ܤ                       ௧ܸ ؠ ଵߤ
ିଶ ∑ หݎ௧ା௝∆,∆หหݎ௧ାሺ௝ିଵሻ∆,∆ห

ଵ
∆ൗ

௝ୀଶ                           (4) 

where  ߤଵ ؠ ට2 ൗߨ  , holds under mild conditions and proposed to use 

                              ܴ ௧ܸ െ ܤ ௧ܸ
௣
՜ ∑ ݇ଶሺݏሻ௧ழ௦ஸ௧ାଵ                                    (5) 

or                                    ܬ௧ ؠ ሾሺܴݔܽ݉ ௧ܸ െ ܤ ௧ܸሻ, 0ሿ                                (6) 

as an estimator for   ∑ ݇ଶሺݏሻ௧ழ௦ஸ௧ାଵ ௧ܬ  .   is known to take non-zero, small values very frequently due to 
measurement and possibly due to the presence of jumps infinite-activity types.  

Andersen et al. (2007) introduced shrinkage estimator for the jump contribution based on the asymptotic distribution 
theory developed by Barndorff-Nielsen and Shephard (2004, 2006) and Barndorff-Nielsen et al. (2006) as  

௧ܬܵ                                   ؠ ሺܼ௧ܫ ൐ Φఈሻ. ሺܴ ௧ܸ െ ܤ ௧ܸሻ                               (7) 

where I is an indicator function, ܼ௧ ؠ ∆ିଵ
ଶൗ ሺோ௏೟ି஻௏೟ሻோ௏೟

షభ

ට൫ఓభ
షరାଶఓభ

షమିହ൯௠௔௫ൣଵ,்ொ೟஻௏೟
షమ൧

 is asymptotically standard normally 

distributed under the null hypothesis of no jumps,   ߤଵ ؠ ට2 ൗߨ  , Φఈ ൌ Φሺߙሻ, the standard normal distribution 

function where α is usually set to the values such as .999 so that ܬ௧  can picks up only “significance jumps” and the 
realized tripower variation 

        ܶܳ௧ ؠ ∆ିଵߤସ
ଷൗ

ିଷ ∑ หݎ௧ା௝∆,∆ห
ସ

ଷൗ
หݎ௧ାሺ௝ିଵሻ∆,∆ห

ସ
ଷൗ

หݎ௧ାሺ௝ିଶሻ∆,∆ห
ସ

ଷൗଵ
∆ൗ

௝ୀଷ

௣
՜ ׬ Δ  ݏܽ   ݏሻ݀ݏସሺߜ ՝ 0

௧ାଵ
௧        (8) 

where ߤସ
ଷൗ ؠ 2

ଶ
ଷൗ Γ൫7

6ൗ ൯Γ൫1
2ൗ ൯

ିଵ
. The convergence result holds even in the presence of jumps. 

Andersen et al. (2007) introduced the shrinkage estimator for the continuous sample path variation as 

௧ܥ                             ؠ ሾܼ௧ܫ ൑ Φఈሿܴ ௧ܸ ൅ ሾܼ௧ܫ ൐ Φఈሿܤ ௧ܸ                       (9) 

Andersen et al. (2007) also proposed microstructure-noise-robust versions of   ܤ ௧ܸ   and  ܶܳ௧ as  

ܤ                    ௧ܸ ؠ ଵߤ
ିଶሺ1 െ 2Δሻିଵ ∑ หݎ௧ା௝∆,∆หหݎ௧ାሺ௝ିଶሻ∆,∆ห

ଵ
∆ൗ

௝ୀଷ                          (10) 

                  ܶܳ௧ ؠ ∆ିଵߤସ
ଷൗ

ିଷ ሺ1 െ 4Δሻିଵ ∑ หݎ௧ା௝∆,∆ห
ସ

ଷൗ
หݎ௧ାሺ௝ିଶሻ∆,∆ห

ସ
ଷൗ

หݎ௧ାሺ௝ିସሻ∆,∆ห
ସ

ଷൗଵ
∆ൗ

௝ୀହ             (11) 

The definitions of ܬ௧ and ܥ௧ will be modified as well. 

3. Data Description and summary statistics 

3.1. Calculation of intraday returns and related realized volatility measures from minute-by-minute Nikkei 225 data 

This paper measures the realized volatility of the Nikkei 225 index for the sample of the period 11 March 1996 to 30 
September 2009. First, constract a “five- minute (percentage) returns” series by taking the five-minute log 
differences multiplied by hundred from the minute-by-minute data. This choice is made to mitigate the effect of 
microstructure related noise and increase the precision of volatility measures. (see, e.g.,Ishida and Watanabe, 2009; 
Watanabe and Yamaguchi, 2007).  

The Tokyo Stock Exchange is open only for 9:00-11:00 (Morning Session) and 12:30-15:00 (Afternoon Session). 
Our database includes every minute prices of the Nikkei 225 stock index for both sessions. This paper first extracts 
prices for 9:01, 9:05, 9:10,........,11:00 in the morning session and for 12:31, 12:35, 12:40,…….,15:00 in the 
afternoon session. Sometimes, the last transaction price for morning (and/or afternoon) session is observed slightly 
after 11:00 (and/or 15:00). In such cases, the last prices instead of prices at 11:00 (and/or 15:00) are used. Next 
using these prices the five-minute returns as mentioned in section 2 are calculated. There are 54 five-minute returns 
for a typical trading day in total, 24 from the morning session and 30 from the afternoon session. 



www.ccsenet.org/ijef            International Journal of Economics and Finance           Vol. 3, No. 4; September 2011 

Published by Canadian Center of Science and Education 141

Given the recent literature on the market microstructure noise effect on realized volatility estimation, the optimal 
choice of sampling frequency as studied by Bandi and Russell (2003, 2008) has been considered here. The sampling 
frequency Mopt (the number of observations per day) is calculated as (see also Zhang et al., 2005 and Clements et al. 
2008) 

௢௣௧ܯ                                      ൌ ቀ
ொ෠ത೔

ఈෝ
ቁ

భ
య
                                          (13) 

where ߙො ൌ ൬
∑ ∑ ௥ೕ,೟

ಾ
ೕసభ

೅
೟సభ

்ெ
൰

ଶ

 and ෠ܳത ൌ
ଵ

்
∑ ෠ܳ௧

்
௧ୀଵ ,   ෠ܳ௧ ൌ

ெభఱ

ଷ
∑ ௝,௧ݎ

ସெభఱ
௝ୀଵ  ଵହ is the 15-minute returns and M is theܯ .

highest frequency at which data are available. In our case, it is 1-minute returns. The 15-minute intraday returns are 
being considered to calculate realized volatility as well. 

We cannot calculate the 5-minute, 15-mimute and optimally-sampled returns for the non-trading hours including 
lunch time and overnight period though we can calculate the lunch time and overnight returns by considering the last 
price of the morning session and the first prices of the afternoon session, and the last price of the afternoon session 
and the first price of the next morning session but following Hansen and Lunde (2005), we drop this idea and scale 
the realized volatility as follow, 

                               ܴ ௧ܸ ؠ ܴכܥ ௧ܸ
ሺ଴ሻ          

where כܥ ؠ ∑ ሺܴ௧ െ തܴሻଶ்
௧ୀଵ

∑ ܴ ௧ܸ
ሺ଴ሻ்

௧ୀଵ
൘ ,       where   തܴ ؠ ∑ ܴ௧

்
௧ୀଵ

ܶൗ  , and T is the number of complete trading days. 

In my sample period, the first trading in the second session from January 1, 2006 to April 21, 2006 observed at 
13:01. Therefore, I remove these trading days along with the sessions from half trading days including the first and 
the last trading days of each year. The remaining number of complete trading days, T is 3279. We calculate ܴ ௧ܸ 
and  ܬ௧ by using this 3279 days data for the four series. 

3.2. Properties of the realized volatility and related measures 

Summary statistics of daily returns, the daily RV, it’s standard deviation form, i.e., ܴܸଵ ଶ⁄ ,   the logarithmic form 
i.e, ln( RV), the daily jump, microstructure noise robust version of daily jump (MSNR-Jump) (where ܤ ௧ܸ has been 
calculated according to Andersen et al., 2007) series and their standard deviation and logarithmic) are presented on 
Table 1a.  The summary statistics of continuous path component, significant jump series, the microstructure noise 
robust version of the continuous path component (MSNR-C) and significant jump (MSNR-SJ) series due to 
Andersen et al. (2007), and their standard deviation and logarithmic form are presented on Table 1b. In addition to 
the sample skewness and kurtosis, the Jarque-Bera (JB) statistic for testing normality and the Ljung-Box statistics of 
order 5, 10 and 22 (corresponding to roughly one week, two weeks and a month) for testing serial correlations up to 
their respective order are also presented on the Tables. 

From Table 1a, we observed that the unconditional distribution of the daily return series is negatively skewed but 
highly significantly nonnormal with high positive kurtosis. The LB statistics also indicate that the series is 
significantly serially correlated. We also observed that the daily RV, Jump and MNSR-Jump series are highly 
unconditionally nonnormally distributed with large positive values of skewness and kurtosis and highly significantly 
serially correlated. The average value of Jump and MSNR-Jump are 1.471 and 1.504 respectively with positive 
minimum values, that implies more than one jump occurred in every single days.  

The square-root transformation reduces the deviation from normality but still huge. The log transformation brings 
down the sample skewness and kurtosis values for the RV series but still significantly nonnormal. All the 
transformed series remain highly significantly serially correlated. 

Looking at the summary statistics from Table 1b, where ߙ ൌ 0.999 in (7) and (9), we observed that the average of 
the significant jump and MSNR-SJ are slightly reduced but still greater than one while the minimum values reduced 
to zero. The Jauque-Bera statistic shows the strong evidence of highly significant nonlinearity for all series and the 
LB statistic shows the strong evidence of highly significant serial correlation.  

Figure 1. shows the daily RV, Jump, MSNR-Jump, Significant Jump and MSNR-SJ. We visually observe few big 
jumps in the initial stage and the biggest jumps in the ending part of our sample period, the period of global financial 
market crashes.  

4. The Support Vector Machines (SVMs) 

The Support Vector Machines (SVMs) were introduced by Vapnik (1995) based on the statistical learning theory, 
which had been developed over the last three decades by Vapnik, Chervonenkis and others (see, e.g., Vapnik 1982, 
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1995) from a nonlinear generalization of the Generalized Portrait algorithm. SVMs were developed to solve the 
classification problem, but recently they have been extended to the domain of regression problems (e.g.,Vapnik et 
al.1997). The SVMs usually map data to a high-dimensional feature space and apply a simple linear method to the 
data in that high-dimensional space nonlinearly related to the input space. Moreover, even though we can think of 
SVMs as a linear algorithm in a high-dimensional space, in practice, it does not involve any computations in that 
high-dimensional space (see, e.g., Karatzoglou and Meyer 2006). The terminology for SVMs can be slightly 
confusing in the literature. In few literatures, SVM refers to both classification and regression with support vector 
methods.  In this paper, the tern SVM will be used for the Nonlinear Support Vector Regression (NL-SVR). The 
mathematical formulation of SVM is as follows, 

In the ߳-insensitive support vector regression of Vapnik (1995), our goal is to find a function ݂ሺݔሻ that has an  ߳ 
deviation from the actually obtained targets  ݕ௧ for all training data, and at the same time, is as flat as possible. 
Suppose ݂ሺݔሻ takes the following form 

                                 ݂ሺݔሻ ൌ ,߱ۃ݇ ۄݔ ൅ ܾ    with ߱ א ܺ, ܾ א Թ                 (14) 

where X is the space of the input patterns and ݇ۃ. , .  denotes the kernel function. Flatness of the above model ۄ
means need to find the small ߱. One way to ensure this is to minimize the Euclidean norm, i.e.,ԡ߱ԡଶ (see, e.g., 
Smola 1998). By applying the soft margin formulation of Cortes and Vapnik, (1995), and the Karush-Kuhn-Tucker 
(KKT) conditions (Karush, 1939, Kuhn and Tucker 1951) one can estimate the above model as  

݂ሺݔሻ ൌ ∑ ሺߙ௧ െ ௧ߙ
,௧ݔۃሻ݇כ ்ۄݔ

௧ୀଵ ൅ ෠ܾ                                                (15) 

where b can be computed as 

෠ܾ ൌ ௧ݕ െ ,߱ۃ݇ ۄ௧ݔ െ ௧ߙ  ݎ݋݂    ߳ א ሺ0,   ሻܥ

෠ܾ ൌ ௧ݕ െ ,߱ۃ݇ ۄ௧ݔ ൅ ௧ߙ  ݎ݋݂    ߳
כ א ሺ0,                  ሻܥ

where, ܥ ൐ 0 determines the trade-off between the flatness of the ݂ሺݔሻ and the amount up to which derivations 
larger than ߳ are tolerated and ߙ௧, ௧ߙ

כ ൒ 0. See,e.g., Smola and Schölkopf (1998) for further discussion. A several 
numbers (see, e.g., Kernlab in R, MATLAB, etc) of statistical software are available to handle SVM method.  

According to Cortes and Vepnik(1995), any symmetric positive semi-definite function that satisfies the Mercer’s 
conditions can be used as a kernel function in the SVMs context. The Mercer’s conditions are  

׬ ׬ ,ݔሺܭ ሻݕ ݃ሺݔሻ݃ሺݕሻ݀ݕ݀ݔ ൐ 0 and ׬ ݃ଶሺݔሻ݀ݔ ൏ן,  

where      ܭሺݔ, ሻݕ ؠ ∑ ןሻݔ௧ ߰ሺߙ
௧ୀଵ ߰ሺݕሻ, ௧ ൒ߙ 0                                  

This paper used the Polynomial kernel function (used for out-of-sample forecast) and Laplacian kernel function 
(used for in-sample forecast) for SVMs. The general form of the Polynomial kernel function is 

      ,ݔሺܭ ሻݕ ؠ ሺscale. ,ݔۃ ۄݕ ൅ offsetሻௗ௘௚௥௘௘ 

and the Laplacian kernel function is 

    ,ݔሺܭ ሻݕ ؠ ݌ݔ݁ ቀെ
ԡ௫ି௬ԡ

ఙ
ቁ 

See,e.g., Smola and Schölkopf (1998) for further discussion. 

5. HAR-RV models 

The HAR-RV class volatility models proposed by Corsi (2003) on the basis of a straightforward extension of the 
so-called Heterogeneous ARCH (HARCH) class of models analyzed by Müller et al.(1997). 

To sketch the HAR-RV model, define the multi-period realized volatilities by the normalized sum of the one-period 
volatilities, 

ܴ ௧ܸ,௧ା௛ ൌ ݄ିଵሺܴ ௧ܸାଵ ൅ ܴ ௧ܸାଶ ൅ ڮ ൅ ܴ ௧ܸା௛ሻ                                            (16) 

Note that, by definition of the daily volatilities, ܴ ௧ܸ,௧ାଵ ؠ ܴ ௧ܸାଵ . Also, provided the expectations exist, 
൫ܴܧ ௧ܸ,௧ାଵ൯ ؠ ሺܴܧ ௧ܸାଵሻ for all h. (see, e.g., Andersen et al. 2003, 2007). Also h=5 and h=22 will produce the 
weekly and monthly volatilities, respectively. The daily HAR-RV model of Corsi (2003) may then be expressed as 

ܴ ௧ܸାଵ ൌ ଴ߚ ൅ ஽ܴߚ ௧ܸ ൅ ௐܴߚ ௧ܸିହ,௧ ൅ ெܴߚ ௧ܸିଶଶ,௧ ൅א௧ାଵ                                  (17) 

where ݐ ൌ 1,2, … … … … , ܶ. 

Andersen et al.(2003, 2007) included the jump component, which has been explained in the Section 2, as an 
explanatory variable to the above model and introduced the new  model as 

     ܴ ௧ܸ,௧ା௛ ൌ ଴ߚ ൅ ஽ܴߚ ௧ܸ ൅ ௐܴߚ ௧ܸିହ,௧ ൅ ெܴߚ ௧ܸିଶଶ,௧൅ߚ௃ܬ௧ ൅א௧,௧ା௛                            (18) 
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The standard deviation and logarithmic form of the above model respectively are 
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After introducing the so-called shrinkage and microstructure-noise-robust estimator for the significance jump and 
continuous sample path variation, those have been discussed in the Section 2, Andersen et al. (2007) represented the 
HAR-RV-CJ model as  
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The standard deviation and logarithmic version of this model respectively are 
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See, Andersen et al. (2003, 2007) for further discussion. 

6. Modeling and forecasting RV with HAR-RV and SVM-HAR-RV models 

This paper compared the forecasting performance of the SVM-HAR-RV class models with the classical HAR-RV 
class model. For this comparison, the in-sample period considered from March 11, 1996 to December 29, 2004 and 
out-of-sample period from January 5, 2005 to September 30, 2009, the period including global financial market 
crashes. First, estimated model (17) (using RV, standard deviation and logarithm of RV series), (18), (19), (20), (21), 
(22) and (23) by ordinary least squares (OLS) method and next, by SVM setting the values ܥ ൌ 1 and ߳ ൌ 0.1 to 
these models and named SVM-HAR-RV models. The R 2.12.0-win32 and R 2.12.0-win32’s Kernlab package were 
used for both HAR-RV and SVM-HAR-RV class models.  

Both class of models for horizons h = 1, 5, and 22 days were estimated.  To compare the forecasting performance, 
the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Root Mean Square Percentage Error (RMSPE) 
and Mean Absolute Percentage Error (MAPE) were computed, which defined as follow: 

ܧܵܯܴ ؠ ටଵ

ே
∑ ൫ܴ ௧ܸ െ ෠ܴ ௧ܸ|௧ିଵ൯

ଶ்
௧ୀଵ ܧܣܯ                  , ؠ

ଵ

ே
∑ หܴ ௧ܸ െ ෠ܴ ௧ܸ|௧ିଵห்

௧ୀଵ ,  

ܧܲܵܯܴ ؠ ඨଵ

ே
∑ ቀ1 െ

ோ෠௏೟|೟షభ

ோ௏೟
ቁ

ଶ
்
௧ୀଵ , and            ܧܲܣܯ ؠ ටଵ

ே
∑ ቚ1 െ

ோ෠௏೟|೟షభ

ோ௏೟
ቚ்

௧ୀଵ . 

where ෠ܴ ௧ܸ|௧ିଵ denotes one-day ahead realized volatility forecast. We evaluate these errors for 5 days ahead and 
22-days ahead volatility forecast as well.  

To save space, this paper did not include the estimation results of all models. The values of  ܴଶ for different 
models are presented in Table 2a and Table 2b while the forecasting errors are presented in Table 3a and 3b. 

6.1 Empirical Results 

Let us first compare the  ܴଶ  results. It is observed from Table 2a, presents values of  ܴଶ for different models,  
that the value of  ܴଶ successively increases for the standard deviation of RV series than RV series and for the log 
RV series than standard deviation series for all the models and all different horizons but successively decreases for 
higher horizons in each and every series. In each series and horizon, the in-sample forecasting performance of 
SVM-HAR-RV models is remarkably better than HAR-RV models for each and every series and horizon. The 
out-of sample forecasting of SVM-HAR-RV models is also higher that the HAR-RV models for standard deviation 
and logarithmic series. Only the values of out-of-sample ܴଶ of HAR-RV model for the RV series are slightly 
higher than the SVM-HAR-RV. Almost similar results (differ in values) have been observed to compare the 
forecasting performance of the HAR-RV-J (and MSNR-J) and SVM-HAR-J (and MSNR-J) models.  It is also 
observed for both classes of models that the model performances improved after adding the jump (and/or MSNR-J) 
component as explanatory variable. The MNSR-Jump remarkably improves the predictive ability for the 
SVM-HAR-RV-MSNR-J class models but not for the HAR-RV-J class models.  
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Table 2b presents values of  ܴଶ  for the HAR-RV-RV-CJ, HAR-RV-RV-MSNR-CJ, SVM-HAR-RV-CJ and 
SVM-HAR-RV-MSNR-CJ models. This table also produced the similar results as Table 2a. The value of  ܴଶ 
successively increases for the standard deviation of RV series than RV series and for the log RV series than standard 
deviation series for all the models and all different horizons but successively decreases for higher horizons in each 
and every series. In the in-sample case, The SVM-HAR-RV-CJ (and/or SVM-HAR-RV-MSNR-CJ) class of models 
performed well that the HAR-RV-CJ (and/or HAR-RV-MSNR-CJ) class of models. The out-of-sample 
performances of SVM-HAR-RV class models are also satisfactory. 

The logarithmic transformed series produced better performances compared to RV and standard deviation of RV 
series for both classes of models. For both class of models, the best performances observed when 5-minute intraday 
returns are used to estimate the realized volatility. 

Next, the different errors are calculated for the logarithmic transformed series for both classes of models. 

Let us now compare the results based on different above defined error squares. Table 3a represents the forecasting 
errors for HAR-RV, SVM-HAR-RV, HAR-RV-J, SVM-HAR-RV-J, HAR-RV-MSNR-J and 
SVM-HAR-RV-MSNR-J models while and 3b presents the forecasting errors for HAR-RV-CJ, SVM-HAR-RV-CJ, 
HAR-RV-MSNR-CJ and SVM-HAR-RV-MSNR-CJ models. It is observed that in the in-sample case, the 
SVM-HAR class models completely defeat the HAR-RV class models for every series, horizon and intraday returns 
series. For the Out-of-sample case, the performance of SVM-HAR class models is also satisfactory compared to 
HAR-RV class models. Figure 2 presents the out-of-sample forecasting performances of the above models when 
5-minute intraday returns are used. 

7. Concluding remarks 

This paper combined the Support Vector Machine (SVM) regression with Heterogeneous Autoregressive (HAR) 
model as a hybrid model (SMV-HAR model) to improve the volatility forecasting ability. It is examined the realized 
volatility forecasting ability of the models for Nikkei 225 stock returns. The empirical results presented here are 
suggestive for several interesting extensions. First, the values ܥ ൌ 1 and ߳ ൌ 0.1 for the SVM-HAR-RV class 
models were set and observed better forecasting ability. The appropriate choice of the value ܥ and ߳ could be 
helpful to improve the forecasting ability.  

Second, the Polynomial and Laplaceian kernel were considered for the SVMs and observed better performances. 
The appropriate choice of other existing kernels in SVM literature or an appropriate new kernel could improve the 
forecasting ability. 

Third, the optimally sampled sampling frequencies are considered to mitigate the market microstructure noise. This 
choice failed to improve the forecasting performances. It would be interesting to consider the other market 
microstructure noise mitigation techniques. 

Those topics are left for further research.  
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Table 1a. Summary Statistics for Nikkei 225 Daily Returns, Realized Volatility and Jumps 

 Series Mean Std. Dev. Skew. Kurt. Min. Max. Jarque-Bera LB(5) LB(10) LB(22) 
 R -0.024 1.621 -0.163 8.351 -11.953 12.912 3898.857 13.589 24.305 41.57

5-
M

in
u

te
  

RV 2.620 3.311 7.785 98.225 0.135 59.537 1263095.720 5691.204 9640.407 15588.90
RV1/2 1.476 0.665 2.413 15.917 0.367 7.716 25796.526 7190.833 12522.802 21726.91

ln ( RV) 0.609 0.817 0.030 3.719 -2.005 4.087 70.550 7710.639 13667.646 24950.93
J 1.471 1.700 6.542 71.337 0.069 26.163 656785.453 5247.666 8861.280 14569.52

J1/2 1.111 0.486 2.082 12.789 0.263 5.115 15350.865 6597.038 11487.356 20190.51
ln (1+J) 0.792 0.426 1.262 6.220 0.067 3.302 2270.538 6669.961 11674.345 20728.59

MSNR-J 1.504 1.760 6.149 62.688 0.063 26.759 503859.151 5387.071 9204.820 15255.27
MSNR-J1/2 1.120 0.499 2.063 12.121 0.252 5.173 13595.248 6455.825 11337.073 19998.88

ln (1+MSNR-J) 0.800 0.436 1.273 6.090 0.061 3.324 2174.681 6477.022 11425.650 20373.58

15
-M

in
u

te
 

RV 2.621 4.014 7.868 96.357 0.073 69.809 1216009.157 4754.751 7958.047 12526.44
RV1/2 1.431 0.757 2.600 16.160 0.271 8.355 27164.726 5830.113 10110.552 17369.59

ln ( RV) 0.496 0.927 0.117 3.615 -2.614 4.246 58.760 6210.035 11092.093 20348.31
J 1.434 2.208 6.658 70.959 0.036 36.743 650619.489 3818.669 6281.099 10107.56

J1/2 1.045 0.585 2.367 13.050 0.189 6.062 16741.788 4596.683 7995.894 13779.03
ln (1+J) 0.724 0.496 1.558 6.509 0.035 3.631 2988.122 4549.871 7996.372 13955.17

MSNR-J 1.448 2.562 8.836 122.242 0.015 52.421 1971380.206 3640.938 6077.458 9693.37
MSNR-J1/2 1.036 0.611 2.776 17.646 0.123 7.240 33282.970 4459.291 7767.385 13325.38

ln (1+MSNR-J) 0.714 0.507 1.678 7.266 0.015 3.978 3997.658 4370.037 7679.203 13377.17

O
p

ti
m

al
ly

 S
am

pl
ed

 

RV 2.623 5.065 10.918 182.604 0.040 110.555 4440972.411 3180.071 5372.162 8803.31
RV1/2 1.389 0.834 3.108 22.342 0.200 10.515 55989.186 4604.499 8037.433 14005.35

ln ( RV) 0.385 1.027 0.087 3.635 -3.220 4.706 58.809 4620.977 8306.383 15354.54
J 1.600 3.776 12.819 242.346 0.016 92.986 7861031.989 2291.443 3700.800 6474.52

J1/2 1.045 0.712 3.526 27.203 0.126 9.643 86216.756 3480.552 6049.514 10717.92
ln (1+J) 0.716 0.557 1.839 8.158 0.016 4.543 5443.596 3469.273 6093.157 10854.49

MSNR-J 1.508 3.977 14.713 306.319 0.009 100.773 12599157.884 2188.317 3478.987 5945.87
MSNR-J1/2 0.997 0.717 3.809 32.012 0.093 10.039 122060.547 3206.824 5415.597 9962.59

ln (1+MSNR-J) 0.673 0.557 1.923 8.672 0.009 4.623 6371.333 3082.669 5473.863 9818.06

Key: The sample of the period 11 March 1996 to 30 September 2009, there are total 3281 Daily observations. The 5% critical values for Jarque-Bera (i.e.,߯ଶሺ݇ሻ) and LB (k) 

are 5.991 (k=2), 11.070 (5), 18.924 (10) and 33.924 (22) respectively. 

 
Table 1b. Summary Statistics for Nikkei 225 Continuous Path Components and Significant Jumps 

 Series Mean Std. Dev. Skew. Kurt. Min. Max. Jarque-Bera LB(5) LB(10) LB(22) 

5-
M

in
u

te
  

C 1.231 2.209 12.430 237.994 0.051 59.537 7575647.613 3346.519 5690.879 9141.11
C1/2 0.982 0.518 3.469 28.321 0.227 7.716 93510.670 5891.396 10293.427 17739.03

ln ( C) -0.242 0.883 0.227 3.899 -2.969 4.087 137.688 6959.732 12354.487 22352.85
MSNR-C 1.211 2.204 12.687 244.084 0.051 59.537 7972480.660 3097.589 5308.704 8504.47

MSNR-C1/2 0.973 0.514 3.537 29.407 0.225 7.716 101396.154 5757.799 10023.882 17252.24
ln ( MSNR-C) -0.260 0.884 0.213 3.937 -2.979 4.087 143.745 6971.435 12274.654 22152.03

SJ 1.389 1.559 6.169 68.703 0.000 25.769 606303.402 4387.062 6875.528 11179.50
SJ1/2 1.066 0.502 1.361 9.708 0.000 5.076 7109.668 3677.125 6158.408 10861.25

ln (1+SJ) 0.759 0.432 0.990 5.408 0.000 3.287 1317.949 4262.316 7306.657 13040.37
MSNR-SJ 1.409 1.592 5.814 60.312 0.000 24.516 463961.957 4397.535 6950.453 11354.16

MSNR-SJ1/2 1.072 0.510 1.361 9.308 0.000 4.951 6402.570 3585.086 6035.599 10675.92
ln (1+MSNR-SJ) 0.764 0.439 1.001 5.320 0.000 3.239 1273.191 4122.729 7099.981 12725.01

15
-M

in
u

te
 

C 1.963 3.571 10.090 147.981 0.013 69.809 2906897.518 3329.980 5689.228 8654.77
C1/2 1.214 0.699 3.002 21.498 0.116 8.355 51310.543 4130.561 7216.278 12357.42

ln ( C) 0.129 1.009 0.007 3.595 -4.315 4.246 48.091 4048.278 7218.492 13376.87
MSNR-C 1.999 3.580 10.012 146.198 0.023 69.809 2836334.540 3427.439 5711.740 8618.89

MSNR-C1/2 1.231 0.697 3.022 21.614 0.152 8.355 51960.071 4311.802 7382.469 12551.65
ln ( MSNR-C) 0.167 0.986 0.039 3.653 -3.765 4.246 58.698 4355.868 7677.756 14154.20

SJ 0.659 1.738 7.276 100.100 0.000 36.743 1307863.558 249.240 436.390 766.69
SJ1/2 0.413 0.699 1.938 7.708 0.000 6.062 5044.426 126.215 247.349 427.75

ln (1+SJ) 0.301 0.532 1.956 6.727 0.000 3.631 3960.783 164.648 327.387 562.13
MSNR-SJ 0.622 1.684 7.068 92.235 0.000 35.369 1107413.511 258.262 451.908 795.90

MSNR-SJ1/2 0.397 0.681 2.020 8.086 0.000 5.947 5722.957 134.555 258.920 448.19
ln (1+MSNR-SJ) 0.287 0.519 2.073 7.316 0.000 3.594 4858.892 176.726 345.796 593.51

O
p

ti
m

al
ly

 S
am

pl
ed

 

C 2.310 3.900 10.411 200.702 0.005 106.605 5361480.209 2093.133 3675.979 5958.24
C1/2 1.319 0.755 2.592 17.459 0.072 10.325 32007.917 3665.997 6353.470 11121.59

ln ( C) 0.285 1.037 -0.097 3.654 -5.25 4.669 63.064 3639.924 6575.333 12291.61
MSNR-C 2.324 3.890 10.465 202.603 0.009 106.605 5464595.264 2068.260 3671.110 6015.31

MSNR-C1/2 1.327 0.751 2.606 17.659 0.093 10.325 32835.600 3826.086 6642.548 11674.55
ln ( MSNR-C) 0.304 1.023 -0.091 3.730 -4.741 4.669 76.875 3974.559 7171.076 13384.52

SJ 0.313 2.994 20.818 540.025 0.000 92.986 39360820.507 434.935 614.928 1348.21
SJ1/2 0.102 0.550 8.106 92.877 0.000 9.643 1131560.309 140.412 205.727 523.96

ln (1+SJ) 0.074 0.376 6.184 46.879 0.000 4.543 281965.718 77.473 116.710 316.65
MSNR-SJ 0.299 3.047 22.560 625.270 0.000 100.773 52808995.417 480.992 641.747 1364.41

MSNR-SJ1/2 0.098 0.538 8.576 105.621 0.000 10.039 148626.054 161.191 225.555 568.80
ln (1+MSNR-SJ) 0.070 0.365 6.396 50.508 0.000 4.623 328395.034 88.303 128.442 337.79

Key: The sample of the period 11 March 1996 to 30 September 2009, there are total 3281 Daily observations. For continuous sample path variation and significant jump 

measures, we setߙ ൌ 0.999. The 5% critical values for Jarque-Bera (i.e.,߯ଶሺ݇ሻ) and LB (k) are 5.991 (k=2), 11.070 (5), 18.924 (10) and 33.924 (22) respectively 
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Table 2a. The R2-Values for HAR, SVM-HAR, HAR-J, SVM-HAR-J, HAR-MSNR-J and SVM-HAR-MSNR-J models  
Horizon Day(s) 1 5 22 

Model HAR 
SVM-
HAR 

HAR SVM-HAR 
HAR 

SVM-
HAR 

HAR SVM-HAR 
HAR 

SVM-
HAR 

HAR SVM-HAR 

Jump MNRJ Jump MNRJ Jump MNRJ Jump MNRJ Jump MNRJ Jump MNRJ 

In
-S

am
p

le
 

5 

RVt 0.353 0.572 0.359 0.353 0.573 0.582 0.206 0.431 0.210 0.206 0.444 0.451 0.060 0.301 0.060 0.060 0.310 0.300
RVt

1/2 0.453 0.653 0.456 0.454 0.663 0.648 0.299 0.505 0.300 0.299 0.520 0.514 0.106 0.384 0.106 0.106 0.382 0.373
lnRVt 0.482 0.644 0.483 0.483 0.652 0.662 0.342 0.547 0.343 0.343 0.534 0.534 0.160 0.459 0.161 0.163 0.444 0.458

15
 

RVt 0.326 0.550 0.326 0.326 0.563 0.554 0.186 0.433 0.189 0.190 0.445 0.443 0.061 0.275 0.062 0.062 0.230 0.292
RVt

1/2 0.396 0.610 0.396 0.396 0.604 0.600 0.262 0.469 0.265 0.266 0.491 0.485 0.094 0.354 0.096 0.094 0.338 0.339
lnRVt 0.414 0.605 0.414 0.414 0.600 0.586 0.297 0.514 0.298 0.299 0.507 0.499 0.137 0.440 0.141 0.139 0.410 0.405

O
p

t 

RVt 0.262 0.489 0.263 0.262 0.504 0.511 0.149 0.400 0.153 0.156 0.401 0.402 0.045 0.251 0.048 0.045 0.286 0.267
RVt

1/2 0.325 0.540 0.325 0.325 0.539 0.550 0.215 0.445 0.219 0.218 0.454 0.452 0.074 0.305 0.075 0.074 0.304 0.298
lnRVt 0.323 0.498 0.324 0.324 0.521 0.518 0.233 0.449 0.234 0.234 0.456 0.443 0.105 0.336 0.107 0.106 0.339 0.361

O
u

t-
of

-s
am

p
le

 5 

RVt 0.598 0.597 0.610 0.598 0.605 0.603 0.391 0.388 0.379 0.390 0.387 0.387 0.106 0.093 0.105 0.107 0.091 0.090
RVt

1/2 0.732 0.734 0.735 0.735 0.738 0.737 0.567 0.575 0.565 0.567 0.575 0.575 0.250 0.263 0.251 0.263 0.263 0.262
lnRVt 0.743 0.747 0.745 0.745 0.747 0.748 0.604 0.610 0.606 0.610 0.612 0.612 0.357 0.352 0.363 0.362 0.372 0.368

15
 

RVt 0.527 0.507 0.527 0.526 0.507 0.512 0.344 0.333 0.338 0.345 0.330 0.334 0.086 0.064 0.083 0.081 0.064 0.060
RVt

1/2 0.643 0.643 0.645 0.645 0.645 0.647 0.507 0.512 0.505 0.505 0.512 0.511 0.203 0.214 -ve 0.201 0.209 0.213
lnRVt 0.624 0.631 0.626 0.625 0.630 0.632 0.508 0.521 0.511 0.511 0.522 0.520 0.275 0.294 0.287 0.283 0.297 0.297

O
p

t 

RVt 0.393 0.374 0.390 0.393 0.373 0.373 0.279 0.247 0.274 0.271 0.245 0.245 0.070 0.039 0.061 0.067 0.038 0.038
RVt

1/2 0.566 0.566 0.567 0.567 0.567 0.565 0.471 0.460 0.465 0.467 0.459 0.460 0.197 0.190 0.194 0.197 0.190 0.188
lnRVt 0.552 0.553 0.554 0.554 0.555 0.553 0.464 0.464 0.465 0.465 0.466 0.465 0.267 0.252 0.275 0.272 0.257 0.252

Key: The sample of the period 11 March 1996 to 30 September 2009, there are total 3279 Daily observations.  The Table reports the R2-Values those have been calculated for daily (h=1), 
weekly (h=5) and monthly (h=22) horizons. The out-of-sample R2 value of HAR-RV-J model of 22-day ahead horizon for standard deviation of RV series observed negative. This implies 
that HAR-RV-J model is not appropriate model for those data sets. 
 
Table 2b. The R2-Values for HAR-CJ, SVM-HAR-CJ, HAR-MNR-CJ and SVM-HAR-MNR-CJ models for 
different horizons 

Horizon Day(s) 1 5 22 

Model 
HAR SVM-HAR HAR SVM-HAR HAR SVM-HAR 

CJ MNR-CJ CJ MNR-CJ CJ MNR-CJ CJ MNR-CJ CJ MNR-CJ CJ MNR-CJ 

In
-S

am
p

le
 

5 

RVt 0.354 0.354 0.593 0.584 0.212 0.213 0.446 0.455 0.071 0.069 0.307 0.307 
RVt

1/2 0.457 0.456 0.637 0.630 0.305 0.304 0.511 0.528 0.115 0.113 0.371 0.375 
lnRVt 0.480 0.481 0.641 0.646 0.341 0.341 0.554 0.549 0.152 0.152 0.445 0.445 

15
 RVt 0.329 0.328 0.540 0.541 0.062 0.062 0.260 0.282 0.062 0.062 0.260 0.270 

RVt
1/2 0.399 0.399 0.544 0.561 0.266 0.266 0.445 0.441 0.097 0.096 0.280 0.272 

lnRVt 0.413 0.412 0.567 0.561 0.301 0.299 0.487 0.480 0.140 0.139 0.383 0.378 

O
p

t RVt 0.269 0.269 0.482 0.478 0.158 0.158 0.376 0.385 0.042 0.048 0.285 0.273 
RVt

1/2 0.269 0.270 0.473 0.472 0.224 0.224 0.419 0.435 0.077 0.077 0.293 0.316 
lnRVt 0.324 0.325 0.520 0.522 0.236 0.237 0.465 0.466 0.106 0.107 0.379 0.384 

O
u

t-
of

-s
am

p
le

 5 

RVt 0.583 0.589 0.594 0.595 0.340 0.342 0.378 0.379 0.068 0.076 0.062 0.077 
RVt

1/2 0.729 0.731 0.731 0.730 0.544 0.547 0.561 0.564 0.222 0.232 0.232 0.244 
lnRVt 0.715 0.714 0.723 0.720 0.566 0.565 0.577 0.575 0.308 0.310 0.306 0.312 

15
 RVt 0.519 0.518 0.504 0.504 0.079 0.077 0.062 0.060 0.079 0.077 0.062 0.060 

RVt
1/2 0.641 0.643 0.643 0.645 0.502 0.499 0.511 0.519 0.193 0.189 0.205 0.203 

lnRVt 0.602 0.603 0.611 0.614 0.488 0.484 0.501 0.500 0.249 0.246 0.268 0.265 

O
p

t RVt 0.384 0.385 0.359 0.357 0.205 0.201 0.195 0.191 0.051 0.047 0.028 0.026 
RVt

1/2 0.384 0.385 0.359 0.357 0.423 0.422 0.415 0.412 0.187 0.188 0.176 0.175 
lnRVt 0.547 0.548 0.548 0.547 0.454 0.454 0.453 0.455 0.264 0.266 0.248 0.248 

Key: The sample of the period 11 March 1996 to 30 September 2009, there are total 3279 Daily observations.  The Table reports 
the R2-Values those have been calculated for daily (h=1), weekly (h=5) and monthly (h=22) horizons. 

 
Table 3a. Forecasting Errors of HAR, SVM-HAR, HAR-J, SVM-HAR-J, HAR-MSNR-J and 
SVM-HAR-MSNR-J models for the logarithmic series 

Horizon Day(s) 1 5 22 

Model HAR 
SVM-
HAR 

HAR SVM-HAR 
HAR 

SVM-
HAR 

HAR SVM-HAR 
HAR 

SVM-
HAR 

HAR SVM-HAR 

Jump MNRJ Jump MNRJ Jump MNRJ Jump MNRJ Jump MNRJ Jump MNRJ 

In
-S

am
p

le
 5 RMSE 1.837 1.486 1.828 1.837 1.473 1.482 0.548 0.459 0.547 0.547 0.447 0.460 0.626 0.505 0.626 0.625 0.498 0.501

MAE 1.032 0.609 1.030 1.032 0.599 0.616 0.421 0320 0.421 0.421 0.308 0.323 0.450 0.361 0.489 0.489 0.354 0.358
RMSPE 0.764 0.390 0.753 0.764 0.379 0.403 14.40 9.670 13.50 14.35 9.131 9.816 16.78 22.88 15.77 15.46 18.27 20.61

MAPE 0.702 0.495 0.699 0.702 0.489 0.499 1.446 0.566 1.435 1.445 0.559 0.578 1.568 0.923 1.554 1.549 0.852 0.883

15
 RMSE 0.589 0.489 0.589 0.589 0.485 0.486 0.646 0.536 0.646 0.646 0.539 0.540 0.722 0.597 0.720 0.721 0.600 0.590

MAE 0.461 0.345 0.461 0.461 0.345 0.345 0.502 0.374 0.502 0.502 0.379 0.380 0.567 0.428 0.566 0.567 0.431 0.419
RMSPE 35.25 13.09 35.6 35.28 15.04 13.23 36.18 14.58 36.58 36.51 15.31 16.6 33.01 17.68 32.71 32.64 17.76 16.55

MAPE 1.800 0.587 1.806 1.803 0.561 0.595 1.879 0.716 1.890 1.890 0.729 0.640 1.934 0.576 1.932 1.933 0.618 0.604

O
p

t RMSE 0.711 0.621 0.721 0.721 0.606 0.607 0.769 0.652 0.765 0.769 0.648 0.655 0.835 0.719 0.834 0.835 0.718 0.706
MAE 0.562 0.446 0.562 0.562 0.427 0.432 0.596 0.463 0.596 0.596 0.460 0.467 0.650 0.517 0.649 0.650 0.517 0.503

RMSPE 15.84 12.18 15.71 15.44 12.54 12.93 20.42 19.79 20.8 20.65 15.71 15.06 20.33 23.40 19.59 19.79 27.46 24.29
MAPE 1.595 0.669 1.594 1.589 0.594 0.608 1.701 0.418 1.716 1.704 0.655 0.631 1.767 --- 1.764 1.763 --- ----

O
u

t-
of

-s
am

p
le

5 RMSE 3.001 2.975 2.957 3.000 2.975 2.983 0.620 0.615 0.618 0.618 0.614 0.613 0.787 0.782 0.783 0.784 0.778 0.780
MAE 1.118 1.026 1.122 1.118 1.026 1.024 0.489 0.485 0.488 0.488 0.483 0.483 0.605 0.599 0.602 0.603 0.595 0.597

RMSPE 0.979 0.738 1.014 0.980 0.738 0.718 8.355 8.693 8.738 8.560 9.013 8.937 6.333 6.312 6.582 6.684 6.524 6.510
MAPE 0.818 0.713 0.833 0.819 0.713 0.705 1.432 1.437 1.451 1.442 1.451 1.447 1.437 1.422 1.450 1.457 1.432 1.436

15
 RMSE 0.669 0.662 0.667 0.667 0.663 0.661 0.765 0.755 0.763 0.763 0.754 0.756 0.929 0.917 0.922 0.924 0.915 0.915

MAE 0.525 0.518 0.523 0.523 0.518 0.516 0.605 0.595 0.603 0.604 0.594 0.595 0.727 0.711 0.728 0.721 0.708 0.709
RMSPE 15.15 15.29 14.81 15.87 15.35 15.07 8.311 7.941 8.463 8.386 8.020 7.967 11.41 11.06 10.3 10.83 9.945 10.39

MAPE 1.436 1.443 1.435 1.436 1.443 1.445 1.361 1.349 1.370 1.371 1.354 1.353 1.455 1.412 1.435 1.448 1.395 1.403

O
p

t RMSE 0.807 0.807 0.806 0.805 0.805 0.807 0.884 0.883 0.883 0.883 0.881 o.883 1.033 1.044 1.028 1.030 1.040 1.041
MAE 0.637 0.553 0.636 0.636 0.635 0.637 0.696 0.695 0.695 0.695 0.694 0.695 0.806 0.816 0.800 0.802 0.812 0.813

RMSPE 14.46 14.02 14.10 14.02 13.99 14.55 4.880 4.997 5.096 4.997 4.949 4.895 8.074 07.19 8.830 8.429 7.828 7.638
MAPE 1.472 1.471 1.472 1.471 1.483 1.485 1.319 1.325 1.331 1.325 1.320 1.318 1.389 1.366 1.407 1.395 1.387 1.377

Key: The sample of the period 11 March 1996 to 30 September 2009, there are total 3279 Daily Observations. 
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Table 3b. Forecasting Errors of HAR-CJ, SVM-HAR-CJ, HAR-MNR-CJ and SVM-HAR-MNR-CJ models for 
different horizons for the logarithmic series 

Horizon Day(s) 1 5 22 

Model HAR SVM-HAR HAR SVM-HAR HAR SVM-HAR 

CJ MNR-CJ CJ MNR-CJ CJ MNR-CJ CJ MNR-CJ CJ MNR-CJ CJ MNR-CJ 

In
-S

am
p

le
 

5 

RMSE 0.485 0.485 0.403 0.401 0.548 0.548 0.451 0.454 0.629 0.629 0.509 0.509 

MAE 0.377 0.376 0.289 0.287 0.421 0.422 0.317 0.321 0.491 0.492 0.365 0.365 

RMSPE 8.442 8.974 23.583 25.214 9.995 10.438 11.487 11.468 20.663 21.570 30.927 34.853 

MAPE 1.276 1.292 0.846 0.874 1.356 1.377 0.646 0.645 1.613 1.620 1.004 1.048 

15
 

RMSE 0.590 0.590 0.507 0.511 0.645 0.645 0.552 0.556 0.720 0.721 0.610 0.612 

MAE 0.460 0.461 0.367 0.372 0.500 0.500 0.398 0.402 0.567 0.567 0.446 0.450 

RMSPE 36.591 36.721 35.753 34.950 36.448 36.366 35.447 34.055 35.198 34.422 23.406 15.450 

MAPE 1.811 1.810 ---- ---- 1.882 1.878 --- --- 1.950 1.943 0.268 0.542 

O
p

t 

RMSE 0.721 0.720 0.607 0.606 0.768 0.767 0.642 0.641 0.834 0.834 0.696 0.693 

MAE 0.561 0.560 0.429 0.428 0.594 0.594 0.457 0.456 0.650 0.650 0.500 0.496 

RMSPE 16.518 16.459 13.032 12.603 19.615 19.347 26.736 27.105 17.621 17.781 29.809 29.953 

MAPE 1.601 1.606 0.620 0.633 1.683 1.681 ----- ---- 1.723 1.727 0.023 ---- 

O
u

t-
of

-s
am

p
le

 

5 

RMSE 0.526 0.527 0.519 0.521 0.649 0.650 0.641 0.642 0.816 0.815 0.817 0.814 

MAE 0.415 0.415 0.409 0.410 0.515 0.515 0.507 0.508 0.632 0.632 0.628 0.627 

RMSPE 10.542 10.238 9.946 9.730 6.603 6.485 6.717 6.560 6.144 6.198 5.749 5.814 

MAPE 1.353 1.346 1.333 1.329 1.385 1.383 1.374 1.371 1.451 1.458 1.419 1.424 

15
 

RMSE 0.688 0.687 0.680 0.678 0.781 0.784 0.771 0.773 0.946 0.947 0.934 0.936 

MAE 0.545 0.544 0.536 0.534 0.619 0.621 0.609 0.611 0.741 0.742 0.727 0.728 

RMSPE 13.301 12.675 13.722 13.077 8.048 7.970 7.482 7.482 10.902 10.980 10.720 10.732 

MAPE 1.372 1.367 1.377 1.372 1.353 1.355 1.325 1.329 1.474 1.476 1.421 1.424 

O
p

t 

RMSE 0.812 0.811 0.811 0.811 0.892 0.892 0.893 0.891 1.035 1.034 1.046 1.046 

MAE 0.643 0.642 0.643 0.643 0.702 0.703 0.703 0.703 0.805 0.804 0.815 0.815 

RMSPE 16.454 16.749 15.194 16.041 4.284 4.322 4.166 4.256 7.741 7.710 6.695 6.585 

MAPE 1.490 1.493 1.486 1.494 1.280 1.283 1.268 1.032 1.342 1.340 1.322 1.318 

Key: The sample of the period 11 March 1996 to 30 September 2009, there are total 3279 Daily observations.  The Table reports the R2-Values 
those have been calculated for daily (h=1), weekly (h=5) and monthly (h=22) horizons. 
 

a.  

     

b.  

   

c.   

   
Key: Panel-a, Panel-b, Panel-c, and Panel-d show the daily RV, log-RV, Jump and Significance Jump series of 5-min, 10-min, 15-min and optimally sampled intraday 

return data. The significant jumps have been calculated using a cutoff value α= 0.999. 

Figure 1. Realized Volatility, Log-Realized Volatility, Jumps and Significant Jumps series. 
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         One-day ahead                     5-Day ahead                  22-Day ahead 

     

   

   

  

    

The first panels show the HAR-RV/SVM-HAR-RV, the second is HAR-RV-J/SVM-HAR-RV-J, the third is HAR-RV-MSNR-J/SVM-HAR-RV-MSNR-J, the fourth 

is HAR-RV-CJ/SVM-HAR-RV-CJ and the fifth is HAR-RV-MSNR-CJ/SVM-HAR-RV-MSNR-CJ model’s out-of-sample forecasts  for the logarithmic transformed 

series. 

Figure 2. Daily, Weekly and Monthly out-of-sample realized volatility forecasts from HAR-RV, SMV-HAR-RV R, 

HAR-RV-J and SVM-HAR-RV-J models 
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