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Abstract 

We propose using the nonlinear method of smoothing splines in conjunction with forecast combination to predict 

the market equity premium. The smooth splines are flexible enough to capture the possible nonlinear relationship 

between the equity premium and predictive variables while controlling for complexity, overcoming the 

difficulties often attached to nonlinear methods such as computational cost, overfitting and interpretation. Our 

empirical results show that when used with forecast combination, the smoothing spline forecasts outperform 

many competing methods such as the adaptive combinations, shrinkage estimators and technical indicators, in 

delivering statistical and economic gains consistently. 

Keywords: equity premium, forecast combination, smoothing spline, nonlinear method 

1. Introduction 

Accurate predictions of the aggregate equity premium are vitally important in empirical finance, as they are 

critical inputs into the construction of optimal portfolios and other investment decisions. As a result, a wealth of 

predictive variables, such as the dividend-price ratio and dividend-yield, have been proposed and shown with 

empirical evidence to possess valuable predictive content for the market equity premium, see Campbell (1987) 

and, Fama and French (1988) for example. Despite the abundance of literature supporting the predictability of 

the equity premium via exogenous predictors, some studies have questioned if the documented evidence of 

in-sample predictability can carry over to meaningful out-of-sample predictive gains on a consistent basis. One 

such work is Welch and Goyal (2008), in which the authors show that many predictors with documented 

evidence of in-sample predictability fail to forecast the market equity premium out-of-sample. The random walk 

benchmark, which simply applies the historical average to forecast the future equity premium, outperforms most 

variable-based predictive regression models. 

Nonetheless, the view expressed in Welch and Goyal (2008) has been constantly challenged since its publication. 

In response, some studies have discovered new predictive variables in economics, accounting and finance 

accompanied with evidence corroborating the predictability of the equity premium. For example, Li et al. (2013) 

show that the implied cost of capital has valuable predictive content for excess stock returns. Jiang et al. (2019) 

construct a new composite index, the manager sentiment index, and show that it contains genuine predictive 

content for the market equity premium beyond those embedded in typical sentiment indexes in behavior finance. 

Another strand of the literature focuses on using alternative predictive models or estimation methods other than 

the ordinary least squares (OLS) considered in Welch and Goyal (2008) to uncover or restore the predictive 

content of many exogenous variables in the out-of-sample context. To illustrate, Campbell and Thompson (2008) 

show that one can uncover the predictive content of many variables for the equity premium after imposing 

economic theory implied restrictions on the linear predictive model, such as the sign constraints on forecasts and 

model slope coefficients. Given the well documented evidences of pervasive structural breaks in financial time 

series, such as those documented in Paye and Timmermann (2006) and Rapach and Wohar (2006), Rapach et al. 

(2010) propose using the simple forecast combination via equal weights to better manage the risks inherent in 

model selection when forecasting stock returns. Pettenuzzo et al. (2014) further extends the forecast combination 

analysis in a Bayesian setting under various economic restrictions.      

Against this backdrop, we make three contributions to the literature of forecasting the market equity premium 

out-of-sample. First, we propose using the smoothing splines in the framework of nonparametric regressions to 

relate the aggregate equity premium to a particular exogenous variable, such as the dividend-ratio and the stock 
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market variance. Most studies in the extent literature center on linear models or methods. Although nonlinear 

methods have been considered in the forecasting stock returns literature, such as the regime-switching model 

outlined in Rapach and Zhou (2013), it is, however, not clear how they compare with other methods which have 

been shown effective, such as forecast combinations and restricted forecasts. In addition, nonlinear methods such 

as regime-switching, TAR and STAR, are highly parametric in nature by imposing a particular relationship 

between the forecast target and the predictor, which may not hold in reality. As discussed in White (2006), 

nonlinear predictive methods have to overcome three difficulties in practice: computational cost, dangers of 

overfitting and ease of interpretation. Given the substantial progress made in computational statistics, the first 

hurdle can be easily removed when estimating smoothing splines with modern computing facilities. Smoothing 

splines permit flexibility enough to capture various possible nonlinear relationships between the equity premium 

and exogenous predictors while penalizing overfitting. Moreover, smoothing splines, which can be embedded in 

the framework of generalized additive models, affords the form of additivity in model specification helpful for 

interpreting estimation results. Therefore, we argue that smoothing splines have the potential to uncover the 

genuine predictive content embedded in many variables for the market equity premium, and their use in 

univariate regressions helps interpret estimation results.    

The second contribution we make is that we show the smoothing splines can be used in conjunction with forecast 

combinations to better manage the risk of model selection. Given the documented evidence of model instability, 

as well as the elusive nature of stock return predictability shown in Timmermann (2008), combining smoothing 

spline forecasts from diverse sources of univariate models could help mitigate the concerns over choosing a 

single best model among a large pool of candidates. Our empirical results show that the combined forecasts from 

smoothing splines outperform many competing methods, such as the simple combination of Rapach et al. (2010) 

and the adaptive combination of Timmermann (2008). For example, the combined forecasts from smoothing 

splines with three effective degrees of freedom report a statistically significant out-of-sample 𝑅𝑂𝑂𝑆
2  value of 

3.062%, exceeding the values of 1.010% and 2.751% obtained from equal-weight and adaptive combinations, 

respectively. 

In our last contribution, we show that the smoothing spline forecasts of the equity premium can deliver material 

predictive gains to the investor who uses them to guide optimal portfolio investment decisions on a consistent 

basis. To illustrate, without transaction costs, the optimal portfolio guided by smoothing spline forecasts with 

three effective degrees of freedom deliver a certainty equivalent return (CER) gains of 3.228% to the investor 

who adopts this strategy over the historical mean benchmark. In contrast, the investment strategies of 

equal-weight and adaptive combinations exhibit CER gains of 0.395% and 2.938%, respectively.   

The remainder of this paper is organized as follows. Section two describes the baseline predictive model, the 

smoothing splines, forecast combinations, and various completing methods in generating the equity premium 

forecasts. Section three presents the data, and reports results evaluating statistical and economic performance of 

the equity premium forecasts. Section four concludes. 

2. Econometric Methodology 

In this section we describe the baseline univariate predictive model employed to construct the equity premium 

forecasts, which are subsequently used in forecast combination to produce the final combined prediction. We 

also outline the nonlinear modeling strategy of smoothing splines, and discuss its advantages and possible 

limitations in practice. Finally, we briefly present various alternative predictive models and methods for 

forecasting the equity premium, and the associated measures evaluating forecasting performance in terms of 

statistical and economic gains. 

2.1 Baseline Predictive Model 

Our baseline univariate predictive model takes the following form: 

𝑦𝑡+1 = 𝛽0 + 𝑓(𝑥𝑘,𝑡) + 𝜀𝑡 ,                                    (1) 

where 𝑦𝑡+1 is the market equity premium at period 𝑡 + 1, 𝑥𝑘,𝑡 is the predictor 𝑘 used at time 𝑡, 𝑓 is a 

function relating the predictor to the equity premium, and 𝜀𝑡 is the error term. This baseline model is general 

enough to accommodate both linear and nonlinear models relating the forecast target and the predictor. For 

example, when 𝑓(𝑥𝑘,𝑡) = 𝛽1𝑥𝑘,𝑡 , then the baseline model becomes the linear predictive regression model 

considered in Welch and Goyal (2008), Rapach et al. (2010) and Pettenuzzo et al. (2014). In Welch and Goyal 

(2008) and Rapach et al. (2010), the linear baseline model is estimated by OLS while Pettenuzzo et al. (2014) 

apply a Bayesian estimator. 
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2.2 Forecast Combination 

The baseline model is specified linking the equity premium with a particular variable under examination. In 

practice, many variables could be available to the forecaster who use them to build predictive models. As a result, 

to better manage the risk inherent in model selection, the method of forecast combination has been proven useful. 

See Rapach et al. (2010) and Pettenuzzo et al. (2014) for example. 

We construct the combined forecast from all baseline models according to the following: 

𝑦̂𝑡+1 =
1

𝐾
∑ 𝑤𝑘𝑦̂𝑘,𝑡+1
𝐾
𝑘=1 .                                   (2) 

where 𝑦̂𝑘,𝑡+1 is the forecast made by the baseline model with predictor 𝑥𝑘, 𝑤𝑘 is the weight assigned to the 

baseline predictive model 𝑘 when constructing the average forecast, and 𝐾 is the total number of baseline 

models available. In practice, the weight is often restricted to be nonnegative and the sum of all weights is unity. 

The simple but effective weighting scheme is equal-weighting, in which each model in Eq.(2) receives a constant 

weight of 1/𝐾.  

While alternative weighting schemes such as the discounted mean squared forecast error and the approximate 

Bayesian model averaging are available, empirically they do not improve upon the equally weighted forecast 

combination. 

2.3 Smoothing Splines 

In the framework of regression splines, we first specify a set of knots which can be used subsequently to produce 

a series of basis functions, then we typically use least squares to estimate the spline coefficients. In fitting a 

smooth curve to a time series dataset, what we would like to achieve is to find some function, say 𝑓(𝑥), that fits 

the observed data points well while controlling for overfitting. Put differently, we would like to obtain a curve 

that is flexible enough to capture the nonlinear relationship between the equity premium and the exogenous 

variables, but we do not want to end up with a wiggly curve that interpolate all the training sample observations. 

A natural approach to achieve the search objective mentioned above is to find the function 𝑓 which minimizes 

the following loss criterion: 

∑ [𝑦𝑡+1 − 𝑓(𝑥𝑡)]
2𝑇

𝑖=1 + 𝜆∫𝑓′′(𝑧)2𝑑𝑧,                               (3) 

where 𝜆 ≥ 0  is a tuning parameter controlling for the degree of smoothness, and 𝑓′′(𝑧)  indicates the 

second-order derivative of the function 𝑓 evaluated at 𝑧. The function 𝑓 that minimizes Eq.(3) is called a 

smoothing spline. 

Note that the loss function for the smoothing splines takes the typical form of penalized information criterion 

formulation that often seen in the literature of dimension reduction methods, such as lasso and ridge regressions. 

The first term in Eq.(3) encourages 𝑓 to fit the time series data well, while the second term is a penalty term 

that punishes the variability in 𝑓. The larger the value of 𝜆, the smoother the 𝑓 would be. When 𝜆 = 0, then 𝑓 

would be reduced to a polynomial flexible enough to interpolate all the data points in the training sample. In 

contrast, when 𝜆 = ∞, 𝑓 would become extremely smooth, reducing to a straight least squares line. For an 

intermediate value of 𝜆, 𝑓 will approximate the nonlinear relationship between the forecast target and the 

predictors while being smooth to some degree. In sum, we can see that the tuning parameter 𝜆 essentially 

manages the bias-variance trade-off of the regression spline, and the value of 𝜆 can be adjusted via the effective 

degrees of freedom.  

The global minimizer 𝑓 of Eq.(3) is a piecewise cubic polynomial with knots at the unique values of predictors, 

and with continuous first and second order derivatives at each knot. In the optimization process, 𝜆 controls the 

degree of roughness of the smoothing spline, which is termed the effective degrees of freedom (𝑒𝑑𝑓) in the 

nonlinear modeling literature. Note that, generally in statistics, the degree of freedom refers to the number of free 

parameters to be estimated. While a smoothing spline nominally has 𝑇 parameters, they are heavily constrained 

towards zero. Thus, the effective degrees of freedom essentially measures the flexibility of the smoothing spline, 

the greater its value, the more flexible the spline would be. In our empirical applications, we consider two values 

for the effective degrees of freedom, namely, 𝑒𝑑𝑓 = 2 and 𝑒𝑑𝑓 = 3, taking into account the trade-off between 

flexibility and complexity. Their forecasts in the context of forecast combination are labeled SS2 and SS3, 

respectively.  

The main advantages of smoothing spline are: it allows us to fit a flexible curve to data relating the equity 

premium with the available predictors without the need to specify a particular type of relationship such as STAR; 

the smoothness of the spline can be adjusted via the effective degrees of freedom to combat overfitting, further 
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extending its applicability in general settings; its usage in the framework of univariate predictive regressions 

renders its estimation results interpretable relative to alternative complex nonlinear methods. A primary 

limitation to the smoothing splines is that it may miss the possible interactions between predictors when used in 

multivariate predictive regressions. We refer interested readers to Green and Silverman (1994) for further details 

regarding smoothing splines and related nonparametric regressions.  

2.4 Alternative Models and Methods 

The efficient market hypothesis inspired random walk model, which simply assumes a constant expected equity 

premium, is frequently used in empirical finance as the benchmark model. Specifically, 

𝑦𝑡+1 = 𝛽0 + 𝜀𝑡 .                                        (4) 

Despite being simple in structure, the random walk model outperforms most univariate regression models 

considered in Welch and Goyal (2008) when forecasting the equity premium out-of-sample. Eq.(4) is also called 

the historical average or the prevailing mean in the literature of forecasting stock returns. 

In addition to the random walk benchmark, we also consider the following models and methods proposed in the 

literature with which we compare the smoothing spline forecasts. Campbell and Thompson (2008) show that the 

predictive content of many financial and economic variables can be restored once various economic theory 

implied restrictions are imposed on linear predictive models, such as the positive forecast restriction. Rapach et 

al. (2010) argue that using the equally weighted combination to average forecasts from univariate linear models 

can address the issue of parameter instability inherent in the predictive relationship, leading to superior 

forecasting gains. In addition to equal weighting, Stock and Watson (2004) also consider the discounted mean 

squared forecast error (DMSFE) scheme and weights based on the shrinkage estimator to combine forecasts from 

diverse sources. Neely et al. (2014) argue that technical indicators, such as the moving average and momentum, 

contains significant predictive power for the market equity premium when combined across various parameter 

configurations. Given the elusive nature of stock returns predictability, Timmermann (2008) considers the 

previous best, adaptive combination, and the Bates-Granger least squares weights to combine baseline equity 

premium forecasts. Li and Tsiakas (2017) demonstrate that shrinkage estimators, such as the Lasso, can be used 

to estimate the kitchen-sink regression model comprising all variables when forecasting stock returns. Ferreira 

and Santa-Clara (2011) propose a novel SOP method to forecast the aggregate equity premium out-of-sample. 

For brevity, we refer interested readers to the articles citied above for details regarding these alternative methods. 

2.5 Statistical Evaluation 

Campbell and Thompson (2008) propose an out-of-sample 𝑅𝑂𝑂𝑆
2  statistic to estimate the average predictive 

gains against the benchmark over the entire evaluation sample. Specifically, the 𝑅𝑂𝑂𝑆
2  can be constructed 

according to the following: 

𝑅𝑂𝑂𝑆
2 = 100 × (1 −

∑ (𝑦𝑡+1−𝑦̂𝑡+1)
2𝑇−1

𝑡=1

∑ (𝑦𝑡+1−𝑦̅𝑡+1)
2𝑇−1

𝑡=1
),                               (5) 

where 𝑦̅𝑡+1  and 𝑦̂𝑡+1  are one-step ahead point forecasts from the benchmark and the alternative model, 

respectively, and 𝑦𝑡+1 represents the realized equity premium. Intuitively, the 𝑅𝑂𝑂𝑆
2  measures the percentage 

reduction in terms of the mean squared forecast error (MSFE) for the predictive model relative to the benchmark. 

The greater the 𝑅𝑂𝑂𝑆
2  value, the more the predictive gains would be. The simplicity and ease of interpretation of 

the out-of-sample 𝑅𝑂𝑂𝑆
2  explain its popularity among financial economists evaluating stock return forecasts. 

Given that the 𝑅𝑂𝑂𝑆
2  is a point estimate of relative predictive accuracy, we assess its statistical significance 

according to the MSFE-adjusted t-statistic (MSFE-t) proposed in Clark and West (2007). The Clark and West 

(2007) test tests the null hypothesis of equal predictive accuracy between two competing models against the 

one-sided alternative that the benchmark model is inferior. In practice, the MSFE-t statistic can be conveniently 

constructed by first creating a new variable via the following equation: 

𝑓𝑡+1 = (𝑦𝑡+1 − 𝑦̅𝑡+1)
2 − [(𝑦𝑡+1 − 𝑦̂𝑡+1)

2 − (𝑦̅𝑡+1 − 𝑦̂𝑡+1)
2].                      (6) 

Next, we regress 𝑓𝑡+1 on a constant term then compute the t-statistic for the intercept. While MSFE-t statistic is 

not asymptotically normal, Clark and West (2007) show that the standard normal distribution provides a good 

approximation in simulations when the sample size is sufficiently large.  

In addition to a measure summarizing the average performance over the full sample, we are interested in 

investigating how the equity premium forecasts perform during specific episodes within the out-of-sample 

window. To this end, we create a graphical device following Welch and Goyal (2008) to gain a dynamic 

perspective on how predictive models work. Specifically, we construct a new time series termed the cumulative 
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differences in squared forecast error between the benchmark and the predictive model (CDSFE) according to the 

following: 

𝐶𝐷𝑆𝐹𝐸𝑡 = ∑ (𝑦𝑠+1 − 𝑦̅𝑠+1)
2𝑡

𝑠=1 − ∑ (𝑦𝑠+1 − 𝑦̂𝑠+1)
2𝑡

𝑠=1                           (7) 

where 𝑦̅𝑠+1 and 𝑦̂𝑠+1 are forecasts from the benchmark and the predictive model, respectively.  

At any time point 𝑡 within the forecast evaluation window, if 𝐶𝐷𝑆𝐹𝐸𝑡 > 0, it indicates that the predictive 

model under examination outperforms the benchmark. The time series plot of the CDSFE can be conveniently 

used to ascertain if the model has a smaller MSFE value than the benchmark for any episode by simply 

comparing the heights of the curve at the starting and end points of the segment corresponding to the period of 

evaluation. A model which exceeds the benchmark would have a CDSFE slope that is positive everywhere. The 

closer the CDSFE plot is to this ideal, the greater the predictive gains would be. 

2.6 Economic Evaluation 

It is reasonable to expect that a model with superior statistical performance in forecast evaluation would deliver 

material economic gains to investors who use its predictions to make optimal investment decisions. However, as 

discussed in Cenesizoglu and Timmermann (2012), statistical measures of forecasting gains, such as the 𝑅𝑂𝑂𝑆
2  of 

Campbell and Thompson (2008), may not necessarily lead to economic gains. This possible disparity between 

statistical and economic performances can be ascribed to the fact that large forecast errors are penalized more 

substantially by convex loss functions in statistical measures such as the MSFE relative to economic loss 

functions. Therefore, measures evaluating the economic value of forecasts complement the statistical gauges 

shown in the previous subsection.    

Specifically, we consider the optimal portfolio decision for a mean-variance investor who allocates funds 

between equities and risk-free bills. At the end of each period t, the investor allocates an optimal share 𝑤𝑡  of 

funds to equities for the subsequent period according to the following rule: 

𝑤𝑡 =
1

𝛾

𝑦̂𝑡+1

𝜎̂𝑡+1
2 ,                                         (8) 

where 𝛾 is the coefficient of relative risk aversion (CRRA), 𝑦̂𝑡+1 is the one-step ahead point forecast of the 

equity premium, and 𝜎̂𝑡+1
2  is the estimated variance of the equity premium. Following Rapach et al. (2016), we 

estimate 𝜎̂𝑡+1
2  with a 10-year rolling window. Furthermore, we require that 𝑤𝑡  fall into the interval [-0.5, 1.5], 

which permits realistic short selling and leveraging activities as suggested in Rapach et al. (2016).  

The investor who optimally allocates funds according to Eq.(8) then realizes an average certainty equivalent 

return (CER) of 

𝐶𝐸𝑅 = 𝑅̅𝑝 −
𝛾

2
𝜎𝑝
2,                                     (9) 

where 𝑅̅𝑝 and 𝜎𝑝
2 are the sample mean and variance of the optimal portfolio returns, respectively.  

The CER can be understood as the risk-free return that a mean-variance investor with a CRRA value of 𝛾 would 

consider equivalent to investing following the risky strategy. Similarly, we compute the CER value for the 

investor if he or she uses benchmark forecasts to guide portfolio decision. We then calculate the CER gain 

(Δ𝐶𝐸𝑅) by taking difference between the two CER values. In our empirical results, we report the annualized 

CER gain in percentage, so it can be understood as the annual portfolio management fee in percentage that an 

investor would be willing to pay to access the regression model forecasts instead of the benchmark predictions. 

In addition, we utilize the Sharpe ratio (SR) to assess the economic value of equity premium forecasts. The 

Sharpe ratio is the sample mean portfolio return in excess of the risk-free rate divided by the sample standard 

deviation of the portfolio returns. Both sample statistics are estimated over the full forecast evaluation sample. In 

keeping with the certainty equivalent return, we report annualized Sharpe ratio gains (Δ𝑆𝑅) in percentage 

comparing forecasts. 

3. Empirical Results 

In this section we first describe our data and monikers used to indicate predictive models. We then present results 

evaluating and comparing forecasting performance. 

3.1 Data 

We take updated monthly data on the aggregate U.S. equity premium along with a set of 14 predictive variables 

covering the period from January 1927 to December 2017 from Amit Goyal's website. The equity premium (e.ret) 
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is constructed from the S&P 500 index including dividends minus the 3-month Treasury bill rate. The set of 

financial and economic predictive variables comprises: the dividend-price ratio (dp); the dividend-yield (dy); 

earnings-price ratio (ep); dividend-payout ratio (de); the stock market variance (svar); book-to-market ratio (bm); 

net equity expansion (ntis); Treasury bill rate (tbl); long-term yield (lty); long-term return (ltr); term spread (tms); 

default yield spread (dfy); default return spread (dfr); inflation (infl). For brevity, we refer the interested readers 

to Welch and Goyal (2008) for details regarding the identity and construction of all variables. 

We reserve the first 40 years of data as the initial training sample to estimate model parameters. All 

out-of-sample forecasts are made for January 1967 - December 2017 with the recursive estimation window, that 

is, at each forecast origin, one more recently available observation is included with historical data to update 

model parameter estimates before making predictions. Our empirical results remain qualitatively the same under 

the rolling estimation window, thus, for brevity, we do not report rolling window results here. We refer interested 

readers to Clark and McCracken (2013) for details regarding the out-of-sample framework. 

3.2 Model Identities 

 

Figure 1. Out-of-Sample equity premium forecasts 

Note. This figure presents the monthly equity premium forecasts for various predictive models, as well as the benchmark forecasts and the 

realized equity premium over 1967-2017. 

 

The identities of all models and methods under consideration in this section are: SS2, the combined forecasts via 

equal weights from smoothing splines with two effective degrees of freedom; SS3, the combined forecasts via 

equal weights from smoothing splines with three effective degrees of freedom; SS2.CTF, the restricted combined 

forecasts via equal weights from smoothing splines with two effective degrees of freedom; SS3.CTF, the 

restricted combined forecasts via equal weights from smoothing splines with three effective degrees of freedom; 

RSZ, the combined forecasts via equal weights from baseline regression models estimated by OLS; RSZ.CTF, 

the restricted combined forecasts via equal weights from baseline regression models estimated by OLS; 

DMSFE100, the combined forecasts under weights assigned according to the past discounted mean squared 

forecast error with a discount factor of 100%; DMSFE90, the combined forecasts under weights assigned 
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according to the past discounted mean squared forecast error with a discount factor of 90%; SHRINKAGE100, 

the combined forecasts under weights assigned according to the shrinkage estimator of Stock and Watson (2004) 

with a shrinkage parameter of 100%; SHRINKAGE50, the combined forecasts under weights assigned according 

to the shrinkage estimator of Stock and Watson (2004) with a shrinkage parameter of 50%; MA, the combined 

forecasts from the moving average technical indicator according to configurations considered in Neely et al. 

(2014); MOM, the combined forecasts from the momentum technical indicator according to configurations 

considered in Neely et al. (2014); MAMOM, the combined forecasts from all moving average and momentum 

technical indicators according to configurations considered in Neely et al. (2014); SOP, forecasts according to 

the baseline SOP method proposed in Ferreira and Santa-Clara (2011); PB, the previous best forecasts according 

to Timmermann (2008); ACOMBO, the adaptive combination approach proposed in Timmermann (2008); BG, 

the Bates-Granger combination described in Elliott and Timmermann (2016); and LASSO, the lasso forecasts 

considered in Li and Tsiakas (2017). 

3.3 Statistical Forecasting Performance 

We begin by providing a matrix plot of forecasts over 1967-2017 for all models in Figure 1. The title of each 

panel in Figure 1 shows the name of the method or model employed to generate the equity premium predictions, 

with the exception of the two panels in the lower-right corner, which are reserved for forecasts from the random 

walk benchmark and the realized equity premium, respectively. Figure 1 shows that models such as SS2, SS3 

and RSZ tend to generate stable and smooth forecasts similar to the benchmark while methods such as SOP and 

BG are prone to produce volatile predictions.  

 

Table 1. Statistical performance 

 𝑅𝑂𝑂𝑆
2  MSFE-t p-value 

SS2 2.776 4.533 0.000 

SS3 3.062 4.194 0.000 

SS2.CTF 1.359 4.095 0.000 

SS3.CTF 1.393 4.026 0.000 

RSZ 1.010 2.613 0.004 

RSZ.CTF 0.532 1.640 0.050 

DMSFE100 0.442 1.157 0.124 

DMSFE90 0.462 1.124 0.131 

SHRINKAGE100 -10.481 -0.834 0.798 

SHRINKAGE50 -10.884 -0.833 0.798 

MA -0.217 -0.421 0.663 

MOM -0.249 -0.379 0.648 

MAMOM -0.214 -0.430 0.667 

SOP -5.114 -0.661 0.746 

PB -7.997 -0.385 0.650 

ACOMBO 2.751 4.926 0.000 

BG -23.196 -3.678 0.999 

LASSO -0.634 -0.646 0.741 

Note. This table reports the 𝑅𝑂𝑂𝑆
2  values in percentage evaluating statistical performance. A positive 𝑅𝑂𝑂𝑆

2  value indicates better 

performance than the random walk benchmark. Higher 𝑅𝑂𝑂𝑆
2  value indicates better forecasting performance. The statistical significance of 

𝑅𝑂𝑂𝑆
2  is assessed via the MSFE-t statistic, with the associated p-values shown in the last column. 

 

Regarding the average forecasting performance over the entire evaluation sample, Table 1 reports the 𝑅𝑂𝑂𝑆
2  

values in percentage assessing forecasts from various methods against those from the random walk benchmark. 

The first column in Table 1 shows the name of all predictive models. The second column reports the 

out-of-sample 𝑅𝑂𝑂𝑆
2  of Campbell and Thompson (2008), which measures the percentage reduction in the mean 

squared forecast error relative to the benchmark, with positive values indicating better performance than the 

historical mean benchmark. The higher the 𝑅𝑂𝑂𝑆
2  value, the more the predictive gains would be. The statistical 

significance of the 𝑅𝑂𝑂𝑆
2  is assessed via the MSFE-t statistic of Clark and West (2007), whose values are shown 

in the third column with the associated p values reported in the fourth column. 

We make several observations from Table 1. First, the combined forecasts from smoothing splines clearly 

dominate other methods in terms of statistical gains, with the SS3 model reporting the largest significant 𝑅𝑂𝑂𝑆
2  
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value of 3.062%. Second, imposing the restrictions proposed in Campbell and Thompson (2008) on smoothing 

splines does not improve predictive performance. Third, the adaptive combination, ACOMBO, performs the best 

among the remaining models with a significant 𝑅𝑂𝑂𝑆
2  value of 2.751%, confirming the results shown in 

Timmermann (2008). Fourth, the simple unrestricted forecast combination, RSZ, indeed restores the predictive 

power of many predictors examined in Welch and Goyal (2008) by reporting a significant but modest 𝑅𝑂𝑂𝑆
2  

value of 1.010%, confirming the primary message conveyed in Rapach et al. (2010). Fifth, the DMSFE 

combinations report modest but statistically insignificant predictive gains, explaining in part why they are not 

widely adopted in the forecasting stock returns literature unlike in macroeconomic forecasting. Finally, technical 

indicators, least squares combination and shrinkage estimators do not work well in this exercise, as they largely 

report negative predictive gains.  

 

Figure 2. Cumulative differences of squared forecast errors 

Note. This figure presents the time series plots of cumulative differences of squared forecast errors between the random walk benchmark and 

various predictive models over 1967-2017. 

 

Despite being widely adopted for forecast evaluation, the 𝑅𝑂𝑂𝑆
2  is merely a point estimate of the average relative 

forecasting performance over the full sample. To gain a dynamic perspective on how each model fares at a 

particular time window during the evaluation sample, following the empirical device proposed in Welch and 

Goyal (2008), we plot the time series of the cumulative differences of the squared forecast error between the 

benchmark and alternative predictive models (CDSFE) in Figure 2. A positive slope of the CDSFE curve 

indicates predictive gains for the model under examination against the random walk benchmark, while a negative 

slope suggests otherwise. Models such as SS2, SS3 and ACOMBO have CDSFE curves being positively sloped 

almost everywhere throughout the out-of-sample, implying robust and consistent gains against the benchmark. In 

contrast, the simple forecast combination, RSZ, has an upward-sloping CDSFE curve until the late 1990s, then it 

remains largely flat thereafter, suggesting that most predictive gains of the RSZ model arise from the early half 

of the out-of-sample. 

In sum, we see that the forecast combinations from smoothing splines can uncover the predictive content 

embedded in many financial and economic variables for the market equity premium, further improving upon 

methods such as adaptive and simple combinations which have been shown effective in the related literature. 
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3.4 Regime-Dependent Evaluation 

Given the elusive nature and unstable performance of many predictors illustrated in Timmermann (2008), in this 

subsection, we are interested in investigating how our models perform under different market conditions, 

highlighting the importance of regime-dependent evaluation for the equity risk premium advocated in Baltas and 

Karyampas (2018). Specifically, we consider six regimes: economic expansions and recessions defined by the 

National Bureau of Economic Research (NBER); bullish and bearish market sentiments according to the signs of 

the realized equity premium; high- and low-volatility regimes separated by above or below the sample average 

of the stock market variance. Table 2 reports regime-dependent forecast evaluation results. In Table 2, the first 

column shows the names of all predictive models, while the second through the seventh columns report the 𝑅𝑂𝑂𝑆
2  

value in percentage across models under various market regimes. Asterisks, ***, ** and *, indicate statistical 

significance of the 𝑅𝑂𝑂𝑆
2  at nominal levels of 1%, 5% and 10%, respectively. 

 

Table 2. Regime-dependent evaluation 

 Expansion Recession Bull Bear High Low 

SS2 2.017*** 4.592*** -0.924 5.538*** 2.055** 3.693*** 

SS3 2.457*** 4.512*** -1.618 6.555*** 2.602** 3.648*** 

SS2.CTF 1.186*** 1.774*** 2.718*** 0.345 0.260 2.757*** 

SS3.CTF 1.252*** 1.729*** 2.811*** 0.333 0.310 2.769*** 

RSZ 0.176 3.008*** -5.878 6.152*** 1.774*** 0.039 

RSZ.CTF 0.410* 0.825 6.930*** -4.243 -0.487 1.829*** 

DMSFE100 -0.350 2.339 -9.285 7.703*** 0.804 -0.019 

DMSFE90 -0.420 2.575 -9.701 8.048*** 0.877 -0.066 

SHRINKAGE100 -5.726 -21.872 -4.240 -15.139 -16.327 -3.042 

SHRINKAGE50 -6.602 -22.436 -4.302 -15.797 -16.871 -3.266 

MA -0.676 0.884** -3.422 2.176*** 0.514* -1.146 

MOM -0.740 0.927** -3.644 2.285*** 0.704** -1.462 

MAMOM -0.682 0.907** -3.480 2.225*** 0.587** -1.233 

SOP -4.740 -6.001 3.002*** -11.167 -3.221 -7.516 

PB -13.760 5.810** -26.489 5.806*** -0.051 -18.108 

ACOMBO 2.063*** 4.400*** 0.909** 4.126*** 2.066*** 3.622*** 

BG -4.067 1.868*** -12.497 5.277*** 2.035*** -6.039 

LASSO -0.963 0.154 -6.723 3.911*** -0.043 -1.385 

Note. This table reports the 𝑅𝑂𝑂𝑆
2  values in percentage evaluating statistical performance under different market regimes. A positive 𝑅𝑂𝑂𝑆

2  

value indicates better performance than the random walk benchmark. Higher 𝑅𝑂𝑂𝑆
2  value indicates better forecasting performance. The 

superscripts ***, ** and * denote statistical significance at levels of 1%, 5% and 10%, respectively. 

 

A thorough examination of Table 2 reveals several interesting patterns. First, the unrestricted smoothing splines 

forecast particularly well during down markets, such as recessions. This observation closely aligns with those 

made in studies such as Rapach et al. (2010) and Rapach et al. (2016) that the predictability of stock returns are 

more evident during recessions. Second, smoothing splines deliver more predictive gains when the market is in a 

low-volatility regime, so does the adaptive combination of Timmermann (2008). Other models, except for the 

restricted simple combination, do not work well in low-volatility regimes. Finally, the technical indicators appear 

to work well only in down markets. For example, all technical indicator models report significant gains against 

the random walk benchmark in recessions and bearish markets. However, they do not improve upon the 

benchmark in expansions or when the market sentiment is bullish.   

To summarize, our regime-dependent evaluation broadly supports the conclusion made in the previous 

subsection: the smoothing splines used in conjunction with forecast combination consistently lead many 

predictive models which have been shown effective in empirical finance when forecasting the equity premium 

out-of-sample. 

3.4 Economic Value of Forecasts 

In the equity premium prediction literature, the statistical performance of predictive models may not be closely 

aligned with the economic value delivered to investors who use them to guide portfolio investment decisions. 

This possible disparity between two measures can be attributed to the fact that the economic value of forecasts 
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are typically evaluated by a loss function drastically different from the quadratic loss often used in statistical 

evaluation. Against this backdrop, in this subsection we are interested in investigating the economic value of the 

smoothing spline forecasts delivered to investors who use them to make optimal portfolio decisions. 

 

Table 3. Economic value of equity premium forecasts 

 No Transaction Cost 50 bps Transaction Cost 

 Δ𝐶𝐸𝑅 ΔSR Δ𝐶𝐸𝑅 ΔSR 

SS2 2.808 1.102 1.103 0.363 

SS3 3.228 1.285 1.334 0.452 

SS2.CTF 1.437 0.485 0.152 0.040 

SS3.CTF 1.536 0.515 0.190 0.053 

RSZ 0.395 0.404 0.229 -0.002 

RSZ.CTF 0.761 0.194 -0.442 -0.089 

DMSFE100 0.006 0.166 -0.097 -0.047 

DMSFE90 0.077 0.194 0.031 -0.032 

SHRINKAGE100 2.052 0.462 0.519 0.229 

SHRINKAGE50 2.060 0.463 0.519 0.230 

MA -0.580 -0.111 -0.469 -0.270 

MOM -0.513 -0.075 -0.449 -0.270 

MAMOM -0.549 -0.094 -0.458 -0.270 

SOP -0.463 0.035 -2.704 -0.159 

PB -0.422 0.017 -2.968 -0.183 

ACOMBO 2.938 1.079 1.070 0.347 

BG -0.942 -0.296 -1.653 -0.548 

LASSO -1.088 -0.309 -0.579 -0.337 

Note. This table reports the annualized CER and SR gains in percentage evaluating economic performance of the equity premium forecasts 

from various models. The second and third columns show results without taking into transaction costs, while the last two columns report 

results assuming a 50 bps transaction cost when re-balancing portfolios in each period. 

 

Following studies such as Rapach et al. (2016), we measure economic value via the annualized certainty 

equivalent return (CER) and Sharp ratio (SR) gains in percentage over the prevailing mean benchmark, with a 

coefficient of relative risk-aversion (CRRA) value of three. Table 3 reports results assessing economic 

performance. In Table 3, the first column shows the names of all models under consideration. The second and 

third columns report annualized CER and SR gains in percentage without taking into account transaction costs 

when re-balancing the optimal portfolio. The last two columns report annualized CER and SR gains in 

percentage assuming a transaction cost of 50 bps following the suggestion in Rapach et al. (2016). Overall, the 

patterns revealed in Table 3 largely support our conclusion drawn from statistical evaluation that the smoothing 

spline forecasts outperform competing methods in consistently delivering economic gains to investors. To 

illustrate, without considering transaction costs, the SS3 model delivers a CER gain of 3.228%, indicating that 

the investor is willing to pay 3.228% more in annual portfolio management fees to gain access to the SS3 

forecasts relative to the random walk benchmark predictions. 

In addition to evaluating economic performance via the CER and SR gains, to compare economic value from a 

dynamic perspective, we plot in Figure 3 the log cumulative wealth for a number of portfolios named by the 

predictive models used when constructing the equity premium forecasts. Without loss of generality, we assume 

that the investor starts with $1 and reinvests all proceeds from January 1967 to December 2017. To facilitate 

comparison and highlight results, we exclusively use solid lines to mark the two unrestricted smoothing spline 

portfolios, while the rest is denoted in various colored-dashed lines. Figure 3 clearly demonstrates that the 

smoothing spline forecasts can deliver sizable economic gains to investors who use them to make optimal 

portfolio decisions, as the two smoothing spline portfolios discernibly lead the rest in generating cumulative 

wealth. 
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Figure 3. Log cumulative portfolio wealth growth 

Note. This figure delineates the log cumulative wealth growth for a mean-variance investor with relative risk coefficient of three, assuming 

that he or she starts with $1 and reinvests all proceeds over 1967-2017. 

 

3.5 Discussion 

With a comprehensive dataset, Welch and Goyal (2008) show that many aggregate financial and economic 

predictors fail to beat the simple random walk benchmark in terms of generating superior equity premium 

forecasts on a consistent basis. However, the primary conclusion drawn in Welch and Goyal (2008) is based on 

simple bivariate linear regressions estimated via the ordinary least squares, with various econometric issues 

associated with data features being overlooked in the estimation process. For example, by using a novel 

structural break test via nonparametric regression, Chen and Hong (2012) show that most predictive regressions 

considered in Welch and Goyal (2008) are subject to some form of structural break. As a result, the estimation 

methodology of ordinary least squares may not prove effective addressing the issue of parameter instability. 

Against this backdrop, in this paper we demonstrate that the nonlinear method of smoothing splines proves 

capable of taking into account parameter instability while maintaining simplicity in model structure and 

interpretation. Our empirical results show that smoothing splines can uncover the valuable predictive content for 

the equity premium embedded in many financial and economic variables, leading to superior predictive gains 

relative to the random walk benchmark and the simple linear forecast combination.  

In addition to investigating the econometric issues related to the weak forecasting performance documented in 

Welch and Goyal (2008), recent developments in the literature of forecasting stock returns include searching for 

new predictive variables which may possess genuine predictive content for the aggregate excess returns. To 

illustrate, Rapach et al. (2016) argue that the short interest rate is a powerful predictor for the equity premium. 

Jiang et al. (2019) build a new composite index measuring market sentiment, the manager sentiment index, and 

show that it contains genuine predictive content for the market equity premium beyond those embedded in 

typical sentiment indexes in behavior finance. Ma et al. (2019) propose a new predictor, MADP, a 

moving-average momentum strategy based on daily prices, and show that it outperforms the historical mean 

benchmark as well as various standard moving-average momentum strategies based on monthly prices.   

4. Conclusion 

While accurate forecasts of the market equity premium are vitally important in empirical finance, the 

predictability of the equity premium is subject to contentious debate in the academic literature. Welch and Goyal 
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(2008) show that many financial and economic variables with previously documented in-sample evidence of 

predictability fail to forecast the equity premium out-of-sample. As a result, in the last decade various new 

predictors and models are proposed to support the out-of-sample predictability of stock returns, challenging the 

primary conclusion drawn in Welch and Goyal (2008). Despite the abundance of new variables and models, an 

important econometric issue has been overlooked in this strand of literature: does nonlinearity matter in the 

predictive model? 

In this paper we propose using the smoothing splines to estimate the baseline univariate predictive models 

originally considered in Welch and Goyal (2008), then averaging forecasts from these models to form a 

combined forecast for the equity premium. We show that the smoothing splines can overcome the three major 

difficulties outlined in White (2006) when forecasting with nonlinear methods: computational cost, overfitting 

and ease of interpretation. The smoothing splines are flexible enough to capture the possible nonlinear 

relationship between the equity premium and predictors, while controlling for overfitting. Moreover, they can be 

used in conjunction with forecast combinations to better manage the model selection risk. In our empirical 

exercises forecasting the U.S. market equity premium, we show that the combined smoothing spline forecasts 

outperform many models, such as simple and adaptive combinations, shrinkage methods and technical indicators, 

in delivering statistical and economic gains on a consistent basis. 
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