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Abstract 

The chain ladder method is the most widely used method of estimating claims reserves due to its simplicity and 

ease of application. It is very important to know the accuracy of the resulting estimates. Murphy presented a 

recursive model to estimate the standard error of claims reserves estimates, in line with the solvency ii 

requirements as a new regulatory framework adjusted according to risk, which requires the necessity to estimate 

the error and uncertainty of the claims reserving estimates. In Murphy's model, the mean square error (MSE) is 

analyzed into its components: variance and bias. In this paper, the recursive model of Murphy was used to 

estimate the prediction error in claims reserves estimates of General Accident & Miscellaneous Insurance in one 

of the Egyptian insurance companies. 

Keywords: chain ladder, Mack, Murphy model, mean square error, parameter risk, process risk, recursive 

calculation.  

1. Introduction 

The aim of insurance supervision is to protect the legitimate interests of policyholders and other beneficiaries, in 

the context of encouraging an honest and competitive financial market. To achieve this goal, the supervisor needs 

a large degree of understanding and familiarity with the risks associated with insurance and the management of 

the insurance business (Majmudar, 2011).  

Because accidents of claims that include the number and values of claims are usually random, it is important to 

estimate claims reserves accurately and carefully, as underestimation may lead to the company’s need for more 

reserves, which in turn may lead to an inflation of profits and reduction in the reliability of the company in 

addition to problems that may occur in the financial solvency, and in the worst - case scenario may lead to 

insolvency of the insurance company. Furthermore, overestimation may lead to allocating and reserving excess 

and ineffective capital and charging the company a higher total capital cost rather than using it for its proper 

purposes (Pinheiro et al., 2003; Mann, 2011). 

Estimating claims reserves is considered one of the basic actuarial tasks in the insurance industry, because it 

provides us with certainty about whether the insurance company has or hasn’t been sufficient solvency and 

liquidity, and also gives us indications about the company's ability/inability to pay off debts at any time in the 

future. Due to the importance of these estimates and the variance in unpaid liabilities, several methods and 

models have been developed to arrive at correct estimates (Tee et al., 2017). 

Claims Reserves can be defined as an amount of money set aside to meet future payments associated with 

claims incurred but not yet settled at the time of a given date (Hayne, 2017). 

Usually, reserves can be classified into two parts depending on the stage of settlement of the claim that has 

reached: 

 Claims reserves required for claims reported but not yet closed. These reserves are known as reported but not 

settled reserves. 

 Claims reserves required in relation to claims that have been incurred but not reported, referred to as Incurred 

but Not Reported (IBNR) (Ochola, 2009). 

Total unpaid claims represent the unknown random variable, while cumulative incurred claims represent the 
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known constant value. The sum of both the estimated total expected unpaid claims and the cumulative incurred 

claims is equal to the ultimate claims that are vital to the company's balance sheet and management decision. 

One of the most important aspects of an insurance company is estimating the ultimate claims. (Mann, 2011; 

Ochola, 2009). 

2. Methods and Models Used in Estimating Claims Reserves 

The methods and models used in estimating claims reserves can be divided into two types: Deterministic 

methods and stochastic models (Mann, 2011). 

2.1 Deterministic Methods - Actuarial Best Estimate (ABE) 

Deterministic methods are also known as traditional methods, basic methods, actuarial methods, non-stochastic 

methods. These methods are characterized by the following: 

• Its use of claims data from the past experience period. 

• Its estimation of claims reserves using well-known common sense methods such as using simple averages and 

algebraic formulas. 

• Establishing assumptions about the expected value of future claims. 

• The ability to make quick adjustments to the data used therein, such as the change that may occur in the claims 

settlement rate. 

• Establishing a one-point estimate (one value) of future claims that will be paid (Straub & Grubbs, 1998). 

The point estimate of claims reserves mean the average or central value of claims reserves. The increased 

demand for more insight into the extent of variability in claims and their volatility has led to the development of 

stochastic models for estimating this reserve (Ogutu, 2011). 

Among the advantages of deterministic methods is that they produce or give us one answer, i.e. the best actuarial 

estimate which is easy to understand and through which we can easily communicate with management (IOA & 

FIAA, 2016). 

However, it may be better to consider stochastic models rather than deterministic methods for the following 

reasons (Charles & Westphal, 2006): 

• Deterministic methods only give a point estimate of claims liabilities. 

• The Best Estimate is usually chosen based on the actuary's personal judgment. 

• Deterministic methods do not assess the expected difference between estimates of expected claims and actual 

future payments (claims). Unlike stochastic models, it is concerned with the extent of change in unpaid claims. 

• A major weakness of the deterministic methods is that they provide little understanding of the level of 

uncertainty associated with the actuarial best estimate. Therefore, a stochastic model is needed. 

2.2 Stochastic Models 

Based on past data, an estimate of expected unpaid claims is obtained. However, in the event of poor data quality, 

or even the occasional lack of data, unexpectedly large claims being paid, or changes in the inflation regime and 

even legal or political factors, the uncertainty of the actuarial best estimate can be very high (Björkwall, 2011). 

Obviously, there is a risk that the claims reserve will not be sufficient for ultimately pay all claims, resulting in a 

negative outcome to the claims development triangle. In order to monitor and manage this risk, it is important 

that the actuarial best estimate is supplemented with some measures of variance that the insurance company can 

follow (Björkwall, 2011). 

Hence, it can be said that stochastic claims reserving models aim to provide measures of location (Best Estimates) 

and measures of precision (measures of variability), by treating the reserves estimation process as data analysis 

and construct a model for estimating reserves according to a statistical framework. Stochastic models also permit 

the use of computer power and statistical methodology (England & Verrall, 2002). 

The actuary must be aware of a very important fact, which is that the use of stochastic models to estimate claims 

reserves do not provide solutions when deterministic methods fail. Rather, it determines the uncertainty in 

deterministic methods of estimating reserves. Also, if a substantial level of the personal judgment of the actuary 

is required, it is unlikely that stochastic models will be appropriate in this situation (Wüthrich & Merz, 2008; 

England & Verrall, 2002). 
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2.3 Sources of Uncertainty in Prediction 

They are also known as the sources or elements of risk, sources of error, or sources of variance in an estimate. 

Claims reserves are estimates of total future payments that are required to settle claims for accidents that have 

actually occurred (Panning, 2006). 

Actual future payments may deviate or differ from the expected estimated values for several reasons, each of 

which reflects a different risk, or in other words, sources of error in claims reserves estimates come from three 

types of risks: process risk, parameter risk, and model risk. The actuarial analysis of risk and uncertainty is based 

on these three categories (Gutterman, 2017; Panning, 2006). 

2.3.1 Process Risk 

The Process risk is also known as Process Error, Process Uncertainty, or Process Variance. It is sometimes 

referred to a statistical risk or statistical error or stochastic error. It is also known as the Process Standard Error 

(Ashe, 1986; Gutterman, 2017). 

It can be defined as the risk of unavoidable random fluctuations occurring in any random process, and this risk 

occurs even if the actuary chooses a completely accurate model, and the distribution parameters are accurately 

estimated in this model (Gutterman, 2017). 

Dealing with this source of error (process risk) is rather easy, as it is the most traceable and therefore, the most 

common error when calculating such things (Ashe, 1986). For example, the process of claims payments 

settlement involves some degree of uncertainty. The actual paid value is a complex result of many factors, such 

as uncertain outcomes, cost of diagnosis and treatment, court procedures and settlement negotiations. None of 

these factors can be easily predicted (Panning, 2006). 

2.3.2 Parameter Risk  

It is also known as Parameter Error, Parameter Uncertainty, Parameter Variance, Estimation Error, Estimation 

Variance, Estimation Uncertainty, or Parameter Standard Error. 

Parameter risk arises because the information (data) related to the basic probability distribution is necessarily 

incomplete, or because the resulting distribution is inappropriate, or incorrect (Gutterman, 2017). 

Deterministic methods necessarily use past experiences to predict future patterns. However, sometimes that past 

experience can be misleading, mainly due to the short time period covered by the paid claims table, and hence 

the parameter estimates are derived from a relatively small number of observed data (Panning, 2006). 

As a result, it is very possible that past data reflect the experience of unusually appropriate or inappropriate 

claims, and this in turn affects the model parameters which should be estimated accurately (Panning, 2006). 

2.3.3 Model Risk 

Model risk is also known as model error, model uncertainty, model variance, or specification error. 

Model risk arises when the reality model used for estimation is incorrectly identified or chosen. The reason for 

the error is usually either because the important factors in the process being modeled (claims process) is not 

known, or because of the available data are limited. The model risk is very difficult to estimate (Ashe, 1986). 

3. Measures of Claims Reserves Uncertainty 

With the increase in computing power and the development of statistical theories, the amount of work being 

done on the statistical nature of the errors has to be involved in the estimation (Ashe, 1986). 

The natural step after the first moment of the value of claims reserves (i.e. the mean) is the second moment (i.e. 

the variance), which has received the most attention. The most widely used measure of prediction error is the 

mean squared error of prediction (MSEP) which is also used as an accuracy measure of reserve estimates in most 

literature (Ashe, 1986). 

The mean squared error of prediction is known as prediction error for short, it is also called prediction risk, 

prediction variance, and prediction uncertainty. MSEP can be divided into two components (IOA & FIAA, 

2016): 

 Parameter risk; 

 Process risk. 

The MSEP computation certainly provides important information about the performance of the reserve estimates 

(Tee et al., 2017). 
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The sum of the process risk and the parameter risk is called the measure of variance, the extent of change in 

prediction, or the standard error, which is calculated by taking the square root of the mean squared error of 

prediction (RMSEP) where:  

Prediction variance = process variance + estimation variance 

When trying to estimate the Prediction error of future payments and reserve estimates using stochastic models, 

the problem is reduced to estimating two components: process variance and parameter variance (Ogutu, 2011). 

Coefficient of Variation (CoV) is also used frequently to express the uncertainty in a reserve. It can be defined as 

the standard deviation or standard error measure divided by the central estimate. Where in the case of reserves, 

the numerator is RMSEP, and the denominator is either ultimate claims reserves or outstanding claims reserves 

(IOA & FIAA, 2016). 

4. Murphy's Model for Estimating Risk in Claims Reserves 

Several methods and models for estimating claims reserves have evolved as deterministic. However, predicting 

outstanding claims is not sufficient, but it is also necessary to estimate the uncertainty in these estimates. To 

determine the amount and uncertainty of claims reserves, the actuary has to model the stochastic nature of the 

claims process (Saluz, 2014).  

Besides, in recent years, especially under the new solvency regulations, there has been great interest in the 

adverse development of claims reserves,  

And the estimation of potential losses that may occur in the future in the best estimate of these reserves 

(Wüthrich & Merz, 2008). Such problems require stochastic models to: 

 Justify and endorse the methods of estimating claims reserves; 

 Determine the uncertainty in these methods. 

Thomas Mack has derived formulas for reserve risk according to the chain ladder method, where development 

factors are based on a weighted average for all years. He also provided a formula for total risk (standard error) 

(Mack, 1993).  

The reserve risk is measured according to the Mack method by the mean square error, whereas according to the 

Murphy method it is measured by the total variance (Murphy, 2007). As for the mean square error, it can be 

analyzed into three components:  

 Process risk; 

 Parameter risk; 

 Bias. 

4.1 Murphy’s Model Assumptions  

Murphy's model is based on the same assumptions as Mack's model (Mack, 1993; Murphy, 2007). The Mack's 

model relies on three main assumptions, and it appears from these assumptions that they depend on the 

deterministic chain ladder method, and these assumptions are as follows:  

 The Expectation of the claims in the accident year i and the development year 𝑘 +  1 with knowledge of 

claims: 𝐶𝑖,1 … … . ., 𝐶𝑖,𝑘 is as follows: 

 𝐸(𝐶𝑖,𝑘:1|𝐶𝑖,1, … … . 𝐶𝑖,𝑘)   =  𝐶𝑖,𝑘  .  𝑓𝑘 , 1 ≤ 𝑖 ≤ 𝐼   , 1 ≤ 𝑘 ≤ 𝐼 − 1               (1) 

Where: 

𝐶𝑖,𝑘 The cumulative total paid claims amount of accident year i and development year k, and we have the 

observed value of the paid claims in the case of: 𝑖 + 𝑘 ≤ 𝐼 + 1 

I The last observed accident year, the ultimate development year  

𝑓𝑘 Cumulative paid claims development factors, which are estimated by the estimator 𝑓𝑘  

 The independence of 𝐶𝑖,𝑘  for the different accident years, because the steps of calculating the chain ladder 

method do not take into account any dependencies between the different accident years, and this means that: 

{𝐶𝑖,1, … … , 𝐶𝑖,𝐼}, {𝐶𝑠,1  , … . . , 𝐶𝑠,𝐼} 𝑖 ≠ 𝑠 are independent. This previous assumption must be considered as 

another implicit assumption of the chain ladder method.  

 Claims Variance Assumption: 

It is known that 𝑓𝑘 is the weighted average of the paid claims in accident year i and development year k of the 
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individual development factors  𝐶𝑖,𝑘:1 𝐶𝑖,𝑘⁄ ，1 ≤ 𝑖 ≤ 𝐼 − 𝑘，  it can be concluded that: 

𝑉𝑎𝑟 (𝑓𝑘) =  𝑉𝑎𝑟 (𝐶𝑖,𝑘:1) 𝐶𝑖,𝑘⁄  ∣ 𝐶𝑖,1 , … . , 𝐶𝑖,𝑘. It must be inversely proportional to, 𝐶𝑖,𝑘, i.e.: 

𝑉𝑎𝑟 (𝐶𝑖,𝑘+1| Ci,1,…..,Ci,k )

 𝐶𝑖,𝑘
 = σ2

k  

Var (𝐶𝑖,𝑘:1|𝐶𝑖,1, … . . , 𝐶𝑖,𝑘 ) =  𝐶𝑖,𝑘  𝜎
2

𝑘 ,   1 ≤ 𝑖 ≤ 𝐼  , 1 ≤ 𝑘 ≤ 𝐼 − 1            (2) 

Where: 

σ2
k Unknown claims variance parameters, which are estimated by the estimator �̂�𝑘 

2  (variance estimator)  

On the other hand, it is known that the chain ladder estimates of the most-recent accident years are very sensitive 

to changes in the observed data (values of paid claims according to the accident year and the development year). 

Hence, it will be very important to know the standard error for the estimates of the chain ladder, to take it as a 

measure of the uncertainty contained in the data, and to know whether the difference between the results of the 

chain ladder method, and any other method is significant or not. 

4.2 The Theoretical Framework of Murphy's Model 

Mack has derived the closed–form formula to estimate the mean square error for the estimated ultimate claims 

reserves using the chain ladder method and from which he arrived at an estimate of the total standard error of 

claims reserves (Mack, 1993). According to the Murphy model, there is a formula for estimating the process risk 

and another formula for estimating the parameter risk (Murphy, 2007). 

4.2.1 Estimating the Development Factors 𝑓𝑘 

The development factors 𝑓𝑘 are estimated using the estimator ƒ̂𝑘 (Estimated development factors) Using the 

weighted averages of all the cumulative paid claims years as follows: 

 ƒ̂𝑘 =  
∑ 𝐶𝑗,𝑘+1

𝐼−𝑘
𝑗=1

∑ 𝐶𝑗,𝑘
𝐼−𝑘
𝑗=1

                                    (3) 

4.2.2 Estimating the Future Claims Amount  

The future claims amounts for future years (𝑘 > 𝐼 + 1 − 𝑖) are estimated as follows: 

�̂�𝑖,𝑘:1 =  𝐶𝑖,𝑘  .   ƒ̂𝑘                                  (4) 

4.2.3 Estimating the Outstanding Claims Reserve   

The outstanding claims reserve is estimated as follows:  

�̂�𝑖 =  �̂�𝑖,𝐼 −  𝐶𝑖,𝐼:1;𝑖                                 (5) 

4.2.4 Analysis of the Mean Square Error 

The mean square error for the accident year i and the ultimate development year I for the estimator �̂�, can be 

defined as the expected squared deviation of �̂� (which is a random variable) from the value of the random 

variable C which is estimated by: 

 𝑚𝑠𝑒(�̂�) = 𝐸 (�̂� − 𝐶)
2

                               (6) 

The mean square error can be decomposed into Variance and Bias as follows: 

  𝑚𝑠𝑒(�̂�) = 𝑉𝑎𝑟(𝐶) + 𝑉𝑎𝑟(�̂�) + 𝐵𝑖𝑎𝑠2(�̂�)                           (7) 

Hence the mean square error consists of the sum of the process risk, parameter risk, and the square of the bias of  

�̂�. 

According to the Murphy's model, both process risk and parameter risk will be estimated separately, the process 

risk for future claims using the same Mack notations will be calculated as follows: 

4.2.5 Process Risk Estimation 

 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑅𝑖𝑠𝑘̂
𝑖,𝑘 = {

ƒ̂𝑘;1
2  𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑅𝑖𝑠𝑘𝑖,𝑘;1

̂ + �̂�𝑖,𝑘;1  �̂�𝑘;1
2      𝑓𝑜𝑟        𝑘 > 𝐼 + 2 − 𝑖        

𝐶𝑖,𝐼:1;𝑖   �̂�𝑘;1 
2                                             𝑓𝑜𝑟       𝑘 = 𝐼 + 2 − 𝑖 

       (8) 

From the previous equation, it becomes clear that we need an estimator for  �̂�𝑘 
2  which is calculated with the 

same Mack formula as follows: 

                          �̂�𝑘 
2 =  

1

𝐼;𝑘;1
 ∑ 𝐶𝑖,𝑘

𝐼;𝑘
𝑖<1 (

𝐶𝑖,𝑘+1

𝐶𝑖,𝑘
− ƒ̂𝑘)

2

, 1 ≤ 𝑘 ≤ 𝐼 − 2                (9) 

Which is an unbiased estimator for σ2
k. 

Since the previous equation is used in the case of: 1 ≤ 𝑘 ≤ 𝐼 − 2, then the estimator for 𝜎𝐼;1  
2  is still required. 

This is calculated with the same Mack formula as follows: 
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   𝜎𝐼;1  
2 = 𝑚𝑖𝑛 (�̂�𝐼;2

4 �̂�𝐼;3
2⁄ ) , 𝑚𝑖𝑛 (�̂�𝐼;3

2  , �̂�𝐼;2
2 )                    (10) 

The recursive method of Murphy is evident through equation (8) for calculating the process risk, in which the 

process risk is calculated for each accident year i and the development year k through the data of the year 

immediately preceding it, i.e. by using the accident year i and the previous development year k-1, the calculation 

is done at the row level, meaning that the accident year i is fixed and reliant on the immediately preceding 

development year for each development year (Murphy, 2007). 

4.2.6 Parameter Risk Estimation 

The closed-form estimator (equation) of parameter risk according to Mack's model can be seen as follows:  

   𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟  𝑅𝑖𝑠𝑘̂
𝑖,𝑘 =  �̂�𝑖,𝑘

2  ∑
�̂�𝑗

2

ƒ̂𝑗
2

𝑘;1
𝑗<𝐼:1;𝑖   

1

∑ 𝐶𝑟,𝑗
𝐼−𝑗
𝑟=1

                    (11) 

According to the recursive Murphy model, equation (11) can be reformulated in a recursive manner by 

estimating the parameter risk for the development year k depending on the development year immediately 

preceding it, which is the development year k-1. By substituting each k with k-1 and each j with k-1 in equation 

(11), and also each Ĉi,k
2  with ƒ̂k;1

2  Ĉi,k;1
2  (where; Ĉi,k

2  is a product, ƒ̂k;1
2  Ĉi,k;1

2 ), the parameter risk estimator 

according to Murphy can be calculated as follows (Murphy, 2007): 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟  𝑅𝑖𝑠𝑘̂
𝑖,𝑘 = 

ƒ̂𝑘;1
2  �̂�𝑖,𝑘;1

2  [∑
�̂�𝑗

2

ƒ̂𝑗
2

𝑘;2
𝑗<𝐼:1;𝑖   

1

∑ 𝐶𝑟,𝑗
𝐼−𝑗
𝑟=1

+  
�̂�𝑘−1

2

ƒ̂𝑘−1
2  

1

∑ 𝐶𝑟,𝑘−1
𝐼−𝑘−1
𝑟=1

 ]                    (12) 

 =  ƒ̂𝑘;1
2  �̂�𝑖,𝑘;1

2  ∑
�̂�𝑗

2

ƒ̂𝑗
2

𝑘;2
𝑗<𝐼:1;𝑖  

1

∑ 𝐶𝑟,𝑗
𝐼−𝑗
𝑟=1

+ �̂�𝑖,𝑘;1
2   

�̂�𝑘−1
2

∑ 𝐶𝑟,𝑘−1
𝐼−𝑘−1
𝑟=1

                  (13) 

  = ƒ̂𝑘;1
2   𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟  𝑅𝑖𝑠𝑘̂

𝑖,𝑘;1 + �̂�𝑖,𝑘;1  
2 𝑉𝑎�̂� (ƒ̂𝑘;1)                      (14) 

Hence the Murphy estimator of the parameter risk according to the recursive method using the same Mack 

notations is as follows:     

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑅𝑖𝑠𝑘̂
𝑖,𝑘  = {

ƒ̂𝑘;1
2   𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟  𝑅𝑖𝑠𝑘̂

𝑖,𝑘;1 :�̂�𝑖,𝑘;1  
2  𝑉𝑎�̂� (ƒ̂𝑘;1) +                                                             

                    𝑉𝑎�̂� (ƒ̂𝑘;1) 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟  𝑅𝑖𝑠𝑘̂
𝑖,𝑘;1      𝑓𝑜𝑟   𝑘 > 𝐼 + 2 − 𝑖

𝐶𝑖,𝐼:1;𝑖
2  𝑉𝑎�̂� (ƒ̂𝑘;1)                                                         𝑓𝑜𝑟   𝑘 = 𝐼 + 2 − 𝑖       

     (15) 

Where: 

𝑉𝑎�̂� (ƒ̂𝑘;1) Represents the variance of the estimated development factors, which is also denoted by σ̂ƒk−1

2  and 

estimated through the following equation: 

𝑉𝑎�̂� (ƒ̂𝑘;1) =  �̂�ƒ𝑘;1
2  =  

�̂�𝑘−1
2

∑ 𝐶𝑟,𝑘−1
𝐼−𝑘−1
𝑟=1

                          (16) 

Hence, 𝑉𝑎�̂� (ƒ̂𝑘) which is also denoted by σ̂ƒk

2 , is calculated by the following equation:  

                  𝑉𝑎�̂� (ƒ̂𝑘) =  �̂�ƒ𝑘

2 =  
�̂�𝑘

2

∑ 𝐶𝑟,𝑘
𝐼−𝑘
𝑟=1

                               (17) 

The recursive method of Murphy is evident through equation (15) for estimating the parameter risk, where this 

risk is calculated for each accident year i and development year k through the data of the year immediately 

preceding it, that is, by using the accident year i and the development year immediately preceding it k-1 by 

calculation method at the row level, that is, by fixing the accident year i and relying on the immediately 

preceding development year for each development year (Murphy, 2007). 

5. Application to Real Data 

In our numerical example, we use a real data from one of the Egyptian insurance companies for General 

Accident & Miscellaneous Insurance line for the period from 2009 (i=1) to 2018 (i=10). These data represent the 

cumulative paid claims according to the accident year i and the development year k, denoted by 𝐶𝑖𝑘 . The year 

2018 means the financial year ending on 30/06/2018. The authors chose that company to be the subject of study, 

because it is considered one of the largest insurance companies in the Egyptian insurance market, and can 

establish detailed claims and risk exposure data required by the actuary to estimate unpaid claims from their 

management information systems. Hence the following table represents the cumulative paid claims: 
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Table 1. The Cumulative Paid Claims (in EGP 1000) of one of the Egyptian insurance companies 

𝑖 𝐶𝑖,1 𝐶𝑖,2 𝐶𝑖,3 𝐶𝑖,4 𝐶𝑖,5 𝐶𝑖,6 𝐶𝑖,7 𝐶𝑖,8 𝐶𝑖,9 𝐶𝑖,10 

1 3260 24 677 36 412 40 566 40 582 40 364 43 536 43 597 43 808 44 331 

2 10 096 32 158 40 485 42 053 42 582 42 702 44 880 45 998 46 133 

3 6635 27 416 38 242 41 877 43 138 42 998 44 229 44 287 

4 5359 26 877 39 252 42 101 43 014 48 127 48 409 

5 3253 24 109 31 021 35 737 31 810 35 524 

6 28 327 45 709 55 981 57 516 61 853 

7 47 351 72 792 101 345 102 283 

8 47 522 126 588 173 384 

9 49 025 136 109 

10 43 080 

 

First, the weighted averages of the development factors in the cumulative paid claims were calculated by 

applying equation (3). The calculations of the parameter estimates ƒ̂k for 1 ≤ 𝑘 ≤ 9 are displayed in Table 2. 

 

Table 2. Weighted averages of development factors in the cumulative paid claims 

ƒ̂9 ƒ̂8 ƒ̂7 ƒ̂6 ƒ̂5 ƒ̂4 ƒ̂3 ƒ̂2 ƒ̂1 ƒ̂k 

1.012 1.004 1.009 1.039 1.043 1.012 1.057 1.357 2.57  

 

Then, the future claims amounts were calculated by applying equation (4). Table 3 shows the future claims 

amounts.  

 

Table 3. Future Claims Amounts (in EGP 1000) 

𝒊 𝑪𝒊,𝟏 𝑪𝒊,𝟐 𝑪𝒊,𝟑 𝑪𝒊,𝟒 𝑪𝒊,𝟓 𝑪𝒊,𝟔 𝑪𝒊,𝟕 𝑪𝒊,𝟖 𝑪𝒊,𝟗 𝑪𝒊,𝟏𝟎 

2009 3260 24 677 36 412 40 566 40 582 40 364 43 536 43 597 43 808 44 331 

2010 10 096 32 158 40 485 42 053 42 582 42 702 44 880 45 998 46 133 46 684 

2011 6635 27 416 38 242 41 877 43 138 42 998 44 229 44 287 44 458 44 989 

2012 5359 26 877 39 252 42 101 43 014 48 127 48 409 48 860 49 049 49 635 

2013 3253 24 109 31 021 35 737 31 810 35 524 36 924 37 268 37 412 37 859 

2014 28 327 45 709 55 981 57 516 61 853 64 494 67 035 67 661 67 922 68 733 

2015 47 351 72 792 1 0 1  3 4 5 1 0 2  2 8 3 1 0 3  5 1 5 1 0 7  9 3 5 1 1 2  1 8 8 1 1 3  2 3 4 1 1 3  6 7 1 1 1 5  0 2 8 

2016 47 522 1 2 6  5 8 8 1 7 3  3 8 4 1 8 3  1 9 6 1 8 5  4 0 1 1 9 3  3 1 9 2 0 0  9 3 6 2 0 2  8 0 9 2 0 3  59 3 2 0 6  0 2 3 

2017 49 025 1 3 6  1 0 9 1 8 4  7 0 7 1 9 5  1 5 9 1 9 7  5 0 9 2 0 5  9 4 4 2 1 4  0 5 8 2 1 6  0 5 4 2 1 6  8 8 8 2 1 9  4 7 8 

2018 43 080 1 1 0  7 8 1 1 5 0  3 3 6 1 5 8  8 4 3 1 6 0  7 5 6 1 6 7  6 2 1 1 7 4  2 2 5 1 7 5  8 5 0 1 7 6  5 2 9 1 7 8  6 3 7 

 

The reserves for each accident year can be estimated by using equation (5). Table (4) summarizes estimated 

values of reserves until 6/30/2018. 

 

Table 4. Estimates of claims reserves (in EGP 1000) 

Estimated Reserves �̂�𝒊 Cumulative Paid Claims at 6/30/2018 Estimated Ultimate Claims Accident Year (i) 

(4) = (2) - (3) (3) (2) (1) 

0 44 331 44 331 1 

551 46 133 46 684 2 

702 44 287 44 989 3 

1226 48 409 49 635 4 

2335 35 524 37 859 5 

6880 61 853 68 733 6 

12 745 102 283 115 028 7 

32 639 173 384 206 023 8 

83 369 136 109 219 478 9 

135 557 43 080 178 637 10 

Total Unpaid Claim Estimate at 6/30/2018 276 003 
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Then the variance of paid claims in accident year i and development year k is estimated by applying equation (9). 

The calculations of the parameter estimates �̂�𝑘
2 for 1 ≤ 𝑘 ≤ 9  are displayed in Table 5:  

 
Table 5. Estimates of claims variance σ̂k

2 

𝑘 = 9 𝑘 = 8 𝑘 = 7 𝑘 = 6 𝑘 = 5 𝑘 = 4 𝑘 = 3 𝑘 = 2 𝑘 = 1  

0.001 0.083 8.245 42.295 169.149 157.062 126.198 287.509 36 087.623 �̂�𝑘
2 

 

Then the variance of the estimated development factors Var̂ (ƒ̂k) is calculated by using equation (17). Table 6 

summarizes these values:  

 

Table 6. Variance of the estimated development factors 

k �̂�ƒ𝑘

2  = 𝑉𝑎�̂� (ƒ̂𝑘) 

1 0.17969418 

2 0.00075595 

3 0.00036820 

4 0.00060443 

5 0.00084101 

6 0.00024281 

7 0.00006216 

8 0.00000093 

9 0.00000002 

 

5.1 Process Risk Estimation 

The process risk is estimated by using equation (8). Process risk estimates for future claims are calculated in a 

recursive manner from left to right, provided that the variance of the sum is the sum of the variances because of 

the independence of the accident years, 𝑖 =   1 … … . .10.  

It is noticed that equation (8) is divided into two parts: the first (upper) part, that is, in the case of 𝑘 > 𝐼 + 2 − 𝑖, 
and the second (lower) part, that is, in the case of 𝑘 = 𝐼 + 2 − 𝑖. The first value of each row is calculated from 

left to right by using the second part of equation (8), where 𝑘 = 𝐼 + 2 − 𝑖 (and always starts from left to right 

when estimating the process risk in the case of k = I + 2 − i for each row), and this value represents the basis 

on which we depend to calculate the rest of the process risk values in each row of the lower part calculated from 

the table of estimated future claims development through the first part of equation (8). 

From here, the recursive method is applied to Murphy, and it is noticed that after completing the second row: i = 

2, the process risk is estimated for the third row: i = 3, starting from left to right and starting with 𝑘 =  𝐼 +  2 −
𝑖, and so on until the tenth row: i = 10, is completed. This can be also more or better explained through the 

following example:  

In the case of the second row, start with the case 𝑘 = 𝐼 + 2 − 𝑖 where, i = 2 and k = 10, then:  

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑅𝑖𝑠𝑘̂
𝑖,𝑘 =  𝐶𝑖,𝐼:1;𝑖   �̂�𝑘;1 

2  

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑅𝑖𝑠𝑘̂
2,10 =  𝐶2,9  �̂�9 

2 = 46 133 ∗ 0.001 = 46 133 = 4.61E+01 

In the case of the third row, where i = 3, the process risk is as follows:  

 In the case of 𝑘 =  9: 

   𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑅𝑖𝑠𝑘̂
3,9 =  𝐶3,8  �̂�8 

2 = 44 287 ∗ 0.083 =  3 672.59 =  3.67E+03 

 In the case of 𝑘 =  10:  

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑅𝑖𝑠𝑘̂
3,10 =  ƒ̂9

2 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑅𝑖𝑠𝑘3,9
̂ + �̂�3,9 �̂�9       

2  

                                  =  1.024 ∗   3.67E + 03 + 44 458 ∗ 0.001 

                                  = 3 805.26 =  3.81E + 03 

In the same way, the remaining accident years are estimated from 𝑖 =  4  to  𝑖 =  10. 

Table 7 summarizes the values of the process risk estimates according to the accident year i and the development 

year k: 
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Table 7. Estimates of the process risk values 

i/k      k=1 k=2   k=3  k =4 k=5 k=6 k=7 k=8 k=9 k=10 

i=1 

          i=2 

     

 

   

4.61E+01 

i=3 

     

 

  

3.67E+03 3.81E+03 

i=4 

       

3.99E+05 4.06E+05 4.16E+05 

i=5 

      

1.50E+06 1.84E+06 1.85E+06 1.90E+06 

i=6 

     

1.05E+07 1.40E+07 1.48E+07 1.50E+07 1.53E+07 

i=7 

    

1.61E+07 3.50E+07 4.24E+07 4.41E+07 4.44E+07 4.55E+07 

i=8 

   

2.19E+07 5.12E+07 8.70E+07 1.02E+08 1.06E+08 1.07E+08 1.09E+08 

i=9 

  

3.91E+07 6.70E+07 9.93E+07 1.41E+08 1.61E+08 1.66E+08 1.68E+08 1.72E+08 

i=10 

 

1.55E+09 2.89E+09 3.25E+09 3.56E+09 3.90E+09 4.22E+09 4.30E+09 4.33E+09 4.43E+09 

 

5.2 Parameter Risk Estimation 

By using equation (15), the parameter risk estimates for future claims are also calculated in a recursive manner 

from left to right. The parameter risk can be estimated in the same way as the process risk. 

Table 8 summarizes the values of the parameter risk estimates according to the accident year i and the 

development year k:  

 

Table 8. Estimates of the parameter risk values 

i/k k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 

i=1 

          i=2 

         

4.86E+01 

i=3 

        

1.82E+03 1.90E+03 

i=4 

       

1.46E+05 1.49E+05 1.53E+05 

i=5 

      

5.62E+05 6.58E+05 6.64E+05 6.80E+05 

i=6 

     

3.22E+06 4.49E+06 4.85E+06 4.89E+06 5.01E+06 

i=7 

    

6.32E+06 1.59E+07 2.00E+07 2.12E+07 2.13E+07 2.18E+07 

i=8 

   

1.11E+07 3.16E+07 6.33E+07 7.75E+07 8.15E+07 8.21E+07 8.41E+07 

i=9 

  

1.40E+07 2.82E+07 5.19E+07 5.65E+07 7.13E+07 7.55E+07 7.62E+07 7.80E+07 

i=10 

 

3.33E+08 6.24E+08 7.05E+08 7.38E+08 8.24E+08 8.98E+08 9.16E+08 9.23E+08 9.46E+08 

 

5.3 Estimation of Process Risk, Parameter Risk and Total Standard Error for Each Accident Year i (Risk 

Estimates of Reserves) 

Process risk and parameter risk in the accident year i are estimated by calculating the square root of the values of 

column 𝑘 = 10 (development year 10), as in Table 7 for the process risk and in Table 8 for the parameter risk, 

and the sum of the process risk column, which represents the overall process risk in the chain ladder method, is 

estimated by the square root of the sum of the squares of the values for this column, and the sum of the 

parameter risk column, which represents the overall parameter risk in the chain ladder method.  In the same 

way, the total process risk and the total parameter risk, which together represent the total standard error of the 

reserves according to the chain ladder method, are also estimated through the square root of the sum of the 

squares of both values of the total process risk and the total parameter risk. 

Table 9 shows Reserve Risk Estimates (process risk, parameter risk, and total standard error according to the 

accident year): 

 

Table 9. Risk estimates for reserves 

i Process Parameter Total 

2 7 7 10 

3 62 44 76 

4 645 391 754 

5 1377 825 1605 

6 3915 2238 4510 

7 6744 4674 8206 

8 10 447 9171 13 902 

9 13 097 8831 15 796 

10 66 595 30 750 73 352 

Total 69 128 33 695 76 903 
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It is noted that the value 76 903 (in million Egyptian pounds) is the total standard error of reserves according to 

the chain ladder method for all accident years, which was calculated as follows: 

√69 1282 + 33 6952 = 76 903 

Hence, the standard error percentage in the total claims reserves is as follows: 

 % 𝑠. 𝑒 (�̂�)  =  
𝑠.𝑒(𝑅 ̂)

�̂�
 ∗ 100 

∴ % 𝑠. 𝑒 (�̂�)  =  
76 903

276 003
 ∗ 100 = 27.9% ≃ 28%  

Murphy's goal was to provide a flexible and easy method for estimating both process risk and parameter risk, 

and at the same time trying to arrive at the same or the nearest estimates to Mack's model.  

It can be seen that the recursive equations according to the Murphy model are not very concise albeit they are 

flexible as they allow estimation based on the transition in the model from a development year to the next 

development year by relying on the estimates of the previous year directly. 

6. Conclusions 

The chain ladder method is one of the most traditional deterministic methods used locally in Egyptian insurance 

companies and internationally. Deterministic methods of estimating claims reserves give a point estimate, which 

is likely to be wrong or correct. 

The estimate of the total claims reserves which was estimated according to the deterministic chain ladder method 

is equal to 276 003 million Egyptian pounds, which is a one-point estimate. And it is also noted that this estimate 

is the same as the total claims reserves which were estimated according to the stochastic Murphy model, except 

that it was noted that Murphy's model gave more information about the uncertainty of these estimates through 

estimating the process risk and parameter risk for each accident year and estimating the total standard error of 

the reserve. 

The standard error in total claims reserve was estimated according to the Murphy model 28% of the reserve, and 

this error includes both process risk and parameter risk. 

From the above, the standard error expresses the accuracy of the estimator by measuring the spread of the values 

of the estimator around the parameter value, and thus the greater this spread, the greater the standard error of the 

estimator. Whereas the value of the estimated reserves is equal to 276 003 and the ratio of the standard error of 

the estimator was 28% and therefore, the values of the estimator will be different from the parameter within the 

range of 28% by increase or decrease, and therefore, it can be said that the true reserves will be within the range 

of 28%, increase or decrease from the estimated reserves, which is EGP 276 003. 

The reserve risk under the Mack's model was measured aggregately by the mean square error. Whereas in the 

Murphy model, both process risk and parameter risk were estimated separately. 

The reserve risk equations according to Mack were brief and abbreviated, while the recursive equations 

according to Murphy's model were not very brief, but they were flexible, as they allow estimation based on the 

transition in the model from one development year to the next development year by depending on estimates of 

the immediately preceding year. 

The deterministic claims reserving methods do not usually take into account some of the key factors that must be 

included in the estimation of these reserves. 

The application of stochastic models for estimating claims reserves give quite satisfactory results and provide 

important details, so that it can become a better alternative and complementary to deterministic methods. 
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