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Abstract 

This study examines the optimal hedge performance between natural gas market and crude oil, ECO, gold and 

US-bonds markets. To calculate optimal hedge ratios and hedging effectiveness, we apply several multivariate 

volatility models, namely CCC, DCC, cDCC and bayesDCC. The empirical results show that crude oil is the best 

asset to hedge natural gas followed by gold and ECO. This is a new result relative to the existing literature on 

natural gas prices. Additionally, we find that the bayesDCC model has the best performance on optimal hedge 

ratios (OHRs) calculation in terms of hedging effectiveness. Our findings will hold important financial risk 

management implications and asset portfolio for those invest in natural gas market. 

Keywords: natural gas, optimal hedging strategies, hedging effectiveness, multivariate GARCH model  

1. Introduction 

Natural gas is a clean and environmentally friendly high-quality energy source, almost free of sulfur, dust and 

other harmful substances. Thus, it has become a major energy production in some leading countries. As same as 

crude oil, natural gas has dual properties acting as both an energy product and a financial product. Although 

natural gas market has matured greatly over the last decades, the price change and risk exposure of natural gas 

remain the focus of attention for those market participants. In order to manage the risk of increasing price 

fluctuations, investors or managers need a deeper understanding of the behavior of gas market volatility and use 

some reasonable instruments to avoid this risk. In a traditional way, market participants rely mainly on natural gas 

futures to hedge against spot prices. With the development of natural gas market liberalization and the 

participation of strategic investors such as hedge funds and investment Banks, which intensify the speculation 

and price fluctuations of natural gas market. Therefore, traditional ways are not enough to solve its risk hedging 

problem, it requires more ways to deal with the increasing challenge. In this paper, we try to seek the optimal 

hedging strategy from a series of natural gas portfolios. To achieve that, we use the multivariate GARCH model 

to calculate the hedging ratio and hedging efficiency. Furthermore, We compared the hedging performance of 

different models with different portfolios, as in Chang et al. (2011). 

In response, several literatures have attempted to explain the volatility spillovers, dynamic linkages and risk 

transmission between natural gas and other markets such as crude oil, stocks. Some of notable studies are 

(Susmel & Thompson, 1997; Nick & Thoenes, 2014; Van Goor & Scholtens, 2014; Ergen & Rizvanoghlu, 2016; 

Chang et al., 2018; Hailemariamcs & Smyth, 2019; Wang et al., 2019) and (Egging & Holz, 2016; Lin et al., 

2019). Most of these studies are focus on the volatility spillovers from other financial markets to the natural gas 

market or the determinants of natural gas return volatility (e.g. supply shocks, demand changes, new 

technologies, climate change, weather, energy policies). Hedging management is a key issue for natural gas 

investment, but we find only a few papers that explicitly calculate hedge ratios for natural gas portfolios. 

Brinkmann and Rabinovitch (1995) examine the influence of transportation limitations on the hedging 

effectiveness for the different NYMEX gas future contracts. They find that the NYMEX contract is an effective 

hedging instrument for natural gas spot, which can be sold into pipelines for consumption in different states of 

United States. Lin and Li (2015) investigate optimal hedging strategies based on spillover effects which takes 

into account regional segmentation and natural gas pricing mechanisms, and compares the spillovers effect in the 

United States, Europe, and Japan. Mart´ınez and Torr´o (2015) find that the natural gas portfolios has a higher 
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hedging effectiveness when seasonal factors are considered. Ghoddusi and Emamzadehfard (2017) examine the 

multiple characteristics of hedging performances in United States natural gas market, and find that the longer 

maturity contracts can improve the hedging effectiveness. Lin et al. (2019) investigate the hedging strategies and 

risk transmission between natural gas market and stock market, their result shows that investors should hold the 

long position on stocks to reduce their portfolio risk. Although previous literature shows that the linkage of 

natural gas with other financial assets regarding dynamic correlations, determinants of volatility spillovers and 

risk transmission, the optimal hedging strategy of natural gas is rarely discussed, especially the cross-hedging 

strategy with other financial assets. In this paper, we extend the existing literature of the hedging strategies on 

natural gas in several ways. We consider a serious of financial assets as the hedging instruments for natural gas. 

Specifically, this study explores the possibilities of using ECO, gold and bonds to hedge natural gas investments. 

To calculate and compare the optimal hedging ratio and optimal hedging portfolio of natural gas, several 

multivariate GARCH models are used to estimate the variance and covariance for each portfolio. We find that 

the crude oil is the best instrument to hedge natural gas’s price risk followed by gold and ECO. The mean value 

of the hedge ratio between natural gas and crude oil is approximately equal to 0.4 for each model. Additionally, 

we also find that bayesDCC model provides the best performance on hedging effectiveness than other 

multivariate volatility models. 

The contributions of this study are as follows. First, we examine the cross-hedge strategies of natural gas with 

such a basket of financial assets, this has rarely been studied in the previous literature. Second, our empirical 

results show that crude oil is the best asset to hedge natural gas’s price risk followed by GOLD and ECO, this is a 

new result to the existing literature about natural gas hedging strategy. 

The rest of the paper is structured as follows: Section 2 provides a detail on the methodology. Section 3 describes 

our data and give some summary statistics. Section 4 presents the empirical results and followed by conclusions 

and discussion in Section 5. 

2. Methodology 

2.1 Multivariate GARCH Models 

To estimate the variance-covariance matrix and the correlation coefficients of the natural gas portfolio, some 

multivariate GARCH models are used, namely CCC Engle and Kroner (1995), DCC Engle (2002), cDCC Aielli 

(2013) and bayes DCC Fioruci et al. (2014). This section presents these models as follows. According to (Engle & 

Kroner, 1995), the CCC model is given by: 
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. The CCC model of Engle and Kroner (1995) assume that the variance of 

each asset’s return follows a univariate GARCH process, which can be written as: 
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where the parameter 𝛼𝑖𝑗 represents the short-term persistence shocks to return i , or the so-called ―ARCH 

effect‖, and the parameter 𝛽𝑖𝑗 represents the so-called ―GARCH effect‖. Meanwhile, 

1 1

r s

ij ij

j j

 
 

   denotes 

the long-term persistence shocks to return i . 

The CCC model just can give a constant correlation coefficient, but the correlation between assets should be a 
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dynamic process. In order to solve this drawback, Engle (2002) developed a dynamic conditional correlation 

(DCC) model, which can obtain the dynamic conditional correlation coefficients and covariance matrix. It can be 

defined as follows: 

 1
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where  1/2 1/2
  ,  

t i j
D diag h h denotes the diagonal matrix of conditional variance, 𝛤𝑡  denotes the conditional 

correlation matrix. The conditional variance ℎ𝑖𝑡 of each return also follows a univariate GARCH process, and 

can be given as follows: 
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where the symmetric positive definite matrix 𝑄𝑡 is given by: 
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where 𝑄𝑡 represents the conditional covariance matrix of portfolio, and 𝑄̅ denotes the conditional covariance 

matrix. 𝛿1 and 𝛿2 captures the effects from previous standardized shocks and previous dynamic conditional 

correlations on current dynamic conditional correlation. These two parameters are non-negative scalar parameters, 

satisfy the condition of 𝛿1 + 𝛿2 < 1 to guarantee the matrix 𝑄𝑡 is positive definite. When 𝛿1 = 𝛿2 = 0, Eq. (5) 

transforms to the CCC model. 

The estimation procedure of DCC model adopt two-step method based on the logarithmic likelihood function. 

The first step estimates the univariate GARCH process and the second step estimates the conditional correlation 

matrix. Aielli (2013) point out the inconsistency problems in the second step estimation of the DCC model. To 

solve this issue, Aielli (2013) propose the corrected dynamic conditional correlation (cDCC) model, which 

restores consistency, and suggests a feasible estimation method that is similar to the profile likelihood. In brief, 

he reformulates the specification of the correlation 𝑄𝑡 as follows: 
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where η∗ = diag {Qt}
1/2 
ηt denotes the standardized residuals. 

Fioruci et al. (2014) argue that the traditional DCC model established the likelihood function through the 

unbiased distribution, which not fully consider the temporal features of financial returns such as peak, fat tail. 

Moreover, the traditional asymmetric volatility models often fail to capture the skewness of financial return 

distribution. To solve these issues, Fioruci et al. (2014) develop bayesDCC-Skew model, which adopt a bayesian 

approach to estimate DCC model with skewed and fat tailed distributions to estimate model parameters. 

The bayesDCC model includes a class of flexible multivariate skewed (or t-, GED) distributions in the DCC 

model context and adopt a fully bayesian approach to estimate all unknown parameters. Accounting to Bauwens 

and Laurent (2005), the multivariate skewed densities can be written as, 
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where 𝑓()  is a symmetric multivariate density, 𝑥∗ = 𝑥1
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∗ = 𝑥𝑖𝛾𝑖 ; if 

𝑋𝑖 < 0, 𝑖 = 1, … , 𝑘.  𝛾𝑖 denotes the marginal skewness, and when 𝛾𝑖 > 1 (or 𝛾𝑖 < 1 ) corresponds to right (or 

left) marginal skewness. For the bayesian paradigm, we need to specify the prior distributions of all parameters. 

Fallowing Fioruci et al. (2014), these parameters are assumed to be a priori independent and normally distributed 

truncated. We specify a GARCH (1,1) model for each conditional variance, i.e. 
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. The parameters θ’s posterior distribution

   y   is analytically intractable. We then adopt the Markov chain Monte Carlo (MCMC) sampling strategies 

to obtain samples from the joint posterior distributions. 
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2.2 Optimal Hedge Ratios and Portfolio 

In this section, we calculate the optimal hedge ratios and optimal hedge effectiveness for each portfolio. As we 

all known, one investor chooses a hedging strategy often reflects their attitudes toward risk preferences and their 

individual goals. Consider the case of a natural gas investment company, who wants to protect exposure to natural 

gas price fluctuations. He may choose a portfolio of natural gas and other futures position. The return on the 

company’s portfolio can be given as: 

H,t , ,S t t F t
R R R                                             (9) 

where 𝑅𝐻,𝑡 is the return on holding the portfolio from 1t   to t, 𝑅𝑆,𝑡 and 𝑅𝐹,𝑡 refers to the return on holding 

natural gas and other assets positions from t-1 to t . 𝛾 is the hedge ratio, means the number of natural gas futures 

contracts that the hedger must sell for each unit of other futures contracts that bear the price risk. According to 

Johnson (1960) and Kroner and Ng (1998), conditional on the information set available at time t1, the variance of 

the returns of the hedged portfolio is given by: 
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the 𝑂𝐻𝑅𝑡 as the value of 𝛶𝑡 when minimizes the conditional variance (risk) of the hedged portfolio returns as:
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For the multivariate conditional model, we can obtain estimates of conditional covariance matrix, the 𝑂𝐻𝑅𝑡 can 

be written as follows: 
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where ℎ𝑆𝐹,𝑡 is the conditional variance between natural gas and other asset returns, and ℎ𝐹,𝑡 is the conditional 

variance of natural gas returns. Chen (2007) propose a more accuracy method to compare the performance of 

OHRs which measured by the variance reduction for any hedged portfolio divided by the unhedged portfolio. 

This hedging effective index (HE) is given by: 

var var

var

unhedged hedged

unhedged

HE



                               (13) 

where 𝑣𝑎𝑟𝑢𝑛ℎ𝑒𝑑𝑔𝑒𝑑 is the return variance of unhedged portfolio (i.e., variance of crude oil returns),  𝑣𝑎𝑟ℎ𝑒𝑑𝑔𝑒𝑑  

is the variance of hedged portfolio returns which can be calculated as Eq. (9). The higher value of HE means the 

higher hedging effectiveness and the larger risk reduction, therefore, one portfolio has a higher HE means it is a 

superior hedging strategy. 

3. Data 

This study uses the daily data set of natural gas, West Texas Intermediate (WTI)crude oil, WilderHill Clean 

Energy Index (ECO), gold prices and eCBOT 10-Y US treasures bond. We construct the portfolios of natural gas 

with crude oil, ECO, gold and bond, and choose the optimal hedging portfolio. For this purpose, we collect the 

close price of the New York Mercantile Exchange (NYMEX) natural gas and crude oil future contract. The ECO 

index is the proxy variable of clean energy stocks. Gold often act as a safe–heaven asset and an effective hedging 

instrument in financial market, and its prices data is the close prices of continuous futures contract in New York 

Mercantile Exchange (COMEX division). The bond data is obtained from the close prices of eCBOT 10-year US 

Treasury. 

Our sample data cover the period from January 4, 1999 to February 28, 2019. The sample period is depended on 

the length of ECO index. All data are obtained from the Bloomberg database. We calculate all the return 

sequences through the first difference of natural logarithmic and multiply by 100 as, ,𝑟𝑖,𝑡 = 100 ∗ (𝑙𝑛𝑃𝑖,𝑡 −
𝑃𝑖,𝑡−1) where Pi,t and Pi,t−1 are the close prices in market i at days t and t − 1, respectively. 
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Fig. 1 shows the plots of price and return series of each market. As we can see, the natural gas prices fluctuates 

more frequently than other markets over the sample period, which is confirmed by the stand deviation of natural gas 

return in Table 1. This is a good reason for natural gas market participants to use other instruments to hedge their 

price risk exposure. Additionally, all the return series shows a clear volatility cluster phenomenon and indicates 

that the appropriateness to use the multivariate volatility models in this paper. 

 

Figure 1. Plots of prices and returns 

 

Table 1 reports the descriptive statistical analysis result of each return series. As it shows, all of the mean values 

are close to zero for each return series. The standard deviation is ranged from 1.135 to 3.432, obviously the stand 

deviation of natural gas returns is much larger than other financial markets and the stand deviation of gold 

returns is the smallest. It indicates that the price changes of natural gas market more volatile than others, while 

gold market present a more stable state. The positive skewness of natural gas and bond indicates that there are 

more extreme values at the right end of the distribution, whereas crude oil, ECO and gold has the opposite 

extreme value distribution. The kurtosis values of all return series are not subjected to normal distributions, 

which are further confirmed by Jarque and Bera (1980) tests. The statistics of Engle (1982) ARCH test rejects 

null hypothesis, it implies the existence of significant heteroscedasticity. The Ljung and Box (1978) Q statistics 

indicates that the null hypothesis of no autocorrelation up to 1st and 10th orders is rejected at 5% significance 

level except the bond returns (Note 1). Table 1 also presents the results of unit root and stationarity tests. We 
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perform these three tests, the null hypothesis are rejected by both Augmented Dickey and Fuller (1979) (ADF) 

and Phillips and Perron (1988) (PP), whereas that of Kwiatkowski et al. (1992)(KPSS) tests is failure to reject. 

Hence, the results indicate that all the return series are trend stationarity. 

 

Table 1. Descriptive statistics for each return series 

 GAS OIL ECO GOLD BOND 

Mean -0.020 0.037 -0.014 0.036 0.001 

Std.dev. 3.432 2.350 2.021 1.135 1.941 

Min -19.899 -16.545 -14.467 -9.821 -17.021 

Max 32.435 16.410 14.520 8.625 10.686 

Skewness 0.570 -0.042 -0.174 -0.364 0.013 

Kurtosis 9.010 7.422 7.309 8.517 6.556 

J-B 6326.3*** 3307.8*** 3159.6*** 5236.3*** 2138.5*** 

ARCH (1) 25.304*** 191.710*** 337.800*** 83.830*** 79.686*** 

ARCH (10) 164.347*** 586.402*** 1105.000*** 216.911*** 279.788*** 

Q (1) 7.396*** 6.340** 6.041*** 8.2361* 0.272 

Q (10) 23.925*** 18.714*** 29.734*** 23.596*** 30.288*** 

ADF -37.733*** -26.867*** -36.080*** -37.079*** -38.146*** 

PP -66.616*** -66.181*** -61.340*** -63.627*** -63.183*** 

KPSS 0.035 0.036 0.048 0.063 0.024 

Note. The Jarque and Bera (1980) statistic tests the null hypothesis of Gaussian distribution. ADF (Dickey & Fuller, 1979) and PP (Phillips & 

Perron, 1988) are denoting the statistics of unit root tests. KPSS (Kwiatkowski et al., 1992) is the stationarity test. ARCH(1) Engle (1982) 

statistics refers to the return residuals series up to the 1th lags arch effect. Q(l) Ljung and Box (1978) refers to the statistics of the return 

series up to the lth order serial correlation. *, **, *** indicates the level of significance at 10%,5% and 1%, respectively. 

 

4. Empirical Result 

4.1 Model Estimation Results 

To examine the hedging performance of all portfolio, a key step is to obtain the conditional variance and 

covariance of the portfolios. As we shown in Table 1, the significance of ARCH effect confirms the 

appropriateness for using multivariate GARCH models on asset returns volatility. We then employ four different 

technology to estimate the correlation coefficients and the covariance. 

 

Table 2. Estimated results of CCC models 

 ω α β ρ 

GAS 0.190*** 0.086*** 0.902***  

 (0.057) (0.014) (0.014)  

OIL 0.091 0.076** 0.907*** 0.258 

 (0.064) (0.025) (0.035)  

ECO 0.076 0.077* 0.900*** 0.036 

 (0.071) (0.029) (0.050)  

GOLD 0.011* 0.042*** 0.950*** 0.073 

 (0.006) (0.012) (0.014)  

BOND 0.013 0.040*** 0.957*** 0.014 

 (0.014) 0.010 (0.014)  

Note. The stand error is the Bollerslev and Wooldridge (1992) robust error.ρ denotes the conditional correlation coefficients between natural 

gas returns and other returns. *, **, *** indicates the level of significance at 10%,5% and 1%, respectively. 

 

Table 2 reports the estimation results of CCC model for natural gas and other assets. The two lines corresponding 

to the estimated coefficients of each parameter and their Bollerslev and Wooldridge (1992) robust stand error. 

The ARCH and GARCH terms for each return series are statistically significance. The ARCH coefficients (α) are 

less than 0.1, and the GARCH terms (β) are close to one. Therefore, the long run persistence indicates that there 

is a long memory process and when a shock in volatility will continue to have an impact on the volatility over a 

long horizon. We also find that the estimated conditional correlations of CCC model are not very high. The 

highest conditional correlation is 0.258 between natural gas returns and crude oil returns. 
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Table 3. Estimated results of DCC, cDCC and bayesDCC models 

 DCC   cDCC   bayesDCC 

Coeff. Std. Error  Coeff. Std. Error  Coeff. Std. Error 

ωGAS 0.168*** 0.048  0.168*** 0.047  0.571*** 0.096 

αGAS 0.084*** 0.013  0.084*** 0.012  0.111*** 0.012 

βGAS 0.906*** 0.012  0.906*** 0.011  0.850*** 0.015 

γGAS       1.084*** 0.025 

ωOIL 0.0578** 0.032  0.058*** 0.012  0.113*** 0.029 

αOIL 0.065** 0.020  0.065*** 0.010  0.080*** 0.011 

βOIL 0.925*** 0.024  0.925*** 0.009  0.901*** 0.014 

γOIL       0.922*** 0.027 

ωECO 0.061*** 0.019  0.0615*** 0.014  0.194*** 0.030 

αECO 0.080*** 0.014  0.081*** 0.012  0.121*** 0.014 

βECO 0.903*** 0.017  0.901*** 0.014  0.835*** 0.018 

γECO       0.937*** 0.022 

ωGOLD 0.010** 0.004  0.010*** 0.003  0.023*** 0.004 

αGOLD 0.042*** 0.009  0.042*** 0.009  0.045*** 0.006 

βGOLD 0.950*** 0.009  0.950*** 0.009  0.936*** 0.009 

γGOLD       0.932*** 0.031 

ωBOND 0.008** 0.003  0.008*** 0.001  0.066*** 0.010 

αBOND 0.044*** 0.002  0.044*** 0.006  0.071*** 0.009 

βBOND 0.955*** 0.002  0.955*** 0.005  0.915*** 0.010 

γBOND       1.072*** 0.028 

δ1 0.011*** 0.002  0.011*** 0.002  0.022*** 0.004 

δ2 0.984*** 0.003  0.985*** 0.003  0.931*** 0.022 

Note. The two column for each parameter are their estimates and the Bollerslev and Wooldridge (1992) robust error. *,**,*** indicates the 

level of significance at 10%,5% and 1%,respectively. 

 

For DCC and cDCC models, we use the two-step estimation method and specify the model follow the 

multivariate norm distribution and with AR (1) term in the mean equation. For bayesDCC models, we use the 

MCMC method to estimate the parameters coefficients, and the simulation number is equal to 10000. Table 3 

presents the estimated results of DCC, cDCC and bayesDCC models. We find that the estimated coefficients for 

both short-term persistence (α) and long-term persistence (β) are statistically significance, and all return series 

meet the condition of α+β<1. We can also find the estimations of δ1 and δ2 are both statistically significance 

and positive, and their sum of 𝛿1 + 𝛿2  is also less than one. It indicates that the volatility process is 

mean-reverting and satisfy the positive definite condition. The coefficients are very close estimated by these 

three models, but the estimated standard errors of bayesDCC model is the smallest, follow by cDCC model. For 

bayesDCC model, the parameters γ denotes the marginal skewness distribution of each variable, when 𝛾>1 (or 

𝛾<1) correspond to right (or left). The estimated result indicates the marginal skewness distribution of gas and 

bond are right, where as other assets are left, which are consist with the skewness values in Table 1. 

 
Figure 2. The plots of dynamic conditional correlations between GAS and other assets 
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Figure 2 only shows the dynamic conditional correlation between nature gas returns and other assets returns by 

DCC model. It is obviously that the dynamic conditional correlation between natural gas market and crude oil 

market is greater than any other portfolios. To some extent, it implies that the crude oil may be the best 

instrument to hedge the natural gas’s price risk. 

4.2 Optimal Hedging Performance 

Table 4 reports the comparative analysis of the hedge ratios and hedging effectiveness for each portfolio by these 

four models. Among the four pairs, GAS-OIL, GAS-ECO, GAS-GOLD and GAS-BOND exhibit positive mean 

hedge ratio values. The average hedging ratio of GAS-OIL portfolio is approximately equal to0.4 for each model. 

It means that a dollar long position in natural gas future can hedge about 40 cents short position in crude oil 

future. The hedge ratio of natural gas spot and crude oil in Lin and Li (2015) which calculate their average hedge 

ratio value is 0.159. For the GAS-ECO, GAS-GOLD, and GAS-BOND portfolio, the average OHRs are 

approximately equal to 0.06, 0.2 and 0.01, respectively. That is to say, holding a short position in a GAS-OIL 

portfolio requires more natural gas futures contracts than other portfolios. For example, the largest average OHR 

value is 0.416 from bayesDCC model of GAS-OIL portfolio, suggesting that, if the short hedger want to 

minimize risk, when he buys a dollar gas future (long position) need to sell by about41.6 cents of OIL future 

(short position). For most of portfolio, the bayesDCC models have the best hedging performance, and the DCC 

and cDCC models have a similar hedging effectiveness values, and larger than the corresponding values of the 

CCC model. 

 

Table 4. Descriptive statistical analysis of hedging ratio and hedging effectiveness (HE) 

 Mean Min Max HE (%) 

GAS-OIL     

CCC 0.414 0.117 1.251 6.720 

DCC 0.406 -0.083 1.584 7.837 

cDCC 0.411 -0.002 1.585 7.830 

baysDCC 0.416 0.052 3.312 8.030 

GAS-ECO     

CCC 0.070 0.016 0.256 0.240 

DCC 0.061 -0.425 0.926 0.316 

cDCC 0.066 -0.429 1.023 0.313 

baysDCC 0.159 -2.940 2.615 2.180 

GAS-GOLD     

CCC 0.240 0.070 0.809 0.586 

DCC 0.215 -0.711 1.466 0.621 

cDCC 0.214 -0.573 1.394 0.616 

baysDCC 0.172 -2.061 1.558 0.456 

GAS-BOND     

CCC 0.030 0.007 0.135 0.003 

DCC 0.012 -0.593 0.500 -0.439 

cDCC 0.013 -0.566 0.503 -0.437 

baysDCC 0.254 -0.804 6.536 -7.025 

 

Figure 3 presents the time-varying OHRs which calculated from each multivariate conditional volatility models 

for each portfolio. Due to the OHR is determined by the second moment of each portfolio, so the different 

models will produce the difference of OHRs. We can see the OHRs which get from bayesDCC models are the 

most trend stationarity. Therefore, from a investor perspective, we suggest that the investor seeking high returns 

from natural gas market should consider combine it with crude oil to hedging the portfolio risk. This is mainly 

because GAS-OIL portfolio has the highest hedging effectiveness than other portfolios. Gold provides the second 

hedging effectiveness for natural gas, and ECO is the third best hedging effectiveness substitute. Note that in the 

GAS-BOND portfolio, some hedging effectiveness values are negative, indicating that the hedged portfolios are 

worse than the unhedged portfolio. 
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Figure 3. Optimal hedging ratio for multivariate models 

 

5. Conclusions 

This paper investigates the usefulness of using oil, ECO, gold and bonds to hedge an investment in natural gas 

employing four different multivariate GARCH models. One of the main works of this paper is that it compares 

the conditional correlations estimated from the CCC, DCC, cDCC and bayesDCC models. Then, the variance 

and covariance matrices of all models are extracted to calculate the optimal hedge ratios and hedging 

effectiveness. Meanwhile, we also compare the hedging effectiveness of different portfolios under different 

models, trying to seek the optimal hedging strategy. 

Our findings suggest the following key points: First, hedge ratios vary widely over the sample period, which 

means they should be updated regularly. Second, among the selected hedging instruments, crude oil future is the 

best hedging asset for natural gas because it shows the highest hedging effectiveness under different scenarios. In 

most cases, gold and ECO are the second and third most effective hedging assets, respectively. Third, bayesDCC 

model provides a better hedging performance than other multivariate volatility models, the hedge ratios and 

hedging effectiveness calculated from DCC model or cDCC model are very similar in most cases, because the 

estimation process of DCC and cDCC model is not very different. The main take away from this paper is that 

crude oil provides the most effective hedge for natural gas followed by gold and ECO under our considered 

scenarios. This is a new result. We find that bonds are not particularly good hedges for natural gas because of 

their low hedging effectiveness. 

Our results are of interest to current investors in natural gas as well as future investors in natural gas. There is 

already a growing movement among pension funds, university endowments and mutual funds toward divesting 

from fossil fuels. Divesting from fossil fuels creates opportunities to invest in other assets like natural gas. 

However, this paper also has some clear limitations. For future research, the sample period can be separated the 

crisis period and non-crisis time to discuss the hedging effectiveness under different background. In addition, 

future researchers might investigate different natural gas contract whether has new features of hedging 

effectiveness under different scenarios. 
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Note 

Note 1. we re-exampled the bond by Ljung and Box (1978) Q2(1) and Q2(10), the result show no 

autocorrelation. 
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