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Abstract 

If we study the expected utility function then we deal with a unified approach to an integrated formulation of 

decision theory in its two subjective components: utility and probability. We decompose the expected utility 

function inside of an m-dimensional linear space after decomposing a contingent consumption plan viewed as a 

univariate random quantity. We propose a condition of coherence compatible with all possible attitudes in the 

face of risk of a consumer. It is a geometric condition of coherence. In particular, we consider a risk-neutral 

consumer and his coherent decisions under uncertainty. The right closed structure in order to deal with utility 

and probability is a linear space in which we study coherent decisions under uncertainty having as their goal the 

maximization of the prevision of the utility associated with a contingent consumption bundle. 

Keywords: collinearity, risk, expected utility function, random process, direct and orthogonal sum, contingent 

consumption bundle  

1. Introduction  

We study different and objectively possible states of nature, where each of them is expressed by a real number. 

We consider incompatible and exhaustive states of nature whose number is finite. One and only one of them will 

be true a posteriori. A state of nature is objectively possible for a given consumer with a given set of information 

at a given instant when he does not know whether it will definitively be true or false. We therefore say that an 

objectively possible state of nature is uncertain for this reason. A possible state of nature is nothing but a random 

event coinciding with a proposition. Any proposition is always expressed in an unambiguous way. When we 

speak about a random quantity we mean that it admits two or more than two objectively possible values. They 

are real numbers. When we speak about a univariate random quantity we mean that a real number always 

coincides with an objectively possible value of it. The set of all objectively possible alternatives of a univariate 

random quantity X is denoted by  

{x
1
, x

2
,..., x

m
},                                     (1) 

where we consider x
1
 < x

2
 < ... < x

m
 

without loss of generality.  

A univariate random quantity is denoted by X. One and only one objectively possible value of X will be true a 

posteriori. All other values will be false. It is possible to assign a probability to every xi, i=1, …, m, before 

knowing this thing. We obtain a distribution of probability in this way. A contingent consumption bundle is 

nothing but a univariate random quantity. It is denoted by 

[      )   
    )          )                             (2) 

in this way, where it turns out to be p1 + p2 + ... + pm = 1. Every single random case is generically denoted by Ei, 

i = 1, ... , m. After decomposing x
1
, x

2
,..., x

m
 inside of an m-dimensional linear space denoted by E

m
 we observe 

that it is possible to assign a number to every element x
i
, i = 1, ... , m, of X. It is denoted by u(x

i
), i = 1, ... , m, 

where it turns out to be u(x
1
) < u(x

2
) < ... < u(x

m
) because one assumes that more is better when there is no 

satiation. All numbers expressed by u(x
i
), i = 1, ... , m, identify a utility function (Levy & Sarnat, 1986). It is 

possible to associate a probability with every u(x
i
), i = 1, ... , m. We obtain a distribution of probability in this 

way. Every distribution of probability is always a coherent expression of the attitude of the consumer under 

consideration with respect to uncertainty (De Finetti, 1972). It does not depend on one or more than one 

parameter like a pre-established distribution (De Finetti, 1972). This means that one engages oneself in saying all 
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what it is of interest about the specific case that is considered (Kreps, 1990). Thus, one does not prefer to race on 

ahead occupying oneself with not real problems characterized by infinite and repeatable cases. On the other hand, 

it is known that the nature of probability is unitary in all fields (Pfanzagl, 1967). Nevertheless, information used 

in order to make a coherent evaluation of probability related to a given set of states of nature can be different 

with respect to its external aspects. This implies that the criteria for the evaluation of probability are different 

(Taylor, 1974). However, they lead to an evaluation which is always subjective. This is because an equiprobable 

judgment is itself subjective. Such a judgment intrinsically characterizes symmetric probability. Concerning 

frequentist probability, it makes sense that each individual relates probability back to observed frequency only 

when he specifies the meaning and conditions of this thing. Symmetric probabilities as well as frequentist 

probabilities are only elements of judgment evaluated by each individual on the basis of his own judgment. 

Subjective probability results from this necessary judgment. In any case, it is not excluded that subjective 

probability coincides with symmetric probability. It is not even excluded that subjective probability coincides 

with frequentist probability. We do not refer to the axiomatic probability theory, so the field over which 

probability is defined is not a σ-algebra (Berti, Pratelli, & Rigo, 2015). 

2. A Dichotomy between Possibility and Probability  

We consider those situations of uncertainty in which a given consumer can find himself because his information 

and knowledge are imperfect at a given instant (Feller, 1966). A given consumer is in a state of uncertainty at a 

given instant when he is in a state of ignorance (DeGroot, 1962). It is the result of the existence of imperfect 

information and knowledge at a given instant (Piccinato, 1986). Such an imperfection could be related to 

different facts or events. We deal with future facts within this context (Barlow, Claroti, & Spizzichino, 1993). If 

the imperfect knowledge and the ignorance of a given consumer at a given instant determine his state of 

uncertainty then such a state represents the extent of his domain of the possible. It is objective because it is 

relative to his “state of information”. Such a domain contains all possible states of nature for him at a given 

instant. We say that the states of nature are points belonging to an m-dimensional linear space equipped with a 

Euclidean metric. We denote it by E
m

. Given an orthonormal basis of E
m 

denoted by {ej}, j = 1, ..., m, we are able 

to consider m oriented straight lines of E
m 

which are measured in the same unit of length. They are pairwise 

orthogonal. The point where they meet is the origin of E
m

. It is the zero vector of E
m

. We say that each x, i = 

1, ... , m, of {x, x,..., x
m

} belongs to one of these m oriented straight lines of E
m

. We do not consider particular 

m-tuples of real numbers belonging to every straight line of E
m 

but we consider only real numbers connected 

with each of them. This thing results from a particular geometric property that we will later use. Each straight 

line of E
m 

represents the whole of the space of alternatives whose number is infinite. Each point on a straight line 

of E
m 

corresponds to a single alternative and vice versa. Information and knowledge of a given consumer at a 

given instant permit him of not to excluding a real number only. It remains possible for him because it is not 

either true or false (Coletti, Petturiti, & Vantaggi, 2015). It is denoted by x
i
 

, i = 1, ... , m. We have evidently a 

limitation of expectations in this way. We distinguish what it is determined from what it is not determined (De 

Finetti, 1982). We use geometry in order to make this thing (Ramsey, 1960). What it is not determined it is 

possible (Elton & Gruber, 1995). What it is possible it is uncertain because it is not either true or false. It is an 

intermediate case with respect to what it is determined (Jeffreys,1961). It interests the notion of probability. 

Subjective probabilities are assigned to every x
i
, i = 1, ... , m, of {x

1
, x

2
,..., x

m
} (Kyburg jr., & Smokler, 1964). 

Also, we note that subjective utilities are assigned to every x
i
, i = 1, ... , m, of { x

1
, x

2
,..., x

m
 }. What it is possible 

it interests the notion of utility as well.  

3. A Closed Structure Containing States of Nature as a Substitute for Another Closed Structure  

A state of nature is an event. An event is a proposition (Coletti & Scozzafava, 2002). It is always a 

well-determined proposition in itself. A random event is always a single random case. It must always be 

observed by a given individual in order to establish whether it is true or false (Savage, 1954). A probability is 

then assigned to it by him before knowing this thing (Lindley, 1965). We say that a probability is assigned to it 

by him according to his degree of belief in the occurrence of it. It is possible to measure this degree of belief in a 

concrete or operational way. It is possible to observe which real or conceptual bets on a random event are judged 

to be fair by a given individual with a given set of information at a given instant. We note that those bets in 

which a given individual with a given set of information at a given instant accepts to be either bettor or 

bookmaker are judged to be fair by him (De Finetti, 1980). Probability is always defined into the domain of 

events (De Finetti, 1981). We note that if we consider a conditional bet based on a conditional event then the 

main points of what we have said do not change (Gilio & Sanfilippo, 2014). We observe only formal variations 

with respect to a conditional bet based on a conditional event. These variations are conceptually unimportant 



ijef.ccsenet.org International Journal of Economics and Finance Vol. 12, No. 4; 2020 

97 

(Coletti, Petturiti, & Vantaggi, 2016). We are not evidently interested in using a metaphysical notion of 

probability of a random event within this context (Kendall & Stuart, 1961). If we say that probability exists on its 

own because it does not depend on the mental or instinctive evaluations that a given individual makes of a given 

random event at a given instant with a given set of information then we use a metaphysical notion of probability. 

If we say that probability exists outside of him in the sense that it does not exist in his own judgment then we use 

a metaphysical notion of probability. If we say that probability must externally be represented like something 

acting behind the universe which can be observed according to its own axioms then we use a metaphysical 

notion of probability (Koopman, 1940). It follows that a random event does not belong to a larger closed 

structure containing different subsets of a given nonempty set (Good, 1962). A state of nature viewed as a 

possible proposition is conversely contained in another closed structure. Such an algebraic structure is not a 

σ-algebra where countable additivity unconditionally holds. It is a linear space over the field R of real numbers 

where we consider finite additivity as a condition of coherence. We say that a state of nature has an intrinsic 

meaning because we do not choose a particular orthonormal basis of the linear space under consideration among 

all its possible orthonormal bases. We consider a linear space over R because a state of nature is a random entity 

that is expressed by numbers. It definitively admits only two values coinciding with two different numbers. If a 

state of nature is definitively true then its value is numerically expressed by 1. If a state of nature is definitively 

false then its value is numerically expressed by 0. We are therefore able to give to the states of nature an 

arithmetic interpretation in this way. Such an interpretation is a linear interpretation.  

4. Distributions of Probability Embedded in a Linear Space  

A contingent consumption plan is a list of m different real numbers that tells us how much a given consumer 

consumes of X, x
i
, when Ei occurs, where Ei is the single state of nature associated with x

i
, i = 1, ... , m. It is 

geometrically identified with the components of an m-dimensional vector of an m-dimensional linear space 

denoted by E
m
. Let {ej} be, j = 1, ... , m, an orthonormal basis of E

m
. If we use the Einstein summation 

convention then we write 

x = x
i
ei                                         (3) 

with x ϵ E
m
 (McCullagh, 1987). We observe that the possible values of X coincide with x

i
, i = 1, ... , m. They are 

different from one another because we deal with a partition of incompatible and exhaustive events (Mas-Colell, 

Whinston, & Green, 1995). A contingent consumption plan is an element of a set of contingent consumption 

plans denoted by (1)S. We note that it turns out to be 

 (1)S ⊂ E
m
                                       (4) 

where (1)S is an m-dimensional linear space contained in E
m
. This is because the sum of two vectors belonging to 

(1)S must be a vector whose components are all different. Thus, it belongs to (1)S in this way. We say that it 

belongs to (1)S if and only if its components are all different. The same thing goes when we consider the 

multiplication of a vector of (1)S by a real number that is different from zero. Hence, we say that (1)S is closed 

with respect to the sum of two vectors of it and the multiplication of a vector of it by a real number that is 

different from zero. We note that E
m
 can also be viewed as an affine space over itself. Each element of E

m
 is 

firstly an m-dimensional vector viewed as an ordered list of m real numbers. Nevertheless, each element of Em 

can also be viewed as a point of an affine space, where the zero vector of E
m
 is the origin of it. Thus, the zero 

vector of E
m
 characterizes an affine frame of E

m
 when it is viewed as an affine space. An affine frame of E

m
 

viewed as an affine space consists of a point coinciding with the zero vector of E
m
 and an orthonormal basis of 

E
m
. We are able to consider a point of an affine space having m coordinates or a vector of a linear space having 

m components. The possible values of X can indifferently be denoted by a covariant or contravariant notation 

after choosing an orthonormal basis of E
m
. We should exactly speak about components of x having upper 

orlower indices because we deal with an orthonormal basis of E
m
. Indeed, to use the terms covariant and 

contravariant is geometrically meaningless because the covariant components of x coincide with the 

contravariant ones. Nevertheless, it is appropriate to use this notation because a particular meaning connected 

with these components will be introduced. Thus, we choose a contravariant notation with respect to the 

components of x. It is consequently possible to write 

                                  (5) 

We choose a covariant notation with respect to the components of p ϵ E
m
. It is therefore possible to write 
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                                      (6) 

where pi represents a subjective probability assigned to x
i
, i = 1, ... , m, by a given consumer according to his 

degree of belief in the occurrence of x
i
 (De Finetti, 1982). We note that it turns out to be ∑   

 
     . We have 

then a coherent evaluation of the probabilities associated with every single random case. It is finitely additive. 

Different consumers whose state of knowledge is hypothetically identical may choose different pi whose sum is 

equal to 1 (Coletti, Petturiti, & Vantaggi, 2016). Indeed, each of them may subjectively give greater attention to 

certain circumstances than to others (Coletti, Petturiti, & Vantaggi, 2014). In any case, if we write 

 (x, p) ⊂ E
m
                                      (7) 

then we identify a distribution of probability embedded in a linear space (Pompilj, 1957). Such a distribution can 

always vary from consumer to consumer (De Finetti, 1975). Moreover, it can also vary with respect to the state 

of information of a given consumer (De Finetti, 1989). We also write 

                                     (8) 

where each u(x
i
) is the subjective utility of x

i
, i = 1, ... , m. It is a contravariant component of an m-dimensional 

vector of E
m
. If we write 

(u(x), p) ⊂ Em
                                   (9) 

then we identify a distribution of probability embedded in a linear space, where every covariant component of p 

2 Em is a subjective probability assigned to u(x
i
), i = 1, ... , m. We will note that we deal with the same 

probabilities viewed as masses associated with x
i
 and u(x

i
), i = 1, ... , m. 

5. A Contingent Consumption Plan Geometrically Decomposed Inside of a Linear Space 

We decompose a contingent consumption plan into m consumption bundles. We are also able to say that we 

decompose X into m single events. We write 

                            (10) 

where we have 

                              (11) 

for every i = 1, ... , m as well as x
i
 ϵ ℝ, i = 1, ... , m. We consider m elementary events Ei, i = 1, ... , m, of a finite 

partition of incompatible and exhaustive events. We observe that X is an identity function such that it is possible 

to write 

idℝ: ℝ   ℝ                                   (12) 

where ℝ is a linear space over itself and it is of dimension 1. We say that X is a linear operator whose canonical 

expression coincides with (10). We say that X is an isometry. It follows that each single event could uniquely be 

identified with infinite numbers, so we could also write {x
1
 +a, x

2
 +a, ... , x

m
 +a}, where a ϵ ℝ is an arbitrary 

constant. This means that we consider infinite translations in this way. We consider different quantities from a 

geometric viewpoint. They are nevertheless the same quantity from a randomness viewpoint because events and 

probabilities associated with them do not change. On the other hand, if two or more than two propositions can 

express the same event contained in X then two or more than two real numbers can identify it. We have to note a 

very important point: each contravariant component of x can be viewed as an m-dimensional vector. It is denoted 

by (i)x, i = 1, ... , m. This vector and the corresponding vector of the orthonormal basis of E
m
 denoted by ei, i = 

1, ... , m, are collinear. This is because there exists a real number denoted by α such that it turns out to be 

                                     (13) 

where we have i = 1, ... , m. With regard to (13) we observe that α takes any value in ℝ. If we have i = 1 in (13) 

then the vector e1 identifies a straight line having a given direction in E
m
. When α takes a value in ℝ we note that 

α identifies an m-dimensional vector lying on the same straight line established by e1 in E
m
. We therefore say 

that this m-dimensional vector and e1 are collinear. The same thing goes when α takes all values in ℝ. In 
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particular, we observe that α always takes a value coinciding with the first contravariant component of x. We 

note that only the first component of x in (3) is not equal to 0. All other components of it are equal to 0. We 

therefore write 

                                   (14) 

If we have i = 2 in (13) then the vector e2 identifies a straight line having a given direction in E
m
. This direction 

is orthogonal to the one of e1. When α takes a value in R we note that α identifies an m-dimensional vector lying 

on the same straight line established by e2 in E
m
. We therefore say that this m-dimensional vector and e2 are 

collinear. The same thing goes when α takes all values in ℝ. In particular, we observe that α always takes a value 

coinciding with the second contravariant component of x. We note that only the second component of x in (3) is 

not equal to 0. All other components of it are equal to 0. We therefore write 

                                    (15) 

If we have i = m in (13) then the vector em identifies a straight line having a given direction in E
m
. This direction 

is orthogonal to the one of e1. It is also orthogonal to the one of e2 and so on until you get to em-1. When α takes a 

value in ℝ we note that α identifies an m-dimensional vector lying on the same straight line established by em in 

E
m
. We therefore say that this m-dimensional vector and em are collinear. The same thing goes when α takes all 

values in ℝ. In particular, we observe that α always takes a value coinciding with the m-th contravariant 

component of x. We note that only the m-th component of x in (3) is not equal to 0. All other components of it 

are equal to 0. We write 

(m)x = x
m
em                                   (16) 

Each state of nature is geometrically established by a straight line belonging to E
m
. Each straight line of E

m
 

identifies an one-dimensional subspace of E
m
 ((Pistone, Riccomagno, & Wynn, 2001)). The direct sum of m 

one-dimensional subspaces of E
m
 coincides with Em itself so we write 

                                (17) 

where each    )
 , i = 1, ... , m, denotes the i-th one-dimensional subspace of E

m
. We note that this direct sum is 

also orthogonal. Also, it turns out to be 

                          (18) 

where we have dim E
m
 = m. After taking (17) into account we write 

                               (19) 

where each (i)x is an element of    )
 , i = 1, ... , m, while x is an element of E

m
. The contravariant components of 

(i)x are given by 

                                   (20) 

where we have i = 1, ... , m. We note that   
 
 denotes the Kronecker delta. If it turns out to be i = j then we have 

  
 
  . If it turns out to be i, j then we have   

 
  . We note that (20) is characterized by the Einstein 

summation convention. Thus, we are able to write 

                           (21) 

where we have i = 1, ... , m. We have to note another very important point: we say that we have x
1
 < x

2
 < ... < x

m
 

without loss of generality because we could indifferently choose any ordered m-tuple of straight lines of E
m
. All 

these straight lines of E
m
 are the axes of the coordinate system under consideration. A single state of nature is a 

particular random quantity. It follows that the probability of an event is conceptually contained in the prevision 

or expected value or mathematical expectation of a random quantity. The notion of prevision of a random 

quantity is a unique notion (Berti, Regazzini, & Rigo,2001). It is called probability in the case of events. Hence, 

the same symbol P is used in order to denote both the prevision of a random quantity and the probability of an 

event. 

6. The Expected Utility Function Viewed as a Vector Whose M Components Are All Equal 

It is possible to assign a further real number to every element Ei expressed by x
i
, i = 1, ... , m, belonging to one 

of m straight lines of E
m
. It is denoted by u(x

i
), i = 1, ... , m. We observe that it turns out to be u(x

1
) < u(x

2
) < ... < 
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u(x
m
). All these numbers identify a utility function (Markowitz, 1987). They represent a way of describing 

subjective preferences. We note that a more preferred alternative gets assigned a larger number than a less 

preferred alternative. Each u(x
i
) is a numerical representative of Ei, i = 1, ... , m. We say that u(x

i
), i = 1, ... , m, is 

a point of the corresponding straight line of E
m
. We consequently observe that the expected utility function is 

given by 

                             (22) 

where we have 0 ≤ P(Ei) ≤ 1, i = 1, ... , m, and ∑   
 
      because we consider a coherent evaluation of the 

probabilities related to the set of events expressed by {E1, ... , Em}. We consider the same events having the same 

probabilities viewed as masses. Only their numerical representatives are different. They coincide with u(x
1
), ... , 

u(x
m
), where we have 

                                  (23) 

for every i = 1, ... , m. We note that the Einstein summation convention does not hold with regard to (23). We 

say that (22) is an m-dimensional vector belonging to E
m
 whose contravariant components are all equal. We note 

that the i-th contravariant component of  ̅ is given by 

                                    (24) 

where we have i = 1, ... , m. We observe that it turns out to be u(0) = 0. Each contravariant component of  ̅ is 

then obtained by means of a linear combination. This linear combination is characterized by (24). We observe 

that the Einstein summation convention holds with regard to (24). Each contravariant component of  ̅ is then 

established by m groups of numbers where every group of numbers consists of m numbers that are added. When 

we consider the first contravariant component of  ̅ we note that only the first element of the first group having 

m elements as summands is not equal to 0. All other elements of the first group having m elements as summands 

are equal to 0. When we consider the first contravariant component of  ̅ we note that only the second element 

of the second group having m elements as summands is not equal to 0. All other elements of the second group 

having m elements as summands are equal to 0. When we consider the first contravariant component of  ̅ we 

note that only the m-th element of the m-th group having m elements as summands is not equal to 0. All other 

elements of the m-th group having m elements as summands are equal to 0. The same thing goes when we 

consider all other contravariant components of  ̅. We observe that it turns out to be 

                                 (25) 

where all components of  ̿ ϵ E
m
 are equal. We write 

                                   (26) 

for every i = 1, ... , m. 

7. The Expected Utility Function Geometrically Decomposed Inside of a Linear Space 

If we decompose a contingent consumption plan characterized by m possible consumption bundles then we are 

also able to decompose the expected utility function given by U(x
1
, ... , x

m
) (Schoemaker, 1982). Given any 

one-dimensional subspace of E
m
, the collinear vectors related to U(x

1
, ... , x

m
) are two. We have 

                                           (27) 

as well as 

                                 (28) 

with regard to the first one-dimensional subspace of E
m
. A same probability denoted by p1 is associated with (28) 

even when u(x
1
) varies. In general, a same probability denoted by p1 is associated with (28) when we consider 

u(x
1
) +a, where a is an arbitrary constant. We identify different m-dimensional vectors on a same straight line in 

E
m
 in this way. The direction of this straight line is established by e1. All these collinear vectors lying on the 

straight line established by e1 represent the same event from a randomness viewpoint on condition that the 

starting inequalities given by u(x
1
) < u(x

2
) <... < u(x

m
), where we have a = 0, continue to be valid in the form 

expressed by u(x
1
) + a < u(x

2
) + a < ... < u(x

m
) + a, where we have a ≠ 0. We evidently consider a positive 

monotonic transformation in this way. This same event is then realized when the true value of {x
1
, x

2
, ... , x

m
} to 

be verified a posteriori coincides with the lowest possible value of {x
1
, x

2
, ... , x

m
}. Conversely, we write 
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                                             (29) 

as well as 

                                  (30) 

with regard to the m-th one-dimensional subspace of E
m
. A same probability denoted by pm is associated with 

(30) even when u(x
m
) varies. In general, a same probability denoted by pm is associated with (30) when we 

consider u(x
m
) + a, where a is an arbitrary constant. We identify different m-dimensional vectors on a same 

straight line in E
m
 in this way. The direction of this straight line is established by em. All these collinear vectors 

lying on the straight line established by em represent the same event from a randomness viewpoint on condition 

that the starting inequalities given by u(x
1
) < u(x

2
) <... < u(x

m
), where we have a = 0, continue to be valid in the 

form expressed by u(x
1
) + a < u(x

2
) + a < ... < u(x

m
) + a, where we have a ≠ 0. We evidently consider a positive 

monotonic transformation in this way. This same event is then realized when the true value of {x
1
, x

2
, ... , x

m
} to 

be verified a posteriori coincides with the highest possible value of {x
1
, x

2
, ... , x

m
}. The same thing evidently 

goes when we consider all other one-dimensional subspaces of E
m
 (von Neumann & Morgenstern, 1947). Given 

any one-dimensional subspace of E
m
 established by a straight line in Em, we are able to consider infinite scalars 

related to this straight line of E
m
. These scalars coincide with the nonzero contravariant components of all the 

m-dimensional collinear vectors with respect to one of the basis vectors. If a varies in ℝ then there are infinite 

possible positive monotonic transformations that can theoretically be considered. We say that there are infinite 

possible utility functions that can theoretically be considered. It is then possible to move along every straight line 

of E
m
 in order to consider them. The expected utility function always coincides with the direct sum of m vectors 

related to m incompatible and exhaustive events. Such a direct sum is also orthogonal. These m vectors belong to 

m one-dimensional subspaces of E
m
. An mdimensional vector belonging to E

m
 is uniquely obtained by means of 

a linear combination of m basis vectors. We denote it by y. The contravariant components of this m-dimensional 

vector are m scalars whose sum coincides with the expected utility function given by 

              (31) 

We therefore write 

                      (32) 

where we have y ϵ E
m
. Each of these m scalars is obtained by multiplying one of the m probabilities related to m 

incompatible and exhaustive states of nature by the contravariant component of the corresponding 

m-dimensional collinear vector belonging to one of the m one-dimensional subspaces of E
m
. 

8. A Condition of Coherence Compatible with All Possible Attitudes in the Face of Risk of a Consumer 

The expected utility function has an additive structure (Markowitz, 1959). This means that the choices that a 

given consumer makes when a state of nature occurs are independent from the choices that he makes when 

another state of nature occurs, where one and only one state of nature occurs. This independence assumption is 

entirely caught by the linear independence of the basis vectors. A univariate random quantity representing all 

possible values of an investment denoted by A is expressed by XA. A univariate random quantity representing all 

possible values of an investment denoted by B is expressed by XB. We decompose       
    

       
  , with 

  
     

      
 , and       

    
       

  , with   
     

      
 , inside of E

m
. We assign a 

number to every consumption bundle given by   
 , i = 1, …, m, and   

 , i = 1, …, m. It is denoted by     
 ), i 

= 1, …, m, and     
 ), i = 1, …, m. We associate a probability denoted by   

 
 with every     

 ), i = 1, …, m, 

where we have   
      

   . These probabilities are the same of the ones associated with   
    

 , …,   
 , 

because we deal with the same events. We associate a probability denoted by   
 

 with every     
 ), i = 1, …, m, 

where we have   
      

  1. These probabilities are the same of the ones associated with   
    

 , …,   
 , 

because we deal with the same events. It is therefore possible to calculate         
      

 )   ̅A, as well 

as         
      

 )   ̅B. It is also possible to calculate P(XA) =  ̿A as well as P(XB) =  ̿B. We consider 
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their distances from the zero vector of E
m
. For instance, we observe that if the components of  ̅A and  ̅B are 

positive then we strictly prefer  ̅A when it is more distant from the origin than  ̅B. We mathematically write 

∥  ̅A∥ >∥  ̅B∥,                                    (33) 

where ∥  ̅A∥ is the norm of  ̅A while ∥  ̅B∥ is the norm of  ̅B. The same thing goes when we consider  ̿A and 

 ̿B. In general, one establishes if it turns out to be 

                (34) 

or 

                (35) 

or 

               (36) 

The criteria of coherent decisions under uncertainty are all those consisting of the consideration of infinite utility 

functions and any coherent evaluation of the probabilities associated with every single random case. One of these 

utility functions must coherently be chosen (Johnson & Payne, 1985). Moreover, the criteria of coherent 

decisions under uncertainty are all those by means of which one fixes as one’s goal the maximization of the 

prevision of the utility associated with a contingent consumption plan (MacCrimmon, 1968). We say that a 

consumer coherently behaves in the face of risk when there exists an m-dimensional vector of Em uniquely 

obtained by means of a linear combination of m basis vectors. We have 

                        (37) 

where it turns out to be Z ϵ E
m
. The sum of the real coeffcients of this linear combination coincides with u(x

i
)pi, i 

= 1, … , m. It is a mean value of u(x
i
), i = 1, … , m. We propose a geometric condition of coherence compatible 

with all possible attitudes in the face of risk of a consumer. It is expressed by (37). It is appropriate to propose it 

because the attitude in the face of risk of a consumer could unexpectedly change. It depends on his temperament 

and his current mood. Moreover, it is also influenced by the value of his estate denoted by F. It is a random 

quantity because. This means that the true value of F can be great or low. If the true value of F is unexpectedly 

great then his attitude in the face of risk may alter. The same thing goes if the true value of F is unexpectedly low 

(Slovic, Fischhoff, & Lichtenstein, 1977). We do not write 

u(x)=u(x
i
)pi                                      (38) 

with i = 1, … , m, where (38) means that the right of getting x
1
 associated with E1, x

2
 associated with E2, … , x

m
 

associated with Em, whose probabilities are expressed by p1; p2, … , pm, is equal to the right of getting the 

certainty equivalent expressed by x. This is because we decompose the expected utility function inside of Em, so 

we refer to infinite utility functions for which it turns out to be 

u(x
1
)< u(x

2
) < … <u(x

m
)                                  (39) 

Each of them could indifferently be a concave or convex or linear utility function. 

9. Monetary Value and Utility Coincide in the Case of a Risk-Neutral Consumer 

We get out of E
m
. Let u(x) be a continuous and strictly increasing utility function. It is a real-valued function 

having a real variable. By considering the inverse u
-1

(y) of u(x) we obtain 

x = u
-1

{u(x
i
)pi}                                     (40) 

When we deal with a risk-neutral consumer whose utility function denoted by u(x) is a linear function we note 

that x is equal to P(X) = x
1
p1 + … + x

m
pm. Such a utility function is a strictly increasing function whose 

increments (onto the y-axis) between A and x as well as between x and B are equal for a given consumer when 

and only when he is indifferent (onto the x-axis) between the choice of x, which is the certainty equivalent, and 

the choice of purchasing a lottery ticket connected with two random events. They are A = “the ticket is not drawn” 

and B = “the ticket is drawn”, where A and B have equal probabilities. We have P(A + B) = P(A) + P(B) = 1 

because A and B are incompatible and exhaustive events. This means that it turns out to be P(A) = P(B) = 
 

 
. If 

P(X) = S, where S is an arbitrary monetary value which is different from 0, then we are able to say that a 

risk-neutral consumer is indifferent between receiving with certainty S or 2S = S + S in the case that A or B 
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occurs. This means that P(X) = S coincides with P(2SA) = 2SP(A) = 2S
 

 
 = S. If P(X) = -S , where -S is an 

arbitrary loss which is different from 0, then we are able to say that a risk-neutral consumer is indifferent 

between losing with certainty -S or -2S = -(S + S ) in the case that A or B occurs. This means that P(X) = -S 

coincides with P(-2SA) = -2SP(A) = -2S
 

 
= -S. We are also able to say that a risk-neutral consumer is indifferent 

between accepting or not accepting a bet for which it is possible for him to gain S if A occurs or to lose -S if B 

occurs. This means that 0 coincides with P(SA) + P(-SB) = 
 

 
 

 

 
 = 0. It is evidently possible to extend what we 

have said. For instance, if P(X) = 2S then we are able to say that a risk-neutral consumer is indifferent between 

receiving with certainty 2S or 4S = S + S + S + S in the case that A or B occurs. This means that P(X) = 2S 

coincides with P(4SA) = 4SP(A) = 4S
 

 
= 2S. It follows that P is additive, where P is nothing but a subjective price. 

Thus, P(X) is the prevision or mathematical expectation or price of X for a risk-neutral consumer. We therefore 

assume that if a risk-neutral consumer is willing to consume n different random quantities denoted by X1, …, Xn 

at n prices denoted by P(X1), … , P(Xn) then he is willing to consume them all together, where their price 

coincides with the sum of these n prices. We write P(X1 + … + Xn) = P(X1) + … + P(Xn). If the criterion of the 

mathematical expectation is applied to the scale of utility coinciding with the monetary one then we say that 

among decisions under uncertainty leading to different random quantities a risk-neutral consumer chooses that 

random quantity having the highest prevision or mathematical expectation or price. If the scale of utility 

coincides with the monetary one then we write u(S) = S. We say that a risk-neutral consumer is rigid with respect 

to risk because we assume that P is additive. 

10. Conclusions 

A univariate random quantity representing a contingent consumption plan has been studied inside of E
m
 because 

utility and probability are both subjective. We have considered distributions of probability embedded in a linear 

space provided with a Euclidean metric on it. We have replaced a closed structure with another one: we have 

replaced a σ-algebra witha linear space over ℝ. We have studied coherent decisions under uncertainty having as 

their goal the maximization of the prevision of the utility associated with a contingent consumption plan. We 

have studied the criterion of the mathematical expectation when it is applied to utility and monetary values. 

When it is applied to monetary values we have observed that among decisions under uncertainty leading to 

different random quantities a consumer chooses that random quantityhaving the highest prevision or 

mathematical expectation. When it is applied to the notion of utility we have considered the independence 

assumption as an implicit condition of coherence. This assumption is entirely caught by the linear independence 

of the vectors of an orthonormal basis of E
m
. We have observed that a risk-neutral consumer coherently chooses 

a linear utility function as well as he coherently chooses his probabilities associated with every single random 

case. He does not choose what it is necessary in order to be coherent. This thing cannot arbitrarily be chosen. We 

have proposed a geometric condition of coherence compatible with all possible attitudes in the face of risk of an 

individual because we have measured utility inside of Em by taking u(x
1
) < … < u(x

m
) into account. We have 

consequently decomposed u(x) inside of E
m
 in this way. 
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