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Abstract 

Forecast combination has been widely applied in various fields since the seminal article of Bates and Granger 

(1969). However, these research were focused only on time series data. Few study focus on the spatial data, this 

paper proposes a novel adaptive spatial forecast combination method with varying weights based on the 

geographically weighted regression technique. Finally, the proposed method is applied to the Boston house 

prices prediction, and the results indicate that our procedure performs better than the other forecast combination 

methods. 

Keywords: geographically weighted regression, combining forecast, local weighted least-squares approach, 

varying weights 

1. Introduction 

Forecast combination method has been theoretical studied in econometrics and applied in many fields for a long 

time since the seminal article of Bates and Granger (1969). The recent advances can be found in Granger (2006), 

Timmermann (2006), Claeskens et al. (2016) and Chan and Pauwels (2018). 

As we all known, forecast combination method was focused only on time series forecasting problem. However, 

different to time series forecasting, spatial forecasting or spatial prediction is also very important in many areas, 

such as economics, geography, population studies, environment science, ecology and epidemiology. Spatial 

prediction methods can be divided into two classes, one is geostatistics (spatial statistics) methods, the other is 

spatial econometrics methods. In geostatistics, the prediction of unknown quantities at given locations is 

commonly made by the kriging technique. In addition to the kriging technique for modeling regular lattice 

spatial data, the spatial econometrics models including spatial autoregressive models and geographically 

weighted regression can also be used. More discussion and comparison on these two kinds of spatial prediction 

can be found in Tsutsumi and Seya (2009) and Mojiri et al. (2017). However, little efforts have been devoted to 

spatial forecast combination. This paper wants to fill up this gap, and proposes a novel spatial combining 

prediction method with varying weights  based on the geographically weighted regression technique. 

The rest of this paper is organized as follows. In Section 2, the spatial forecast combination method is proposed. 

In Section 3, the proposed approach is applied to the Boston house prices prediction. Conclusion is presented in 

Section 4. 

2. Method 

To proposed the new method, we briefly describe a simple combined forecast method based on the Ordinary 

Least Squares (OLS) regression. OLS-based forecast combination method was studied by Granger and 

Ramanathan (1984). They proposed to combine forecasts with unrestricted regression coefficients as weights. 

Let fi
j
 denote an out-of-sample prediction value of the variable yi by the jth individual forecasting approach at 

spatial location (ui,vi), for i=1, 2, ... , n and j=1, 2, ... , p. Then, we can define the following linear regression 

model. 
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Apply the Ordinary Least Squares approach to linear regression model (1), we can obtain the OLS estimator for 
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Then, we can construct prediction value for y0 at a new location (u0,v0) by the OLS combined forecast method. 

Firstly, we obtain prediction f0
j
 ,j = 1, 2, ... , p by p individual forecasting methods. Then, combined forecast for 

y0 can be defined as 

.ˆˆˆŷ
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To improve the constant weights forecast combination methods, Deutsch et al. (1994) proposed a time-varying 

weights combined forecast method. They considered the combination of forecasts using changing weights 

derived from switching regression models or from smooth transition regression models. Discussions on 

time-varying weights forecast combination method can be found in Billio et al. (2000), Terui and van Dijk 

(2002), Guidolin and Timmermann (2009) and Raftery et al. (2010). We are motivated to propose a spatial 

combined forecast method with spatial-varying weights. 

Based on model (1), we can get the following spatial varying coefficient model by allowing the regression 

coefficients T
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Compared with linear model (1), β(۰) = [β0(۰), β1(۰), ... , βp(۰)]

T
 is not a p-dimensional vector of constants but 

unknown functions of geographical locations, 

To estimate spatial varying model (4), Brunsdon et al. (1996) proposed a geographically weighted regression 

(GWR) approach. The GWR method estimates the coefficients by the local weighted least-squares technique in 

the framework of kernel smoothing. More references on GWR can be found in the monograph Fotheringham  et 

al. (2002). Now, for a spatial location (u0,v0), we apply this technique to estimate the regression coefficients 
T

p
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location (ui, vi). The GWR estimation of β(u0,v0) is to minimize the objective function 
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and K is a kernel function, h is a bandwidth and Kh(۰)=K(۰/h)/h. 
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explicitly expressed by 
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As usual, the weight function Kh(۰) in equation (5) can be chosen to be the Gaussian weight 
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For the choice of bandwidth h, various data-driven methods, such as cross-validation (CV), generalized 

cross-validation (GCV), and AIC, can be applied, more details can be found in Fotheringham et al. (2002). CV 

method will be employed in the next section. 

Then, the GWR combined forecast for y0 based on individual forecasting values p
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3. Results 

We now illustrate the proposed estimating procedure by analyzing the Boston Housing data set, which was used 

originally by Harrison and Rubinfeld (1978) and corrected for a few minor errors by Gilley and Pace (1996). The 
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data set consists of the median value of owner-occupied homes in 506 census tracts in the Boston Standard 

Metropolitan Statistical Area in 1970, along with 13 accompanying sociodemographic and related variables, and 

is now freely available through the Sedep package of the open source software R. Details of variables can be 

found in Table 1. 

 

Table 1. Description of the Boston dataset  

Variable Description Defined variable 

MEDV median value of owner-occupied homes in 1,000USD )(ln MEDVY   

CRIM the per capita crime rate by town CRIMX 
1

 

ZN proportion of area zoned with large lots ZNX 
2

 

INDUS the proportion of non-retail business acres per town INDUSX 
3

 

CHAS the Charles River dummy variable CHASX 
4

 

NOX the nitrogen oxide concentration in parts per 10 million 
2

5
NOXX   

RM the average number of rooms in owner-occupied homes per dwelling 
2

6
RMX   

AGE the proportion of owner-occupied homes built prior to 1940 AGEX 
7

 

DIS the weighted distances to five employment centers in the Boston region )(ln
8

DISX   

RAD the index of accessibility to radial highways )(ln
9

RADX   

TAX the full value property tax rate per 10,000USD TAXX 
10

 

PTRATIO the pupil-teacher ratio by town school district PTRATIOX 
11

 

B the black proportion of population by town BX 
12

 

LSTAT the proportion of population that is in the lower status )(ln
13

LSTATX   

 

We apply the following five models as individual forecasting procedures. M1 is a traditional linear regression 

model. To capture the “large-scale” locational effects between response variable and associated covariates,  

Pace and Gilley (1997) considered M2 with (ui, vi) is the latitude (LAT) and longitude (LON) of the ith 

observation. M3 is a spatial error model, M3 is a spatial autoregressive model, and M4 is a spatial Durbin model. 

We use the Euclidean distance in terms of longitude and latitude to set up the spatial weight matrix W. We 

choose the threshold distance to be 1 which gives a Wn matrix with 1.18% nonzero elements. 
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For 506 observations, we divided the data into a training set (486 observations) and a test set (20 observations). 

Based on the training set and the above five individual models M1-M5, we can obtain out-of-sample forecasting 

value for response variabe Y at each spatial location. Then, based on the true values of Y and the according four 

forecasting values, we can apply the above five combined forecast approaches to get weights of each individual 

forecasting method. Nextly, based on the training set and the above five individual models M1-M4, we can obtain 

individual forecasting values for response variabe Y of test set. Finally, we get combined forecasting values by 

their individual forecasting values and weights. 

Based on the above five individual forecasting models, besides the proposed GWR-based forecast combinations 

method, we will apply the following four frequently used forecast combinations schemes. It is obviously that the 

four methods are all constant weights procedures. The proposed GWR method is a varying weights procedure. In 

our real data analysis, the weights for the individual forecasting models M1 to M5 according to these fours 

forecast combinations methods are computed by the R package ForecastCombinations. Denote f0
k
, k=1,2, ... ,5 
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are out-of-sample individual forecasting values for housing price at location (u0,v0) according to individual 

models M1 to M5. 

1) Simple average (SA). The most natural approach to combine forecasts is using the mean of all those forecasts. 

The combined forecast is defined as 
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2) OLS. The OLS-based combine forecasts method was introduced in Section 2, and the combined forecast is 

given as 
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3) Constrained Least Squares (CLS) regression. For linear model (1), OLS estimator was obtained without any 

restriction. To deal with a problem sometimes dubbed as “bouncing betas”, we allow 

 
pk

p
k

p

k

p
,,2,1,0,1

1

1






 

Then, apply the constrained Least Squares for model (1) with constrained conditions, we can get the CLS 

estimator for β, and this combined forecast is given 
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4) Variance-based, or Inverse Mean Squared Error (IMSE). This method was applied by Stock and Watson (2004) 

for combining forecasts of output growth. More accurate forecasting methods (lower MSE) are weighted more 

heavily in this method. MSE here is computed based on out-of-sample forecasts, sometimes referred to as Mean 

Squared Prediction Error. The IMSE combined forecast is defined as 
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To measure the performance of the individual and combined forecasting approaches, we use the following four 

indexes, they are computed by the true vales and forecasting values of test set. Results are shown in Table 2. 
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From the results, it is obviously that M5 perform the worst compared with other individual forecasting model in 

all tables. Simple-Mean combined forecasting approache perform the worst compared with other four forecast 

combination methods. The proposed GWR-based combined method perform best except that its MSE is larger 

than that of individual model M3. 

 

Table 2. Results of the individual and combined forecasting approaches 

 Single Model Forecasting Combination Forecasting Method 

 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 SA OLS CLS IMSE GWR 

MSE 0.0601 0.0610 0.0526 0.0619 0.0808 0.0610 0.0591 0.0530 0.0599 0.0565 

MAE 0.1696 0.1705 0.1376 0.1698 0.1790 0.1607 0.1318 0.1382 0.1579 0.1295 

MSPE 0.0062 0.0063 0.0051 0.0063 0.0073 0.0060 0.0052 0.0052 0.0059 0.0050 

MAPE 0.0548 0.0551 0.0444 0.0547 0.0570 0.0518 0.0417 0.0446 0.0509 0.0410 

 

4. Discussion 

To combining different individual forecasting values for one event with spatial information, this paper proposes a 

novel forecast combination method with varying weights. By the geographically weighted regression technique, 

we can obtain spatial varying weights according to the individual forecasting methods. The results on Boston 

house prices indicates that the procedure performs better than the other forecast combination methods. 
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