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Abstract 

The strategic position of the northern Mediterranean ports gained importance with the announcement of Chinese 

investments, which form part of the One Belt One Road project. The research presented in this paper focuses on 

small ports, which have not heretofore been the subject of interest. In the first half of 2019, both Croatia and 

Italy agreed on participation in the project, which aims to shorten the journey from China to central Europe by 

changing sea route destinations to ports in the Adriatic Sea. This paper examines the technical and scale 

efficiency of 25 ports in Croatia, Italy and Slovenia, as a possible prerequisite for investments. The research uses 

Data Envelopment Analysis (DEA) variable returns to scale an output-oriented model on a panel data sheet, for 

25 ports in the period from 2009 to 2018. This research suggests that the number of efficient ports, in this case, is 

not directly related to the size of the port or to the country in which it is located. However, it is more often the 

case that larger ports are more efficient. For all inefficient ports, the DEA provides best practice examples to 

which ports should aspire and therefore highlights the practical implication of the work. 

Keywords: technical efficiency, scale efficiency, cargo ports, DEA, output-oriented 

1. Introduction 

Some of the ports that are the focus of this research could be those considered for investments by the Twenty-First 

Century Maritime Silk Road project, which is part of the One Belt One Road (OBOR) initiative presented by 

Chinese president Xi Jinping in 2013. The journey from Shanghai to the northern Adriatic Sea is approximately 

8,600 miles, compared to 11,000 miles from Shanghai to Hamburg. The latter route requires an additional eight 

days of navigation (Putten, Seaman, Huotari, Ekman, & Otero-Iglesias, 2016). Thus, the Adriatic Sea is the fastest 

maritime route from China to central and northern Europe, which places additional importance on the strategic 

position of ports in the Adriatic Sea. Once ships arrive at Adriatic ports, the goods they carry can be transported to 

other European countries by railway. This requires considerable changes to the infrastructure of both ports and 

railways. The Italian ports of Venice and Trieste are already trying to be more competitive in these fields, in order 

to meet the needs of OBOR. The port of Venice is planning to build a new offshore port that can accommodate 

vessels of up to 18,000 TEU, while the Port of Trieste is investing in a new railway facility that will facilitate 

transporting goods from Italy to Europe and that will be able to manage 2 million TEU (Fardella & Prodi, 2017). 

The authors of The Political Economics of the New Silk Road assert that trade through railroads between east Asia 

and Europe only accounts for around three percent of the total trade between these continents. In comparison, sea 

routes currently manage around 95 percent of trade. In addition, in terms of costs, shipping goods by sea is much 

more affordable than transporting goods by land routes (Sárvári & Szeidovitz, 2016). Thus, ships docking in the 

Adriatic Sea, instead of taking more roundabout routes, would markedly reduce costs. 

This research evaluates the effectiveness of these ports, including examining key investment factors, the depth of 

the channels, anchorage depth, import volume, availability of the railway, and nearest airport distance. All these 

factors are included under the assumption of their importance for a well-functioning delivery channel, from 

transporting goods by ship to delivering goods to destination countries by other means of transport. Seaport 

performance can be measured by evaluating productivity or efficiency. Productivity evaluation considers 

infrastructure outputs, while efficiency measures the highest possible potential output that can be produced with 

given inputs (Baran & Gorecka, 2015). The two most commonly used techniques for efficiency evaluation are 

Stochastic Frontier Analysis (SFA) and DEA. Previous SFA research on technical efficiency concluded that most 
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ports have responded positively to the hypothesis that imports affect ports' competitiveness and efficiency, since 

ports are aware of trade impact when making infrastructure changes. Tests of several model variations revealed 

that the best technical efficiency was achieved by the model in which imports were in the deterministic part 

(Buljan Perusic & Zhang, 2019). This research present analysis of inefficient ports, through separate technical 

efficiency and scale efficiency evaluations that use DEA analysis with output orientation. To our knowledge, this 

type of research has not been performed on the mentioned cargo ports. The results on inefficient ports could be 

useful for port management, to determine the source of the inefficiency and to address their reference ports. For 

port decision-makers and managers, it is more convenient to influence output level to achieve full technical 

efficiency than to intervene in infrastructural changes of inputs over a short period of time. DEA analysis is 

suitable for this research because it returns efficiency scores and indicates in which areas inefficient ports need to 

improve, in order to operate at a higher level. 

2. Literature Review 

Data envelopment analysis (DEA) is a non-parametric linear program, which is used to estimate different kinds 

of efficiency. This technique differs from other efficiency analysis, as DEA observes single units and compares 

them to others, rather than finding averages of all units. A single unit in DEA is named a decision-making units 

(DMUs), which, in our case, is each port. The usual process of research is to find the most efficient DMUs, 

which are then compared to others. To calculate relative efficiency, the model needs to run n times for each 

DMU (Toloo & Nalchigar, 2009). All observations are ‘enveloped’ and from there are selected ‘frontiers’ ones. 

(Cooper, Seiford, & Tone, 2006). This analysis calculates the amount of inefficiency for every unit, according to 

the best DMU, and puts others on the efficiency frontier or under it. In our research, each port is represented as a 

single DMU. This technique was introduced in the late 1970s, and, since then, it has been constantly upgraded 

and disseminated throughout a range of industries studies, due to its ability to handle multiple inputs and outputs 

and to calculate technical, scale, allocative, and other types of efficiency. In 1957, Farell warned researchers that 

it is inadequate to interpret efficiency on the basis of one input, as this fails to include multiple inputs. His 

proposed technique thus covers multiple inputs with only one output (Farrell, 1957). Later, in 1978, the DEA 

technique was introduced with an extension named CCR, which is based on a set of described foundations but 

also includes multiple input and multiple output solutions that measure efficiency and input orientation (Charnes, 

Cooper, & Rhodes, 1978). The technique measures DMUs, using a constant return to scale (crs), meaning that all 

DMUs should obtain their optimal scale. Later, a variable returns to scale (vrs) model version of DEA was 

introduced, which allows differentiation between pure technical and scale efficiency (Banker, Charnes, & Cooper, 

1984). This model is named BCCthe  after the surnames of the authors that proposed it. 

We use both model versions, BCC and CCR, as both are widely used and applied in the evaluation of healthcare 

institutions, education systems, state institutions, and numerous industries. Togzon (2001) was the first to apply 

DEA to ports, in a study based on the earlier approach of Roll and Hayuth (1993). Where data in this latter study 

was hypothetical, Togzon applied the proposed approach to real data measuring selected Australian ports' 

technical efficiency. He stated that the DEA technique has multiple benefits regarding measuring port efficiency. 

Firstly, DEA is able to handle multiple outputs, as opposed to conventional estimation methods that are only able 

to incorporate one output. Togzon use two different outputs, as well as throughput and ship working rate. 

Secondly, DEA focuses on individual observations, which is not the case in other statistical approaches that 

focus on calculating averages (Togzon, 2001). In the same year, Valentine and Gray (2001) conducted 

cross-sectional data research on 31 selected ports, of the world’s 100 largest. Their goal was to establish the 

relationship between ports’ efficiency and type of ownership, or the structure of the organisation that manages 

the port. They used the CCR model of DEA, with two inputs (the total length of berths and length of container 

berth) and two outputs (total throughput and number of containers). The orientation of the model also plays a 

major role in the results’ outcome. Researchers that use DEA for port efficiency analysis use both an 

input-oriented model (Kammoun, 2018) and an output-oriented model (Kalgora, Goli, Damigou, Abdoulkarim, 

& Amponsem, 2019; Cullinane, Ji, & Wang, 2005). The applicability of the technique in ports has gained new 

prominence with the increasingly popular topic of environmental efficiency of ports. Although DEA generally 

results in high-efficiency values for operational efficiency, the average score is much lower for environmental 

efficiency. In research on Korean ports, the average DEA result was 0.364 (Chang, 2013). Increasing operational 

efficiency by investing in equipment and enlarging the number of berths would reduce the consumption of 

energy and, by that, increase environmental efficiency (Wilmsmeier & Spengler, 2016).  

However, there are several disadvantages to the DEA method for estimating efficiency. Most ports that prove to 

be inefficient cannot be classified. For example, if both ports are inefficient with values of an 0.80 and 0.8 

increase, it cannot be said which port is more efficient (Lee, Chou, & Kuo, 2005). Additionally, final results are 
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very responsive and sensitive to the selection of outputs and inputs, so their choice needs to be analyzed before 

the final implementation of research. Even then, researchers can not test the appropriateness of the inputs and 

outputs (Berg, 2010). Nevertheless, because of the amount of detail in the results that are useful for analyzing 

inefficient ports, this technique is preferred over others. Inefficient seaports lead to higher handling costs, which 

are a component of total shipping costs. Ports with the lowest charging prices for handling goods are usually 

those the most efficient ports (Clark, Dollar, & Micco, 2004). 

3. Model and Data Description 

When time is not taken into consideration, the outcome results of ports’ efficiency can be biased, particularly since 

efficiency can fluctuate over time (Cullinane, Song, Ji, & Wang, 2004). Therefore, it is desirable to use panel data 

instead of cross-sectional datasets. Consequently, we track changes over a ten-year period from 2009 to 2018. 

We used a DEA command that was established for Stata programming (Ji & Lee, 2010), which is as follows: 

 

dea ivars= ovars[if] [in] [, rts(crs/vrs/drs/nirs) ort (in/out)] stage(1|2) trace saving (filename) 

adapted as: 

dea channeldeptm anchoragedeptm closestairportkm raiway totalstoragem2 imp = y, rts(vrs) ort(out) 

saving(dta2009) 

 

This command makes it difficult for the author to apply key functions and implement inputs or outputs, which the 

model specifies with ovars[if] [in]. The mentioned function is able to cover multiple inputs and outputs. In our case, 

we have several inputs, including channel dept, anchorage dept, total storage space, import amount, closest railway 

and closest airport, as well as one output, which is total ports throughput in thousands of tons. The returns to scale 

specification rts(crs/vrs/drs/nirs) gives the option to choose constant returns to scale (crs) as the default option, or 

variable returns to scale (vrs), decreasing returns to scale (drs), and nonincreasing returns to scale (nirs). The 

constant return to scale assumption is used when companies operate on an optimal scale. If this is not the case, due 

to imperfect competition, different regulations, government intervention, or constrains on finance, some 

companies might not be able to operate at an optimal scale (Coelli, Rao, O'Donnell, & Battese, 2005). Examining 

port efficiency reveals that variable return to scale is a more appropriate election. We use the vrs option, as this 

includes additional information in the results, in terms of the description of the vrs frontier, which demonstrates 

that DMUs with a result of 1 are increasing returns to scale (irs) and DMUs with a result of -1 are decreasing 

returns to scale (drs). The specification of efficiency orientation can be input-oriented or output-oriented: ort 

(in/out). The output-oriented model can be justified in the port’s industry, through the logic that the port authority 

can influence production level or output by applying different policies and managerial strategies. However, it is 

difficult to change inputs by intervening in infrastructure over a short period of time (Liu, 2010). To summarise, it 

is easier to maximise output, in order to satisfy the level of given input, than to change the input by itself. Stage(1|2) 

signifies the means of identifying the result slacks. We use the default stage(2) file. 

The theoretical background behind the Constat returns to scale (CRS) output-oriented model (CCR model), as 

interpreted by Huguenin (2012), is as follows: 

Maximise ɸ𝑘 

Subject to 

ɸ𝑘𝑦𝑟𝑘 − ∑ 𝜆𝑗𝑦𝑟𝑗
𝑛
𝑗=1 ≤ 0 𝑟 = 1, … … , 𝑠                              (1) 

𝑥𝑖𝑘 − ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 ≥ 0 𝑖 = 1, … … . , 𝑚                              (2) 

𝜆𝑗 ≥ 0  ∀𝑗= 1, … … , 𝑛                                  (3) 

Where: ɸ𝑘 represents the efficiency of each unit (DMU); 

 𝜆𝑗  is weights’ value for inputs and output of unit j; 

 yrk represents the quantity of output r produced by unit (DMU) k; 

 xik quantity of input i that is consumed by unit k; 

 ur is the weight of output r; 

 vi is the weight of input i; 

 n is the number of units to be evaluated; 

 s is the number of outputs; 
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 m is the number of inputs. 

Clear specification of the industry’s inputs and outputs that are used in this research can determine what 

orientation to use. It is not best practice to use input-oriented constant returns to scale model in the firms where 

management is not controlling inputs (D. Cook, Tone, & Zhu, 2014). In order to decide whether research is 

valuable, in terms of the proportion of inputs and outputs, and considering the size of a dataset, it is suggested 

that the number of DMUs should be two or even three times bigger than the combined number of inputs and 

outputs (D. Cook, Tone, & Zhu, 2014). Bigger datasets and larger samples are more likely to be more robust, 

consistent, and less sensitive to change, even if cross-sectional data is observed (Cullinane & Wang, 2006). 

To compare with a VRS output-oriented model (BCC model), ∑ 𝜆𝑗 = 1𝑛
𝑗=1  is added as a measure of returns to 

scale for unit k. (Huguenin, 2012) 

Maximise ɸ𝑘 

Subject to 

ɸ𝑘𝑦𝑟𝑘 − ∑ 𝜆𝑗𝑦𝑟𝑗
𝑛
𝑗=1 ≤ 0 𝑟 = 1, … … , 𝑠                             (4) 

𝑥𝑖𝑘 − ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 ≥ 0 𝑖 = 1, … … . , 𝑚                             (5) 

∑ 𝜆𝑗 = 1𝑛
𝑗=1                                       (6) 

𝜆𝑗 ≥ 0  ∀𝑗= 1, … … , 𝑛                                   (7) 

The VRS output-oriented model dual equation with slacks 

Maximise 

ϕ𝑘 + 𝜀 ∑ 𝑠𝑟
𝑠
𝑟=1 + 𝜀 ∑ 𝑠𝑖

𝑠
𝑖=1                                    (8) 

Subject to 

                             (9) 

𝑥𝑖𝑘 − ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 − 𝑠𝑖 = 0 𝑖 = 1, … … . , 𝑚                          (10) 

∑ 𝜆𝑗 = 1𝑛
𝑗=1                                     (11) 

𝜆𝑗 , 𝑠𝑟 , 𝑠𝑖 ≥ 0  ∀𝑗= 1, … … , 𝑛                             (12) 

The results of this research describe two models for comparison. The CCR model takes constant returns to scale 

into consideration and offers overall technical efficiency results. The BCC model, conversely, divides pure 

technical efficiency and scale efficiency, taking into consideration variable returns to scale. Efficiency, in that case, 

can be written as TEcrs= TEvrs × SE (Coelli, Rao, O'Donnell, & Battese, 2005). To summarise, a difference between 

overall and pure technical efficiency suggests that the port has a scale efficiency and is subsequently rated as 

inefficient. If BCC overall technical efficiency and CCR pure technical efficiency obtain the same result, scale 

efficiency also shows the value of 1. This indicates that the mentioned ports are efficient and do not need to 

improve their operations, and that they are in the stage of constant returns to scale. If the port is not fully efficient 

and records scores below the value of 1, the port can be on increasing (irs) or decreasing returns to scale (drs). 

Those ports that are not fully efficient in 2018 are on increasing returns to scale, although this was not always the 

case in previous years. In addition, the nonincreasing returns to scale measure can be described T.Eff CRS = T.Eff 

NIRS < T.Eff VRS, in which case irs will prevail, or if T.Eff CRS < T.Eff NIRS = T.Eff VRS then drs will prevail (Gutiérrez, 

Lozano, Adenso-Díaz, & González-Torre, 2015). 

4. Results 

The average CCR overall technical efficiency for the year 2018 obtained the value of 0.54, which, in theory, 

indicates that ports could manage to reach the point of efficiency, according to the output-oriented model that is 

implied in the research, while raising their output level by 1.8 times and keeping the same level of input. In 2009, 

the average CCR overall efficiency was higher, obtaining the value of 0.57, which, with all factors unchanged, 

would imply that ports could achieve efficiency if they increase output by 1.7 times. In 2018, 24% of efficient ports 

obtained a value of 1 and were placed on the frontier line. This result implies that these ports are allocating 

resources in the right way and that there is no need for improvement, considering the taken inputs and outputs. 

Conversely, inefficiency can be due to a range of reasons. As Cullinane and Wang (2006) state, this can include 

port governance structure, private sector participation, the economic situation in the region, port competition, and 
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many other factors that make it challenging to provide a general conclusion about the roots of inefficiency. The 

second implied model, BCC DEA, divides pure technical efficiency and scale efficiency by displaying results with 

more information about inefficient DMUs (ports). As shown in Table 1, in 2018, the ports of Catania, Rijeka, and 

Piombino measure technical efficiency of a value of 1, but they are not full in terms of overall technical efficiency 

because their scale efficiency result is lower. This implicates that these ports are not efficient and also indicate that 

this inefficiency is due to scale factors, as opposed to the disposition of inputs and outputs. Conversely, the 

majority of ports, both from the 2009 and 2018 results, reveal ports with scale efficiency of value 1 but with pure 

technical efficiency that is lower than 1. In 2018, eight ports (Ancona, Bari, F. Marittima, Monfalcone, Ortona, 

Ploce, Salerno, and Savona) and in 2009 12 ports (Ancona, Bari, Catania, F. Marittima, M. di Carra, Monfalcone, 

Napoli, Ortona, Ploce, Salerno, Split, and Trieste) exhibited full-scale efficiency and lower pure technical 

efficiency results. These ports should consider the different allocation of inputs that consider the output, rather than 

working on scale factors. 

To present results, we took two years, 2009 (Table 1), from the beginning of the observed period, and 2018 (Table 

2), from the end of the observed period. In 2018, six ports had overall technical efficiency: Genova,  

 

Table 1. Efficiency results for the year 2008 

Year Port Throughput CCR Overall TE BCC Pure TE Scale Eff Returns to scale 

2009 Ancona 5074 0.199002 0.199002 1 - 

2009 Bari 2345 0.173073 0.173073 1 - 

2009 Catania 1283 0.231421 0.231421 1 - 

2009 Civitavecchia 4366 0.194521 0.19688 0.98802 irs 

2009 F. Marittima 5138 0.201512 0.201512 1 - 

2009 Genova 42708 1 1 1 - 

2009 Koper 13322 1 1 1 - 

2009 Livorno 22176 1 1 1 - 

2009 M. di Carrara 2324 0.195805 0.195805 1 - 

2009 Monfalcone 5045 0.341097 0.341097 1 - 

2009 Napoli 10519 0.369375 0.369375 1 - 

2009 Omisalj 5970 1 1 1 - 

2009 Oristano 1364 0.060747 0.061508 0.987632 irs 

2009 Ortona 1008 0.068182 0.068182 1 - 

2009 Palermo 5924 0.252436 0.267136 0.944973 irs 

2009 Piombino 8383 1 1 1 - 

2009 Ploce 2750 0.559832 0.559832 1 - 

2009 Ravenna 23848 1 1 1 - 

2009 Rijeka 5962 1 1 1 - 

2009 Salerno 4812 0.325487 0.325487 1 - 

2009 Savona 15709 0.684158 0.702837 0.973424 irs 

2009 Split 2211 0.451495 0.451495 1 - 

2009 Taranto 38079 1 1 1 - 

2009 Trieste 40986 0.95968 0.95968 1 - 

2009 Venezia 26640 1 1 1 - 
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Table 2. Efficiency results for the year 2018 

Year Port Throughput CCR Overall TE BCC Pure TE Scale Eff Returns to scale 

2018 Ancona 5899 0.182745 0.182745 1 - 

2018 Bari 5339 0.326352 0.326352 1 - 

2018 Catania 6156 0.810507 1 0.810507 irs 

2018 Civitavecchia 10561 0.344208 0.347619 0.990189 irs 

2018 F. Marittima 4913 0.1522 0.1522 1 - 

2018 Genova 51556 1 1 1 - 

2018 Koper 23127 1 1 1 - 

2018 Livorno 30381 1 1 1 - 

2018 M. di Carrara 2218 0.170348 0.178225 0.9558 irs 

2018 Monfalcone 4884 0.273508 0.273508 1 - 

2018 Napoli 15547 0.449289 0.450812 0.996621 irs 

2018 Omisalj 8405 1 1 1 - 

2018 Oristano 2073 0.067564 0.068233 0.990189 irs 

2018 Ortona 1214 0.059939 0.059939 1 - 

2018 Palermo 9672 0.300571 0.318357 0.944133 irs 

2018 Piombino 3480 0.742423 1 0.742423 irs 

2018 Ploce 3341 0.47852 0.47852 1 - 

2018 Ravenna 31058 1 1 1 - 

2018 Rijeka 6113 0.885959 1 0.885959 irs 

2018 Salerno 7797 0.384961 0.384961 1 - 

2018 Savona 13784 0.482734 0.482734 1 - 

2018 Split 2099 0.294764 0.294837 0.999751 irs 

2018 Taranto 20335 0.426885 0.433388 0.984995 irs 

2018 Trieste 57495 1 1 1 - 

2018 Venezia 26326 0.831611 0.833647 0.997559 irs 

 

Koper, Livorno, Omisalj, Ravenna, and Trieste. This nuance suggests that their technical and scale efficiency 

obtain the same result. Also, this result indicates that ports are in the stage of constant returns to scale, and are 

forming a frontier line as the most efficient DMUs. As previously mentioned, there is no need for their resource 

allocation, as long as they are operating with the given inputs and outputs. We cannot find a pattern, in terms of 

port size, as some are the biggest ports in the research but others, like the Slovenian Koper or Croatian Omisalj port, 

are not particularly big, in terms of annual throughput. In 2009, overall efficiency was measured in nine ports, 

which means that important ports like Venezia and Taranto became inefficient over time. 

Average scale efficiency for 2018 was 97%, which means that scale inefficient ports could reduce their size by 3%, 

including the current level of inputs and outputs, to reach the optimal size. 

Ports on the increasing returns to scale, like Napoli, Rijeka, or ten other ports in 2018, indicate that their throughput 

would increase, so they should increase their size to achieve optimal scale. In total, 56% ports were on constant 

returns to scale in 2018 and 44 % were on the stage of increasing returns to scale. This marks a difference from 

2009, when only 16% of ports were in the stage of increasing returns to scale and 84% of ports were showing the 

result of constant returns to scale. 

The results described below, and presented in Figure 1, illustrate how the ports of Genova and Livorno are 

referent ports to most of the other DMUs. These two ports have an overall efficiency value of 1, obtained 

high-performance results, and are placed on the frontier line. Reference data, described below, suggests that 

these ports represent the best example for other ports with similar inputs and output. Figure 1 presents the 

defining part of the results delivered by stage two of the DEA output-oriented model that is used in the research, 

which specifies all efficiency slacks. Two-stage DEA provides results of optimal solutions for the efficiency 

score (theta). From this, we can observe that the best results are achieved by the ports of Catania, Genova, Koper, 

and Livorno. 
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Figure 1. Selected 'Stage 2' results for the year 2018 

 

The slack results indicate that performance can be improved by subtracting some units from the input and output 

variables. In our research, that would maximise the output for a given input. Since it is not appropriate for ports 

to decrease the dept of the channels or anchorage spaces, they should instead accept bigger vessels, as this would 

result in more throughput and thus maximise output or utilise storage capacity in a better way, in order to 

influence the output. 

5. Conclusion 

The research here presented indicates different types of efficiency and clearly illustrates to what extent the 

examined 25 Italian, Croatian, and Slovenian ports are efficient or inefficient. For the year 2018, six ports were 

fully efficient in all categories and their efficiency was not associated with the size of the port’s throughput or 

location (country). Secondly, the research allows closer analysis of inefficiencies. There are two types of technical 

efficiency results, crs technical efficiency and vrs technical efficiency, which allow us to separate pure technical 

efficiency from scale efficiency for all ports that are not fully efficient. For ports like Venezia and Rijeka, which are 

noted possible destinations for the OBOR Twenty-First Century Maritime Silk Road, it is possible to analyse their 

technical inefficiency. The Rijeka port’s inefficiency is based on the scale factor that, in theory, would mean that 

the port could reach an efficiency level by decreasing its size. Thirdly, in addition to the general efficiency results, 

the data demonstrates the ways in which inefficient ports can, by influencing specific inputs, maximise the output 

and achieve the desired result in performance. The results obtained from the panel data for the mentioned ports of 

Croatia, Slovenia, and Italy, over the ten-year period, have varied significantly over the years, mainly because of 
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the economic crisis that occupied Europe at the beginning of the dataset. In general, scale efficiency suggests 

higher results than technical efficiency. Such results are common in efficiency measurements. Observation of DEA 

analysis usually gives the impression that the unit (port) is easily able to reach an efficient point on the frontier line, 

which is the mathematical feasibility. However, this does not guarantee managerial feasibility in the period of 

planning. If decision-makers do not accurately determine the effects of managing inputs and outputs, they are at 

risk of making a mistake (Yang, Wang, & Li, 2018). The implementation of decisions should be accompanied by 

an analysis of efficient ports and their operations. 

Further research should focus on the impact of private ownership in ports and different types of structural 

management. Accordingly, it is possible to analyse to what extent these factors have an impact on (in)efficiency, 

besides port size or infrastructural features. Additionally, the research could be conducted that anticipates the 

consequences of OBOR’s future investments on ports and how this might affect given technical inputs and 

throughput of ports. 
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