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Abstract 

To price and hedge derivative securities, it is crucial to have a good model of the probability distribution of the 

underlying product. In financial markets under uncertainty, the classical Black-Scholes model cannot explain the 

empirical facts. To overcome this drawback, the Lévy process was introduced to financial modeling. Today Gold 

futures markets are highly volatile. The purpose of this paper is to develop a mathematical framework in which 

American options on Gold futures contracts are priced more effectively. In this work, the Generalized Hyperbolic 

process, Normal Inverse Gaussian Process, Generalized Inverse Gaussian Process and Variance Gamma Process 

were used to model the future price. Then, option prices under the risk-neutral pricing process were calibrated and 

then authors attempt to infer the density forecast of future Gold prices at a given time horizon. Finally, Normal 

Inverse Gaussian was selected as the best model for Gold options by significant quantitative comparison between 

parsimonious models.  

Keywords: financial market, lévy process, gold option, volatile  

1. Introduction 

Modeling the dynamics of financial asset prices is the core of modern finance theory. To price and hedge derivative 

securities, it is crucial to have a good model of the probability distribution of the underlying product. The most 

famous continuous-time model is the celebrated Black-Scholes model, which uses the Normal distribution to fit 

the log-returns of the underlying securities. As shown in previous studies, one of the main problems with the Black-

Scholes model (Black & Scholes, 1973) is that the log-returns of stocks/indices are not normally distributed in 

real-life. The log-returns of most financial assets do not follow the Normal law (Cont, 2001; Heyde & Leonenko, 

2005; Kumari & Tan, 2013). They are skewed and have an actual kurtosis higher than that of the normal distribution. 

Furthermore, in traditional diffusion models, price movements are very small in a short period of time. However, 

in real markets, prices may show big jumps in short time periods. When the price process model includes jumps, 

the perfect hedging is impossible. In this case, market participants cannot hedge risks by using only underlying 

assets. For these reasons, diffusion models used in finance is not a sufficient model.  

Therefore, other more flexible distributions are needed. Moreover, it is required to have flexible stochastic 

processes with generalizing the Brownian motion. In order to define a stochastic process with independent 

increments, the distribution has to be infinitely divisible. Such processes are called Lévy processes. The term 

“Lévy process” honors the work of the French mathematician Paul Lévy who played an instrumental role in 

bringing together an understanding and characterization of processes with stationary independent increments. Lévy 

processes form a central class of stochastic processes, containing both Brownian motion and the Poisson process, 

and are prototypes of Markov processes and semi-martingales. Like Brownian motion, they are used in a multitude 

of applications ranging from biology and physics to insurance and finance. This continues to motivate further 

research in both theoretical and applied fields of finance (Eberlein, 2007) and their application appears in the 

theory of many areas of classical and modern stochastic processes of finance and other fields (Kyprianou, 2014). 

‘Gold’ has captured the imagination for thousands of years. Yet, despite the growing importance of derivatives, 

relatively little research has been done on the gold options market. Therefore, the purpose of this study is to develop 

the best option pricing formula for Gold future options which are traded on the Chicago Mercantile Exchange 

(COMEX) under Lévy process frameworks more effectively than Brownian Motion. According to our knowledge, 

this is the first study that introduces the option pricing formula for a Gold option based on the Lévy process. To 

fulfill the objective, the pure jumped Lévy processes: the Generalized Hyperbolic model, Normal Inverse Gaussian 
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process, Generalized Inverse Gaussian process, and variance Gamma process were focused. Finally, option pricing 

based on pure-jumped Lévy models were calibrated with application to Gold options and attempts to infer the 

density forecast of future Gold prices at a given time horizon. Furthermore, the gain of jump Lévy models over 

the Black-Scholes model was judged.   

2. Lévy Processes  

2.1 Mathematical Background  

Stochastic processes are collections of random variables 𝑋𝑡 , 𝑡 ≥ 0 (meaning 𝑡 ∈ [0,∞) as opposed to 𝑛 ≥ 0 

by which means 𝑛 ∈ ℕ = {0,1,2, … }). For us, all 𝑋𝑡 , 𝑡 ≥ 0, take values in a common state space, which we will 

choose specifically as 𝑋𝑡  , ℝ  (or [0,∞)  or ℝ𝑑  for some d ≥ 2 ). 𝑋𝑡  as the position of a particle at time 𝑡 , 
changing as 𝑡 varies. It is natural to suppose that the particle moves continuously in the sense that 𝑡 ⟼ 𝑋𝑡 is 

continuous (with probability 1), or that it has jumped for some 𝑡 ≥ 0: 

   △ 𝑋𝑡 = 𝑋𝑡+ − 𝑋𝑡− = 𝑙𝑖𝑚
↓0
𝑋𝑡+  − 𝑙𝑖𝑚

↓0
𝑋𝑡−  . 

It is usually assumed that these limits exist for all 𝑡 ≥ 0 and that in fact 𝑋𝑡+ = 𝑋𝑡 , i.e. that 𝑡 ⟼ 𝑋𝑡  is right-

continuous with left limits 𝑋𝑡−  for all 𝑡 ≥ 0 almost surely. The path 𝑡 ⟼ 𝑋𝑡 can then be viewed as a random 

right-continuous function. 

Definition 1: A stochastic process 𝑋 = (𝑋𝑡 )𝑡≥0 defined on a probability space (𝛺, ℱ, 𝑃), taking values in ℝ, is 

said to be a Lévy process if it possesses the following properties: 

i. The paths of 𝑋 are 𝑃-almost surely right continuous with left limits. (ie. cadlag paths) 

ii. 𝑃(𝑋0 = 0) = 1 

iii. X has independent increments of the past i.e.𝑋𝑡 − 𝑋𝑠 independent of {𝑋𝑢 : 𝑢 ≤ 𝑠} for 0 ≤ 𝑠 ≤ 𝑡 

iv. X has stationary increments i.e 𝑋𝑡 − 𝑋𝑠 has the same distribution with 𝑋𝑡−𝑠 

v. X is stochastically continuous, 𝑙𝑖𝑚
𝑘 →∞

𝑃(|𝑋𝑡+𝑘 − 𝑋𝑡| ≥ 휀), ∀ 휀 > 0  

The most commonly known examples of Lévy processes are the Poisson process and Brownian motion (also 

named Wiener process). Furthermore, De Finetti (1929) introduced the notion of an infinitely divisible distribution 

and showed that they have an intimate relationship with Lévy processes. This relationship gives a reasonably good 

impression of how varied the class of Lévy processes really is. 

Definition 2: A real-valued random variable 𝑋 has an infinitely divisible distribution if for each 𝑛 = 1, 2, …  
there exist a sequence of independently identical distribution (i.i.d) random variables 𝑋1,𝑛 , 𝑋2,𝑛 , … . 𝑋𝑛,𝑛  such 

that, 

𝑋  𝑋1,𝑛 + 𝑋2,𝑛 + … .+𝑋𝑛,𝑛 

where  is equality in distribution. Alternatively, we could have expressed this relation in terms of probability 

laws. That is to say, the law 𝜇 of a real-valued random variable is infinitely divisible if for each 𝑛 = 1, 2, …  
there exists another law 𝜇𝑛 of a real-valued random variable such that 𝜇 =  𝜇𝑛

∗𝑛. (Here 𝜇𝑛
∗𝑛 denotes the n-fold 

convolution of 𝜇𝑛). 

In view of the above definition, one way to establish whether a given random variable has an infinitely divisible 

distribution is via its characteristic exponent. Suppose that 𝑋 has characteristic exponent 𝛹(𝑢) ∶= 𝑙𝑜𝑔 𝔼 [𝑒−𝑖𝑢𝑥] 
for all 𝑢 ∈ ℝ . Then 𝑋  has an infinitely divisible distribution if for all 𝑛 ≥ 1  there exists a characteristic 

exponent of a probability distribution, say 𝛹𝑛, such that 𝛹(𝑢) = 𝑛𝛹𝑛(𝑢) for all 𝑢 ∈ ℝ.  

Many known distributions are infinitely divisible however some are not. As examples, the Normal, Poisson, 

Gamma and geometric distributions are infinitely divisible. This often follows from the closure under convolutions 

of the type: 

𝑌1~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇1, 𝜎1
2) & 𝑌2~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇2, 𝜎2

2)  ⇒ 

𝑌1 + 𝑌2~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇1 + 𝜇2, 𝜎1
2 + 𝜎2

2) 

for independent Y1and Y2 since this implies by induction that for independent 

Y1
(m)
, Y2

(m)
, … . , Yn

(m)
 ~Normal(μ m⁄ , σ2 m⁄ )  ⇒ 

Y1
(m)

+ Y2
(m)

+ …+ Yn
(m)
 ~Normal(μ, σ2). 

The full extent to which may characterize infinitely divisible distributions is described by the characteristic 
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exponent 𝛹 and an expression known as the Lévy–Khintchine formula. 

Theorem 1: (Lévy–Khintchine formula). A probability law 𝜇  of a real-valued random variable is infinitely 

divisible with characteristic exponent 𝛹,       

∫ 𝑒𝑖𝜃𝑥
ℝ

𝜇(𝑑𝑥) =  𝑒−𝛹(𝜃), 𝜃 ∈ ℝ, 

iff there exists a triple (𝑎, 𝜎, 𝛱), where 𝑎 ∈ ℝ, 𝜎 ≥ 0 and 𝛱 is a measure concentrated on ℝ\{0} satisfying 

∫ (1 ⋀  𝑥)
ℝ

𝛱(𝑑𝑥) < ∞, such that  

 𝛹(𝜃) = 𝑖𝑎𝜃 + 
1

2
𝜎2𝜃2 + ∫ (1 − 𝑒𝑖𝜃𝑥

ℝ
+  𝑖𝜃𝑥1(|𝑥|<1))𝛱(𝑑𝑥),                (1) 

for every 𝜃 ∈ ℝ. The measure 𝛱 is called the Lévy (characteristic) measure. Thus, 𝛱(𝑑𝑥) is the intensity of 

jumps of size 𝑥 and the function 𝛹(𝜃) is called the Lévy exponent (or Lévy symbol).  

From the definition of a Lévy process, we see that for any 𝑡 > 0, 𝑋𝑡 is a random variable belonging to the class 

of infinitely divisible distributions. This follows from the fact that for any 𝑛 = 1, 2, …,  

   𝑋𝑡 = 𝑋𝑡
𝑛⁄
+ (𝑋2𝑡

𝑛⁄
− 𝑋𝑡

𝑛⁄
) + …+ (𝑋𝑡 − 𝑋(𝑛−1)𝑡

𝑛⁄
)                  (2) 

together with the fact that 𝑋 has stationary independent increments. Suppose to define for all 𝜃 ∈ ℝ, 𝑡 ≥ 0, 

𝛹𝑡(𝜃) ∶= 𝑙𝑜𝑔 𝔼 [𝑒
−𝑖𝜃𝑥𝑡], using (01) twice we have for any two positive integers m, 𝑛 that; 

   mΨt(𝜃) = Ψm(𝜃) = 𝑛Ψm
n⁄
(𝜃) 

and hence for any rational 𝑡 > 0, 

    𝛹𝑡(𝜃) = 𝑡𝛹1(𝜃).          (3) 

If 𝑡 is an irrational number, by choosing a decreasing sequence of rational {𝑡𝑛 ∶ 𝑛 ≥ 1} such that 𝑡𝑛 ↓ 𝑡 as 𝑛 →
∞. Almost sure right continuity of 𝑋 implies right continuity of exp {−Ψt(𝜃)} (by dominated convergence) and 

hence (02) holds for all 𝑡 ≥ 0. In conclusion, any Lévy process has the property that for all 𝑡 ≥ 0,   

   

     𝔼[𝑒𝑖𝜃𝑋𝑡] = 𝑒−𝑡𝛹(𝜃),         (4)        

where Ψ(𝜃) ≔ Ψ1(𝜃) is the characteristic exponent of 𝑋1, which has an infinitely divisible distribution.  

2.2 Self-Decomposability  

A random variable (r.v.) 𝑋 is self decomposable if its characteristic function Ψ(𝑢)  has the property that, there 

exist a characteristic function Ψc(𝑢), for every  0 < c < 1 such that; 

                Ψ(𝑢) =  Ψ(𝑐𝑢)Ψc(𝑢); for all 𝑢 ∈ ℝ.        (5) 

In term of the random variable 𝑋 the above means that for any 0 < c < 1 there exits a r.v. 𝑋𝑐 such that;  

      𝑋 𝑐𝑋 + 𝑋𝑐;                                        (6) 

with independent r.v. 𝑋 and 𝑋𝑐, where  means equality in distribution. 

A random variable X has a distribution of class L (Note 1) iff the law of the X is self-decomposable. The class 

of self-decomposable distribution is a subclass of infinitely divisible distributions. Self-decomposable laws arise 

as marginal laws in autoregressive time series models as: 𝑋𝑡 = 𝑐𝑋𝑡−1 + 휀𝑡 . The Lévy measure of the self-

decomposable laws is absolutely continuous with the following density form,    

 𝛱(𝑑𝑥) =  𝑘(𝑥)𝑑𝑥            (7) 

where 𝑘(𝑥) is a Lévy density which has the same mathematical requirements as a probability density. Further, 

|𝑥|𝑘(𝑥) is increasing for (−∞, 0) and decreasing for (0,∞). The density of self-decomposable distributions is 

unimodal. 

Let be a Lévy process 𝑋 = (𝑋𝑡: 𝑡 ≥ 0). (X1) is self-decomposable iff (Xt) is self-decomposable for every t >
0 (Carr, Geman, Madan and Yor (2007)). The characteristic function of self-decomposable laws has the following 

form, 

 𝛹(𝜃) = 𝑖𝑎𝜃 + 
1

2
𝜎2𝜃2 + ∫ (1 − 𝑒𝑖𝜃𝑥

ℝ
+  𝑖𝜃𝑥1(|𝑥|<1))

𝑘(𝑥)

𝑥
𝑑𝑥        (8) 

where 𝜃 ∈ ℝ , 𝑘(𝑥) ≥ 0  and ∫ min (1, |𝑥|2)
ℝ

k(x)

x
dx < ∞ , (Sato(1999), p.95, Corollary15.11), (Carr et al. 

(2007, p. 34). A self-decomposable random variable 𝑋 is the value at the unit time of some pure jump Lévy 
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processes in which sample paths have bounded variation. When the Lévy density integrates |𝑋| in the region 

|𝑋| < 1, for 𝜃 = ∫ 𝑥
|𝑥|<1

k(x)

x
dx. The characteristic function of the processes 𝑋, 

 𝐸[𝑒𝑖𝑢𝑋] = 𝑒𝑥𝑝 [∫ 𝑒𝑖𝑢𝑥1
𝑘(𝑥)

𝑥
𝑑𝑥

∞

−∞
].          (9) 

Consider that, the returns are the sum of a suitable number of approximately independent random variables and 

return distribution is a limit distribution. Self-decomposable distributions can be considered as a candidate for the 

unit period distribution of asset returns. Halgreen (1977) is shown that hyperbolic distributions are self-

decomposable. 

2.3 Self-similarity and Self-Decomposability 

A stochastic process X = (Xt: 𝑡 ≥ 0) is called self-similar for any given 𝑐 ≥ 0, 

 (Xct: 𝑡 ≥ 0) (cHXt: 𝑡 ≥ 0)          (10) 

where, 𝐻 > 0 is Hurst exponent Petroni ((2008), p.1882). In other words, one stochastic process is self-similar 

such that, the change in time scale can be compensated by a corresponding change in the scale of the spaces. The 

connection between self-decomposable laws and the self-similar additive process is given by Sato (1991). Law is 

self-decomposable if and only if it is the law at the unit time of a self-similar additive process. Let 𝛹(𝜃) be a 

characteristic function of law, then, it can take a characteristic function of the Lévy process as, 

 𝛹𝑡(𝜃) = [𝛹(𝜃)]
𝑡
𝑁⁄ ;            (11) 

where, 𝑁 is time scale, if 𝛹(𝜃) is infinite divisible, 𝛹𝑡(𝜃) is a characteristic function. New function describes 

as,    

𝜑𝑘,𝐻(𝜃) = 𝛹 [(
𝑘

𝑁
)
𝐻

𝜃]𝛹 [(
𝑘

𝑁
)
𝐻

𝜃]
−1

.         (12) 

It is a characteristic function if and only if 𝛹(𝑢) is self-decomposable by Sato (1999, p. 99), Petroni (2008, p. 

1884). The stationary process and the self-similar process are related by using the first Lamperti representation 

(Aballero & Chaumont, 2006).  

2.4 Subordination  

Subordination is a way of constructing new Lévy processes from existing ones. More preciously, subordinator is 

a one-dimensional stochastic process that is non-decreasing almost surely. Let 𝐺 be a Lévy process with Lévy 

exponent 𝜑(𝑢) and let 𝑊 be a Lévy process with Lévy exponent 𝑙(𝑢), then 𝑋 be a subordinated process which 

can be expressed as; 𝑋𝑡 = 𝑙𝐺𝑡 . 

Theorem 3.2: Let 𝐺 be a Lévy process with Lévy exponent 𝜑(𝑢), and let 𝑊 be a Lévy process and subordinator 

with Lévy exponent 𝑙(𝑢) . Then the process 𝑋 = {𝑋𝑡 , 𝑡 ≥ 0}  defined for each 𝜔 𝜖 𝛺  by 𝑋(𝑡, 𝜔) =
𝐺(𝑊(𝑡, 𝜔), 𝜔) is a Lévy process with characteristic function given by;  

𝜙𝑡(𝑢, 𝑡) = 𝑒𝑥𝑝 {𝑡𝑙(−𝑖𝜑(𝑢))}.          (13) 

ie. The Lévy exponent of 𝑋 is given as a composition of the Lévy exponent of 𝐺 and 𝑊.  

3. Lévy Process Frameworks  

Under this section, pure jump Lévy processes are presented in which the asset price dynamics are modeled by the 

pure jump Lévy process. This means that the asset price moves only by jumps with zero Gaussian variance in 

Lévy–Khintchine formula. The generalized hyperbolic process, normal inverse Gaussian process, generalized 

inverse Gaussian process and variance gamma process are discussed under characteristic function, Lévy process 

and together with some more properties.  

3.1 Generalized Hyperbolic (GH) Processes 

At present, many researches regarding the modeling of financial assets are focused on the market model based on 

the Generalized Hyperbolic Distribution (N. Ciprian 2009). The PDF of the GH distribution can be defined by: 

fGH(x; λ, α, β, δ, μ) = a(λ, α, β, δ)(δ2 + (x − μ)2)
(λ−1 2⁄ )

2  Kλ−1 2⁄ (α√δ
2 + (x − μ)2)e(β(x−μ))      (14) 

where, a(λ, α, β, δ) =  
(α2−β2)

λ
2⁄

√2π αλ−
1
2⁄  δλ Kλ(√α

2−β2)
  is the normalizing constant and Kν denotes the modified Bessel 

function of the third kind with index ν . An integral representation of Kν is given by; Kν(z) =
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1

2
∫ yv−1 exp (−

1

2
z (y + y−1)) dy

∞

0
. 

Generalized hyperbolic distributions have a number of appealing analytic properties. Their moment generating 

function is given by; 

 𝑀𝐺𝐻(u) = e𝜇u  (
𝛼2−𝛽2

𝛼2−(𝛽+𝑢)2
)
𝜆
2⁄

 
𝐾𝜆(𝛿√𝛼

2−(𝛽+𝑢)2)

𝐾𝜆(𝛿√𝛼
2−𝛽2)

 , for |𝛽 + 𝑢| <  𝛼             (15) 

where 𝐾𝜆(𝑥) denotes the modified Bessel function of the third kind with index 𝜆. From this formula, moments 

of any integer order can be derived. The first moment or mean can be defined as 𝐸[𝐺𝐻] =  𝜇 +
𝛽𝛿2

𝜔
 
𝐾𝜆+1(𝜔)

𝐾𝜆(𝜔)
  and 

for the variance: 𝑉[𝐺𝐻] =  
𝛿2

𝜔

𝐾𝜆+1(𝜔)

𝐾𝜆(𝜔)
+

𝛽2𝛿4

𝜔2
 (
𝐾𝜆+2(𝜔)

𝐾𝜆(𝜔)
−

𝐾𝜆+1
2 (𝜔)

𝐾𝜆
2(𝜔)

)  with = 𝛿√𝛼2 − 𝛽2 . Note that these 

expressions simplify considerably in the case of symmetry, i.e. for 𝛽 = 0. Also the characteristic function 𝜙𝐺𝐻 

is easily obtained by exploiting the relation 𝜙𝐺𝐻(𝑢) = 𝑀𝐺𝐻(iu) and given by,  

  𝜙𝐺𝐻(𝑢;  𝜆, 𝛼, 𝛽, 𝛿, 𝜇) =  e
𝑖𝑢𝜇 (

𝛼2−𝛽2

𝛼2−(𝛽+𝑖𝑢)2
)
𝜆
2⁄

 
𝐾𝜆(𝛿√𝛼

2−(𝛽+𝑖𝑢)2)

𝐾𝜆(𝛿√𝛼
2−𝛽2)

.           (16) 

The Lévy-Khintchine representation of the characteristic function of generalized hyperbolic distributions is given 

by; 

  𝑙𝑛(𝜙𝐺𝐻(𝑢)) = 𝑖𝑢 𝐸[𝐺𝐻] + ∫ (𝑒𝑖𝑢𝑥 − 1 − 𝑖𝑢𝑥)𝑔(𝑥)𝑑𝑥
∞

−∞
           (17) 

where the density 𝑔(𝑥) of the Lévy measure has the following form;  

 𝑔(𝑥) =

{
 
 

 
 𝑒

𝛽𝑥

|𝑥|
(∫

exp(−√2𝑦+ 𝛼2|𝑥|)

𝜋2𝑦(𝐽𝜆
2(𝛿√2𝑦)+𝑌𝜆

2(𝛿√2𝑦))
𝑑𝑦 + 𝜆

∞

0
𝑒𝛼|𝑥|)  𝑖𝑓 𝜆 ≥ 0      

𝑒𝛽𝑥

|𝑥|
∫

exp(−√2𝑦+ 𝛼2|𝑥|)

𝜋2𝑦(𝐽−𝜆
2 (𝛿√2𝑦)+𝑌−𝜆

2 (𝛿√2𝑦))
 𝑑𝑦

∞

0
                    𝑖𝑓 𝜆 < 0 

 .      (18)  

Here 𝐽𝜆 and 𝑌𝜆 are the Bessel functions of the first and second kind with index 𝜆, respectively. A characteristic 

of the GH process refers to the fact that it has no diffusion component. Therefore, the GH process is a “pure jump” 

process. The GH distribution turns out to be infinitely divisible and we can be defined as a GH Lévy process such 

that 𝑋(𝐺𝐻) = {𝑋𝑡
(𝐺𝐻), 𝑡 ≥ 0}  as the stationary process starts at zero and has an independent increment. The 

distribution of 𝑋𝑡
(𝐺𝐻)

  has a characteristic function, 𝐸[𝑒𝑥𝑝(𝑖𝑢𝑋𝑡
(𝐺𝐻))] = (𝜙𝐺𝐻(𝑢;  𝜆, 𝛼, 𝛽, 𝛿, 𝜇))

𝑡
  that means 

𝑋1~𝐺𝐻(𝜆, 𝛼, 𝛽, 𝛿, 𝜇).  

3.2 Normal Inverse Gaussian (NIG) Process  

The NIG distribution with parameters 𝛼 > 0 , (𝛽 ∈ (−𝛼, 𝛼) , 𝛿 > 0  and 𝜇 > 0 , 𝑁𝐼𝐺(𝛼, 𝛽, 𝛿, 𝜇) , has a 

characteristic function[20];  

𝜙𝑁𝐼𝐺(𝑢) = e𝑖𝑢𝜇
exp (𝛿√𝛼2−𝛽2)

exp (𝛿√𝛼2−(𝛽+𝑖𝑢)2)
.          (19) 

This is an infinitely divisible characteristic function (Barndorff-Nielsen, O. E., 1995). Hence, the NIG Lévy 

process can define as; 𝑋(𝑁𝐼𝐺) = {𝑋𝑡
(𝑁𝐼𝐺), 𝑡 ≥ 0}, with 𝑋0

(𝑁𝐼𝐺) = 0, stationary and independent NIG distributed 

increments. To be precise, 𝑋𝑡
(𝑁𝐼𝐺)

 , has a 𝑁𝐼𝐺( 𝛼, 𝛽, 𝛿𝑡, 𝜇𝑡)  law with the characteristic function of the form 

(𝜙𝑁𝐼𝐺(𝑢))
𝑡. The Lévy-Khintchine representation of NIG is given by; 

 𝑙𝑛(𝜙𝑁𝐼𝐺(𝑢)) = 𝑖𝑢 𝐸[𝑁𝐼𝐺] + ∫ (𝑒𝑖𝑢𝑥 − 1 − 𝑖𝑢𝑥)𝑔(𝑥)𝑑𝑥
∞

−∞
               (20) 

where the density 𝑔(𝑥) of the Lévy measure has the following form; 𝑔(𝑥) =  𝑒𝛽𝑥
𝛼𝛿

𝜋|𝑥|
𝐾1(𝛼|𝑥|), where 𝐾𝜆(𝑥) 
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denotes the modified Bessel function of the third kind with index 𝜆. A NIG process has no Brownian component. 

Therefore, the NIG process is a “pure jump” process.  

The first and second moments of the NIG distribution are 

 𝐸[𝑁𝐼𝐺] =  𝜇 +
𝛽𝛿

√𝛼2−𝛽2
   and  𝑉[𝑁𝐼𝐺] =  

𝛿

√𝛼2−𝛽2
+

𝛽2𝛿

(√𝛼2−𝛽2)
3.        (21) 

The NIG is the only subclass of the GH that is closed under convolution, i.e. if 𝑋1~𝑁𝐼𝐺(𝛼, 𝛽, 𝛿1, 𝜇1)  and 

𝑋2~𝑁𝐼𝐺(𝛼, 𝛽, 𝛿2, 𝜇2)  and 𝑋1  is independent of 𝑋2 , then 𝑋1 + 𝑋2~𝑁𝐼𝐺(𝛼, 𝛽, 𝛿1 + 𝛿2, 𝜇1 + 𝜇2) . Therefore, if 

we estimate the returns distribution at some time scale, then we know it in closed form for all time scales. The NIG 

process is relatively straightforward to apply and can be simulated directly, which will be more useful for pricing 

barrier options (Marc Cassagnoly, 2010).   

3.3 Generalized Inverse Gaussian (GIG) Process  

The Inverse Gaussian IG(𝛿, 𝛾) (Note 2) law can be generalized to what is called the generalized inverse Gaussian 

distribution 𝐺𝐼𝐺(𝜆, 𝛿, 𝛾). The distribution is given on the positive half-line;  

   𝑓𝐺𝐼𝐺(𝑥; 𝜆, 𝛿, 𝛾) = (
𝛾

𝛿
)
𝜆

exp (−
1

2
(
𝛿2

𝑥
+ 𝛾2𝑥))

1

2𝐾𝜆(𝛿𝛾)
𝑥𝜆−1 for 𝑥 > 0      (22) 

with the following parameter space; 

 𝛿 ≥ 0, 𝛾 > 0  if 𝜆 > 0 

 𝛿 > 0, 𝛾 > 0  if 𝜆 = 0 

 𝛿 > 0, 𝛾 ≥ 0  if 𝜆 < 0 

where 𝐾𝜆(𝑥) denotes the modified Bessel function of the third kind with index 𝜆. The characteristics function is 

given by; 

𝜙𝐺𝐼𝐺(𝑢) =
1

𝐾𝜆(𝛿𝛾)
 (1 −

2𝑖𝑢

𝛾2
)
𝜆
2⁄

𝐾𝜆(𝛿𝛾√1 − 2𝑖𝑢𝛾
−2).         (23) 

Lévy-Khintchine representations of GIG distributions can be represented as; 

𝜙𝐺𝐼𝐺(𝑢) = 𝑒𝑥𝑝 (𝑖𝑢
𝛿𝐾𝜆+1(𝛿𝛾)

𝛾𝐾𝜆(𝛿𝛾)
+ ∫ (𝑒𝑖𝑢𝑥 − 1 − 𝑖𝑢𝑥)𝑔𝐺𝐼𝐺(𝑥)𝑑𝑥

∞

0
)         (24) 

where the density of the Lévy measure is defined for x > 0 by; 

𝑔𝐺𝐼𝐺(𝑥) =
𝑒
−𝑥

𝛾2

2

𝑥
[∫

𝑒𝑥𝑝(−𝑥𝑦)

𝜋2𝑦(𝐽|𝜆|
2 (𝛿√2𝑦)+𝑌|𝜆|

2 (𝛿√2𝑦))
 𝑑𝑦 + 𝑚𝑎𝑥 (0, 𝜆)

∞

0
], 

(Barndorff-Nielsen, 2001a), and where 𝐽𝜆 and 𝑌𝜆 are Bessel functions.  

Barndorff-Nielsen and Halgreen (1977) showed that the GIG distribution is infinitely divisible. Therefore, GIG 

process is defined as the Lévy process where the increment over the interval [𝑠, 𝑠 + 𝑡] , 𝑠 , 𝑡 ≥ 0 , has the 

characteristic function (𝜙𝐺𝐼𝐺(𝑢))
𝑡
.  

3.4 Variance Gamma (VG) Process  

The characteristic function of the 𝑉𝐺(𝜃, 𝜎, 𝜈 ) law is given by; 

  𝐸[𝑒𝑥𝑝(𝑖𝑢𝑋𝑡)] = 𝜙𝑉𝐺(𝑢) = (1 − 𝑖𝑢𝜃𝜈 +
1

2
𝜎2𝜈𝑢2)

−
1

𝜈
.                  (25) 

This distribution is an infinitely divisible and VG Lévy process can define as; 𝑋(𝑉𝐺) = {𝑋𝑡
(𝑉𝐺), 𝑡 ≥ 0} , with 

𝑋0
(𝑉𝐺) = 0 , stationary and independent increments. The increment 𝑋𝑠+𝑡

(𝑉𝐺) − 𝑋𝑡
(𝑉𝐺)

  follows a 𝑉𝐺(𝑡𝜃, 𝜎√𝑡, 𝜈 𝑡⁄  ) 

law over the time interval [𝑠, 𝑠 + 𝑡]. Clearly (𝑠 = 0 and note that 𝑋0
(𝑉𝐺) = 0), 

𝐸[exp (𝑖𝑢𝑋𝑡
(𝑉𝐺))] = 𝜙𝑉𝐺(𝑢;  𝑡𝜃, 𝜎√𝑡,

𝜈
𝑡⁄ ) =  (𝜙𝑉𝐺(𝑢;  𝜃, 𝜎, 𝜈))

𝑡
= (1 − 𝑖𝑢𝜃𝜈 +

1

2
𝜎2𝜈𝑢2)

−
𝑡

𝜈
    (26) 

where the density function 𝑋𝑡 can be obtained as; 
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       𝑓𝑉𝐺(𝑥) =  
2𝑒

𝜃𝑥

𝜎2

𝜈
𝑡
𝜈√2𝜋𝜎Γ(

t

𝜈
)

(
𝑥2

2𝜎2

𝜈
+𝜃2
)

t

2𝜈
−
1

4

𝐾t

𝜈
−
1

2

(
1

𝜎2
√𝑥2 (

2𝜎2

𝜈
+ 𝜃2)).              (27) 

4. Stock Price Models Driven by Lévy Processes  

Stock price behavior is now modeled by a more sophisticated stochastic process than the Brownian motion of the 

Black-Scholes model. That is an exponential Lévy process. There are no unique equivalent martingale measures 

(EMM) due to the fact that the Lévy models are incomplete. Therefore, a perfect hedge cannot be obtained when 

pricing options. In an options market, there are many different EMM under which the discounted asset price 

process is a martingale. The existence of a martingale measure is related to the absence of arbitrage, while the 

uniqueness of the equivalent martingale measure is related to market completeness. Let 𝑋𝑡 be a Lévy process on 

a filtered probability space (𝛺, ℱ, 𝛲)  with 𝛲  denoting the physical probability measure. Then assume that 

market consists of one riskless asset (the bond), with a price process given by 𝐵𝑡 = 𝑒𝑥𝑝 (𝑟𝑡), and one risky asset 

(the stock or index). The risky asset model is given by: 𝑆𝑡 = 𝑆0 𝑒𝑥𝑝 (𝑋𝑡). The log-returns 𝑙𝑜𝑔
𝑆𝑡+𝑠

𝑆𝑡
, of such a 

model follow the distribution of increments of length s of the Lévy process 𝑋𝑡.  

4.1 Equivalent Martingale Measure (EMM) 

An equivalent martingale measure or risk-neutral measure Q is needed for valuation of the arbitrage-free price of 

the derivative product written on an asset with price process 𝑆𝑡, i.e. a probability measure Q is equivalent to 𝛲 

under which the discounted price process 𝑆𝑡exp (−𝑟𝑡) evolves as a martingale. In this study, two ways of finding 

an EMM were considered: the Esscher transform martingale measure and a mean-correcting martingale measure. 

4.1.1 The Esscher Transform 

Following Gerber and Shiu (1994), we can find an Esscher transform of a stock-price process. Let 𝑓𝑡
(𝜃)
(𝑥) be the 

density of log price 𝑙𝑜𝑔 𝑆𝑡 under 𝑃. 

For some number 𝜃 ∈ {𝜃 ∈ ℝ| ∫ 𝑒𝑥𝑝(𝜃𝑦)𝑓𝑡(𝑦)𝑑𝑦 < ∞
∞

−∞
, the new density is given by: 

   𝑓𝑡
(𝜃)(𝑥) =

𝑒𝑥𝑝(𝜃𝑥)𝑓𝑡(𝑥)

∫ 𝑒𝑥𝑝(𝜃𝑦)𝑓𝑡(𝑦)𝑑𝑦
∞
−∞

.         (28) 

Now choose 𝜃 such that the discounted price process {𝑆𝑡𝑒𝑥𝑝 (−𝑟𝑡)}𝑡≥0 is a martingale, i.e. 

 𝑆0 = 𝑒𝑥𝑝(−𝑟𝑡) 𝔼
(𝜃)[𝑆𝑡],          (29) 

where the expectation is taken with respect to the law with density 𝑓𝑡
(𝜃)

. Let 𝜙(𝑢) = 𝔼[𝑒𝑥𝑝 (𝑖𝑢𝑋1)] denote the 

characteristic function of 𝑋1. Hence, in order to let the discounted price process be a martingale, it is required to 

have, 

 𝑒𝑥𝑝(𝑟) =  
𝜙(−𝑖(𝜃+1))

𝜙(−𝑖𝜃)
.                (30)  

The solution of this equation, θ∗ say, gives the Esscher transform martingale measure through the density function 

𝑓𝑡
(𝜃∗)(𝑥). An alternative approach for computing a risk-neutral measure, similar to the Esscher transform, can also 

be proposed (Carr et al., 2003). Let (𝑋𝑡)𝑡≥0  be a real-valued process with independent increments. Then 

(
𝑒𝑥𝑝(𝑖𝑢𝑋𝑡)

𝔼[𝑒𝑥𝑝(𝑖𝑢𝑋𝑡)]
)
𝑡≥0

is a martingale ∀ 𝑢 ∈ 𝑅.  

The asset price 𝑆𝑡 is modeled as 𝑆𝑡 = 𝑆0𝑒𝑥𝑝 [𝑟𝑡 + 𝑋𝑡] where 𝑋𝑡 is a Lévy process. Then, the resulting risk-

neutral process for the log price is given by; 

  𝑙𝑜𝑔 𝑆𝑡 = 𝑙𝑜𝑔 𝑆0 + 𝑟𝑡 − 𝑙𝑜𝑔  𝔼[𝑒𝑥𝑝(𝑋𝑡)] + 𝑋𝑡 ,        (31) 

and the Characteristic function of the log price is given by; 

 𝔼[𝑒𝑥𝑝(𝑖𝑢  𝑙𝑜𝑔 𝑆𝑡)] = 𝑒𝑥𝑝(𝑖𝑢 (𝑙𝑜𝑔 𝑆0 + 𝑟𝑡 − 𝑙𝑜𝑔  𝔼[𝑒𝑥𝑝(𝑋𝑡)]))𝔼[𝑒𝑥𝑝 (𝑖𝑢𝑋𝑡)].        (32) 

4.1.2 Mean-correcting Martingale Measure 

Another way to obtain an EMM is hat considering mean correcting the exponential of Lévy with reference special 

parameter 𝑚 (Note 3). First, all the parameters have to be estimated which are involved in the asset price process 



ijef.ccsenet.org International Journal of Economics and Finance Vol. 12, No. 2; 2020 

72 

𝑆𝑡, then the m parameter is changed in an appropriate way such that discounted asset price process becomes a 

martingale.  

Let, specify,  

  𝑚𝑛𝑒𝑤 s.t. 𝑚𝑛𝑒𝑤 = 𝑚𝑜𝑙𝑑 + 𝑟 − 𝑞 − 𝑙𝑜𝑔  𝜙(−𝑖),                  (33) 

where 𝜙(𝑥)  is the characteristic function of the log return involving the 𝑚𝑜𝑙𝑑  parameter and q ∈ ℝ  for the 

dividend rate. The choice of the 𝑚𝑛𝑒𝑤  imply that our discounted asset price 𝔼𝑄[𝑆𝑡] = 𝑆0 exp[𝑡(𝑟 − 𝑞)]  is a 

martingale.  

The 𝑚𝑛𝑒𝑤 parameters for different models are specified in Table 3.1 and it can be expected as;  

i. Estimate the parameters of the process by fixing 𝑚 as 0 

ii. Then introduce a parameter 𝑚 as an estimated parameters 

Furthermore, 𝑚𝑛𝑒𝑤 can be considered as a risk-neutral (RN) drift of a given process and it is as ∆. 

 

Table 1. The m parameter for the mean-correcting equivalent martingale measure 

Model 𝒎𝒏𝒆𝒘 

Normal 
𝑟 − 𝑞 −

1

2
𝜎2 

GH 
𝑟 − 𝑞 − log((

𝛼2 − 𝛽2

𝛼2 − (𝛽 + 1)2
)

𝜆
2⁄ 𝐾𝜆(𝛿√𝛼

2 − (𝛽 + 1)2)

𝐾𝜆(𝛿√𝛼
2 − 𝛽2)

) 

NIG 𝑟 − 𝑞 + 𝛿 (√𝛼2 − (𝛽 + 1)2 −√𝛼2 − 𝛽2) 

GIG 

𝑟 − 𝑞 + (1 −
2

𝛾2
)

𝜆
2⁄ 𝐾𝜆(𝛿𝛾√1 − 2𝛾

−2)

𝐾𝜆(𝛿𝛾)
 

VG 
𝑟 − 𝑞 −

1

𝜐
log (1 + 𝜐𝜃 −

1

2
𝜎2𝜐) 

 

The RN characteristic functions are given in the following Table 2 for the above discussed models. Assume that 

dividend yield 𝑞 is ignored after that for derivation. (As an example, refer Appendix A, for detail derivation for 

Variance Gamma RN process. In the same manner rest of the RN characteristics functions can be derived.) 

 

Table 2. The risk-neutral characteristics function for selected Lévy processes  

Model 𝝓𝑹𝑵(𝒖)  (RN Characteristics Function) 

Normal 𝜙𝑹𝑵
𝐵𝑆 (𝑢) = 𝑒𝑖∆𝑢𝑡−

1

2
𝜎2𝑢2𝑡

 

 

GH 
𝜙𝑅𝑁
𝐺𝐻(𝑢) = 𝑒𝑖∆𝑢𝑡 (

𝛼2 − 𝛽2

𝛼2 − (𝛽 + 𝑖𝑢)2
)

𝜆𝑡
2⁄ 𝐾𝜆(𝛿√𝛼

2 − (𝛽 + 𝑖𝑢)2)

𝐾𝜆(𝛿√𝛼
2 − 𝛽2)

𝑡

 

NIG 𝜙𝑅𝑁
𝑁𝐼𝐺(𝑢) = 𝑒𝑥𝑝 {𝑖∆𝑢𝑡 − 𝛿𝑡 (√𝛼2 − (𝛽 + 𝑖𝑢)2 −√𝛼2 − 𝛽2)} 

 

GIG 
𝜙𝑅𝑁
𝐺𝐼𝐺(𝑢) = 𝑒𝑖∆𝑢𝑡 (1 −

2𝑖𝑢

𝛾2
)

𝜆𝑡
2⁄ 𝐾𝜆(𝛿𝛾√1 − 2𝑖𝑢𝛾

−2)

𝐾𝜆(𝛿𝛾)

𝑡

 

 

VG 
𝜙𝑅𝑁
𝑉𝐺(𝑢) = 𝑒𝑖∆𝑢𝑡  (1 − 𝑖𝑢𝜐𝜃 +

1

2
𝜎2𝑢2𝜐)

−𝑡

𝜐

 

 

Then, the risk-neutral stock price process can be formulated using equation (31) and equation (32) for the 

characteristic function of the risk-neutral stock price process.  

4.2 European Options Pricing 

Herewith, the pricing of the European is focused on a given market model, when the payoff function is only a 

function of the terminal stock price.  
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4.2.1 Pricing through the Density Function  

Let 𝐾 be a strike price, 𝑆𝑇 be an asset price and 𝑇 be an expiration of a contingent claim. The value plain 

vanilla call option prices at time 0 are given by the expectation of the payoff under the martingale measure ℚ is 

given by;  

 𝐶(𝑡, 𝑆𝑡) = exp(−𝑟𝑇) 𝐸
ℚ[(𝑆𝑇 − 𝐾)

+].                 (34) 

when ℚ is the Esscher transform equivalent martingale measure, the above expectation can be written as;  

   𝑒𝑥𝑝(−𝑟𝑇)𝑆0 ∫ 𝑓𝑇
(𝜃∗+1)(𝑥)𝑑𝑥 −

∞

𝑐
 𝑒𝑥𝑝(−𝑟𝑇)𝐾 ∫ 𝑓𝑇

(𝜃∗)(𝑥)𝑑𝑥
∞

𝑐
,           (35) 

where 𝑐 = ln(𝐾 𝑆0⁄ ).  

4.2.2 Option Pricing with Fast Fourier Transformation (FFT) 

In general, typically to find an analytical solution in Lévy process models like a Black-Scholes (BS) formula. Carr 

and Madan (1998) showed how to use the FFT to value options efficiently based on the characteristic function of 

the asset. The BS model with Fourier transform pricing methodology is presented first to illustrate the idea clearly 

and simply. A brief derivation is given for this method is the simplest case which needs to be extended to allow for 

a FFT to be implemented. 

Consider the European call option with the asset price process 𝑆𝑇 time maturity 𝑇, strike price 𝐾, 𝑠𝑇 = 𝑙𝑛𝑆𝑇, 

𝑘 = 𝑙𝑛𝐾, 𝑞𝑇(𝑠) is the risk-neutral density of 𝑠𝑇 and 𝐶𝑇(𝑘) is the European call option value at time T with 

strike exp (𝑘). The characteristic function of 𝑠𝑇 is defined by; 

  𝜙𝑇(𝑢) = 𝐸[𝑒𝑥𝑝(𝑖𝑢𝑠𝑇)] = ∫ 𝑒𝑖𝑢𝑠
∞

−∞
𝑞𝑡(𝑠)𝑑𝑠.                (36) 

At the expiration date 𝑇, the option value 𝐶𝑇 which is related to the risk-neutral density 𝑞𝑇 is given by; 

 𝐶𝑇(𝑘) = 𝑒−𝑟𝑇𝐸[(𝑆𝑇 − 𝐾)
+] = ∫ 𝑒−𝑟𝑇(𝑒𝑠 − 𝑒𝑘)

∞

𝑘
𝑞𝑇(𝑠)𝑑𝑠.                (37) 

Here 𝐶𝑇(𝑘) is not square-integrable because 𝐶𝑇(𝑘) → 𝑆0 as 𝑘 → ∞ so that 𝐾 → 0. To obtain a square integral 

function Carr and Madan (1998) suggested considering the modified price 𝑐𝑇(𝑘) given by; 

 𝑐𝑇(𝑘) = 𝑒
𝛼𝑘 𝐶𝑇(𝑘),           (38) 

for some α 𝜖 ℝ, (> 0). Here, Carr and Madan(1998) suggested choosing the decay rate parameter 𝛼 as 𝛼 ≈ 0.25, 

while Schoutens (2003) suggests 𝛼 ≈ 0.75 . The value of 𝛼  affects the speed of convergence. The Fourier 

transform of cT(k) is given by; 

 𝜓𝑇(𝑣) = ∫ 𝑒𝑖𝑣𝑘
∞

−∞
𝑐𝑇(𝑘)𝑑𝑘,          (39) 

and corresponding inverse Fourier transform of 𝐶𝑇(𝑘); 

 𝐶𝑇(𝑘) =
𝑒−𝛼𝑘

2𝜋
∫ 𝑒−𝑖𝑣𝑘
∞

−∞
𝜓𝑇(𝑣)𝑑𝑣 =  

𝑒−𝛼𝑘

𝜋
∫ 𝑒−𝑖𝑣𝑘
∞

0
𝜓𝑇(𝑣)𝑑𝑣             (40) 

Then, 𝜓𝑇(𝑣) can be computed in terms of the characteristic function of the risk-neutral density of 𝑠𝑇 = 𝑙𝑛𝑆𝑇 . 

𝜓𝑇(𝑣) = ∫ 𝑒𝑖𝑣𝑘
∞

−∞
∫ 𝑒𝛼𝑘𝑒−𝑟𝑇(𝑒𝑠 − 𝑒𝑘)+
∞

𝑘
qT(𝑠)𝑑𝑠𝑑𝑘  

          = ∫ 𝑒−𝑟𝑇
∞

−∞
qT(𝑠) ∫ (𝑒𝑠+𝛼𝑘 − 𝑒(1+𝛼)𝑘)

𝑠

−∞
𝑒𝑖𝑣𝑘𝑑𝑘𝑑𝑠; 

by Fubini and |𝜓𝑇(𝑣)| <  ∞ 

        = ∫ 𝑒−𝑟𝑇
∞

−∞
qT(𝑠) [

𝑒𝑠(1+𝛼+𝑖𝑣)

𝛼+𝑖𝑣
−

𝑠(1+𝛼+𝑖𝑣)

1+𝛼+𝑖𝑣
] 𝑑𝑠  

𝜓𝑇(𝑣) = 𝑒−𝑟𝑇
𝜙𝑇(𝑣−(1+𝛼)𝑖)

𝛼2+𝛼−𝑣2+𝑖(2𝛼+1)𝑣
. 

European option price can be calculated by substituting (41) into (40) as follows; 

𝐶𝑇(𝑘) =   
𝑒−𝛼𝑘

𝜋
∫ 𝑒−𝑖𝑣𝑘
∞

0
𝑒−𝑟𝑇

𝜙𝑇(𝑣−(1+𝛼)𝑖)

𝛼2+𝛼−𝑣2+𝑖(2𝛼+1)𝑣
𝑑𝑣.         (42) 

4.3 Numerical Implementation 

Fast Fourier transformation (FFT) is an efficient algorithm to compute the following sum: 

  𝐹(𝑘) = ∑ 𝑓𝑗 𝑒𝑥𝑝 (
−𝑖2𝜋

𝑁
(𝑗 − 1)(𝑘 − 1))𝑁

𝑖=1           (43) 



ijef.ccsenet.org International Journal of Economics and Finance Vol. 12, No. 2; 2020 

74 

where N is usually a power of 2. FFT is a commonly employed discrete approximation technique of Fourier 

transform used to reduce computational labor. Suppose that we want to approximate the inverse Fourier transform 

of a function CT(k) in (40) with discrete FFT. Then this integrand should be truncated and discretized by:  

    𝐶𝑇(𝑘) ≈
𝑒𝑥𝑝(−𝛼𝑘)

𝜋
(∑ 𝑒−𝑖𝑣𝑗𝑘𝜓𝑇(𝑣𝑗)

𝑁
𝑖=1 𝜂 )       (44) 

with the following conventions and parameter values to apply equation (46) (as suggested by Carr and Madan, 

1998); 𝑣𝑗 = 𝜂(𝑗 − 1), 𝑁 = 212 = 4096, 𝑎 = 𝑁𝜂 = 600, 𝑏 =
𝑁𝜆

2
, 𝑘𝑢 = −𝑏 +

2𝑏

𝑁
(𝑢 − 1), 𝜆𝜂 =

2𝜋

𝑁
. Here a is 

the upper limit for the integration, while 𝑘𝑢 are a vector with 𝑁 values of 𝑘 and 𝑏 sets a bound on the log 

strike to range between −𝑏 and 𝑏. Therefore, formula (44) can be written a; 

 𝐶𝑇(𝑘) ≈
𝑒𝑥𝑝(−𝛼𝑘𝑢)

𝜋
(∑ 𝑒−𝑖𝜆𝜂(𝑗−1)(𝑢−1)𝑒𝑖𝑏𝑣𝑗𝜓𝑇(𝑣𝑗)

𝑁
𝑗=1 𝜂 ).                  (45) 

Carr and Madan suggest using Simpson's weighting rule to obtain an accurate integration with large 𝜂 (Note 4). 

The price formula can be written as: 

            𝐶𝑇(𝑘) ≈
𝑒𝑥𝑝(−𝛼𝑘𝑢)

𝜋

𝜂

3
∑ 𝑒−

𝑖2𝜋

𝑁
(𝑗−1)(𝑢−1)𝑒𝑖𝑏𝑣𝑗𝜓𝑇(𝑣𝑗)

𝑁
𝑗=1 (3 + (−𝑖)𝑗 − 𝛿𝑗−1),          (46) 

where 𝛿𝑛 is the Kronecker delta function. 

5. Model Calibration  

5.1 Data Description  

For the empirical study, daily prices of physically settled Gold futures and American-style options written on these 

futures contracts traded at the COMEX were considered. The price taken as the daily price is the last trading price 

of the day as quoted in U.S. dollars and cents per troy ounce. Further, the Price for gold futures is for the nearest 

expiration contract and the data was obtained from Bloomberg. Data on futures prices span the period from January 

2, 2007, to December 27, 2017, whereas the available options data set spans the period January 3, 2017, to 

December 27, 2017, and comprises 251 trading days. There are several maturities are available in each and every 

trading day. Call options and the corresponding futures contracts are available with maturities in each calendar 

month. While trading in the futures contract ceases three business days prior to the first day of the delivery month, 

trading in the options written on this futures contract ends on the business day before the last trading day of the 

futures. 

Following filters are applied to options data set before calibration: 

• Keep options whose maturity time less than 6 months due to volume decreases substantially with expiration 

dates. 

• Exclude the very near-term futures options, which are less than 1 (<1). (These options have early exercise 

opportunities at most four times)  

• Remove deep-in-the-money (S 𝐾⁄ > 1.2)  (ITM) and deep out-of-the-money (S 𝐾⁄ < 0.8)  (OUT) call 

options. Therefore, we select the options close to at-the-money, ie. moneyness (S 𝐾⁄ ) in between 0.8 and 

1.2 (0.8 < S 𝐾⁄ < 1.2). These options are often illiquid or with a price next to zero.   

After applying all filters, the data used consists of a total of 96,567 call prices to calibrate over the period. The 

constant three month T-bill is used as a risk-free rate.  

5.2 Price Process and Calibration Procedure  

These American style option prices are converted to European style option prices using Barone-Adesi and Whaley 

(1987) quadratic approximation method to adjust for the early exercise premium. Therefore, the European option 

methodology can be applied to calibrate the options based on the FFT method. Choosing a risk-neutral model such 

as to reproduce the prices of traded options is known as model calibration: given market prices (𝐶𝑖
𝑚𝑎𝑟𝑘𝑒𝑡)

𝑖∈𝐼
 at 

𝑡 = 0 for a set of benchmark option with different strikes 𝐾𝑖 and maturities 𝑇𝑖 , one looks for a risk-neutral model 

ℚ which correctly prices these options: 
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 ∀𝑖 ∈ 𝐼, 𝐶𝑖
𝑚𝑎𝑟𝑘𝑒𝑡(�̂�;  𝑆𝑇𝑖 , 𝐾𝑖 , 𝑇) = 𝑒

−𝑟𝑇𝔼ℚ [(𝑆𝑇𝑖 − 𝐾𝑖)
+
|ℱ𝑡].                      (47) 

The pricing problem is concerned with computing values of the option given model parameters; i.e direct problem 

or indirect problem. A direct problem (simple and older one) can be formulated using equation (47). European 

option prices 𝐶𝑖
𝑚𝑎𝑟𝑘𝑒𝑡 across different strikes Ki are calculated given a vector of parameters ϑ̂ and variables 

such as strikes Ki and a maturity T. (where �̂� be a vector of parameters to be identified for a given Levy process) 

Here, our interest is in backing out parameters describing risk-neutral dynamics from observed option prices, ie. 

inverse problem. Cont and Tankov (2004) pointed out that it is not easy to find an exact solution and the inverse 

problem is ill-posed. Because there may be many pricing models that generate the same prices for the benchmark 

options thus the solution of the inverse problem is not necessarily unique. Another problem is, of course, the 

computation of a solution for the inverse problem, for which efficient and stable algorithms are needed.  

Thus, a calibration problem can be expressed as a nonlinear least-squares problem in practice for a given call 

option prices Ci
model and find a parameter vector ϑ̂ such that; 

  
𝑖𝑛𝑓

�̂�
‖𝐶𝑖

𝑚𝑎𝑟𝑘𝑒𝑡 − 𝐶𝑖
𝑚𝑜𝑑𝑒𝑙‖

2

.          (48) 

As mentioned by Tankov, this problem has some difficulties such that; it is hard to identify the optimal model due 

to a finite number of market data used to solve this, the equation (47) has many local minima due to function is 

non-convex. Cont and Tankov reformulate the least square problem (47) to overcome these technical difficulties. 

They use the regularization method to approximate the solution to remove pricing errors. 

Also, the smallest relative entropy with respect to a given prior measure is used to take care of its lack of 

identification problem. However, in our paper, we check the relative errors with the infinity norm as the allowing 

tolerance 1.E-6, and the gradient norm as well. Secondly, in order to reduce the market pricing noise, we use the 

common method of eliminating data points that are deep out of the money and deep in the money. Now our 

calibration problem is set up as;  

�̂� = 𝑎𝑟𝑔
𝑚𝑖𝑛
𝜗
∑ (𝐶𝑖

𝑚𝑜𝑑𝑒𝑙(�̂�; 𝑆𝑇𝑖 , 𝐾𝑖 , 𝑇)−𝐶𝑖
𝑚𝑎𝑟𝑘𝑒𝑡)

2𝑁
𝑖==1 ,                     (49) 

for some finite N call options in the market. 

6. Numerical Results  

According to the data and procedure mentioned earlier, the parameters underlying the Black-Scholes (BS), GH, 

NIG, GIG and VG models were calibrated for Gold options. Each model is calibrated for each maturity separately. 

For the sake of simplicity and to focus on the essence of the stochastic behavior of the asset, the risk-free interest 

rate is fixed as 10% and dividend yield to zero.  

6.1 Parameter Calibrated  

In Table 3, reports the time-averaged parameters with their standard errors of each model, because each parameter 

is calibrated with each maturity separately for the sample period. Note that, in NIG’s μ is set to zero due to 

redundant. 

 

Table 3. Lévy Model parameters estimation (mean correcting)  

Model Parameter Estimated with Standard Errors 

BS 𝜎= 0.1734 (0.0356)    

GH 𝜆 = 0.891   

(0.095) 

𝛼 =8.4321 

(9.581) 

𝛽 = 2.2125 

(2.213) 

𝛿 = 0.2453 

(0.165) 

NIG 𝛼 = 12.4183 

(10..231) 

𝛽= 2.3412 

(2.651) 

𝛿 = 0.1041 

(0.115) 

 

GIG 𝜆 = 0.9643 

(0.856) 

𝛿 = 2.1571 

(1.954) 

𝛾 = 1.5487 

(1.012) 

 

VG 𝜃 = 0.1354 

(0.065) 

𝜎= 0.2814 

(0.017) 

𝜐 = 0.4617 

(0.239) 

 

Standard errors are included within the parentheses. 
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The results of the five calibrated models for call options are visualized as the time to maturity (from one month to 

six-month maturity) for all the strikes (1500- 2100) on 01.10.2012, in Figure B.1 through Figure B.5 for the BS, 

GH, NIS, GIG and VG respectively (see Appendix B). In each figure, circles are the market prices and the plus 

signs are the model prices. It is difficult to say which model works better than others by looking at each and every 

figure.  

Therefore, in Figure 1, all calibrated models are compared with market Gold options to get an overall impression 

for one maturity; that is to say one rage of strikes (2 months to maturity, on October 2017 options). According to 

Figure 1, the NIG model gives a very closer fit than other models. However, as we expected BS model is far from 

the market data from the other models (It illustrates the well-known bias of the BS model which is to underprice 

the ITM calls and overprice the OTM calls) (Note 5). Furthermore, the GH model is the second, the VG model is 

the third and the GIG model is the fourth. Still, it is difficult to identify which model gives better best. Some are 

close to one and another. There are differences between in-the-money and out-the-money too. However, some 

models can work better on a dataset and worse on another. For clarification, the sum of squared errors (SSE) is 

calculated and listed in Table 4. A similar result is generated as seen in the graphs.  

 

Table 4. Sum of squared errors (SSE) for the sample period  

Models BS GH NIG GIG VG 

SSE 198.541 1.354 0.985 12.654 2.197 

 

For more comparative purposes, in-sample pricing performance and out-of-sample performance are computed 

under several global measures of fit in the next section.  

 

 

Figure 1. Comparison between market Gold option prices and results of calibrated five models 

 

6.2 Pricing Performance  

In order to see the pricing performance of the chosen models, the following errors are performed: average pricing 

error (APE), average absolute error (AAE), average relative percentage error (ARPE) and root mean square error 

(RMSE). 

𝐴𝑃𝐸 =
∑ |𝐶𝑖

𝑚𝑎𝑟𝑘𝑒𝑡−𝐶𝑖
𝑚𝑜𝑑𝑒𝑙|𝑁

𝑖=1

∑ 𝐶𝑖
𝑚𝑎𝑟𝑘𝑒𝑡𝑁

𝑖=1

  

𝐴𝐴𝐸 =  ∑
|𝐶𝑖
𝑚𝑎𝑟𝑘𝑒𝑡−𝐶𝑖

𝑚𝑜𝑑𝑒𝑙|

𝑁

𝑁
𝑖=1   

𝐴𝑅𝑃𝐸 =
1

𝑁
∑

|𝐶𝑖
𝑚𝑎𝑟𝑘𝑒𝑡−𝐶𝑖

𝑚𝑜𝑑𝑒𝑙|

∑ 𝐶𝑖
𝑚𝑎𝑟𝑘𝑒𝑡𝑁

𝑖=1

𝑁
𝑖=1   

𝑅𝑀𝑆𝐸 = √∑
(𝐶𝑖
𝑚𝑎𝑟𝑘𝑒𝑡−𝐶𝑖

𝑚𝑜𝑑𝑒𝑙)
2

𝑁

𝑁
𝑖=1   

Time-averaged APE, AAE, ARPE, and RMSE are listed in Table 5. 
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6.2.1 In-Sample Pricing Performance  

The time-averaged APE, AAE, ARPE, and RMSE are reported in Table 5. NIG model lists the lowest pricing error 

under APE and RMSE and GH model reports the lowest pricing error under AAE and ARPE while the BS model 

gives the highest errors under all criteria. Therefore, we are unable to decide the better-fitted model to Gold options 

prices according to in-sample pricing performance. However, there are more parameters in the GH model (four 

parameters) than the NIG model (three parameters). When a number of parameters increases, the fitted model is 

more closed with market data. It can caught-up more variability in the market.  

 

Table 5. In-sample pricing Errors for the selected Lévy models  

Models BS GH NIG GIG VG Decision 

APE 0.3975 0.0121 0.0098 0.0265 0.0220 Min. in NIG 

AAE 7.4543 1.0632 1.1512 2.3120 1.7553 Min. in GH 

ARPE 0.4193 0.0483 0.0495 0.0994 0.0746 Min. in GH but almost close to NIG 

RMSE 1.0244 0.0126 0.0091 0.1501 0.0426 Min. in NIG 

 

Therefore, it is necessary to discuss the out-of-sample performance among Lévy models versus the Black-Scholes 

model. Moreover, if the extra parameters of the jump Lévy models are redundant, they overfit the data and may 

produce larger out-of-sample fitting errors. 

6.2.2 Out-of-Sample Pricing Performance 

It is well known that in-sample fit alone is not enough to guarantee the predictability problem for empirical data. 

Also, we may not determine which model is the best fit for specific data. To check this reliability, we conduct the 

out-of-sample performance. We used the Bakshi, Cao, and Chen (1997) procedure in the following manner. 

Let 𝑡 denote today price. Firstly, on yesterday (𝑡 − 1), the parameters of each Lévy model are recovered using 

yesterday’s call prices and variables. Secondly, today’s model prices are computed using yesterday’s calibrated 

parameters ϑt−1̂  and today’s variables. Thirdly, using today’s model prices and today’s call prices, the absolute 

pricing error is obtained following the equation: 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑃𝑟𝑖𝑐𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟 = |𝐶𝑡
𝑚𝑎𝑟𝑘𝑒𝑡 − 𝐶𝑡

𝑚𝑜𝑑𝑒𝑙(𝜗𝑡−1̂;  𝑆𝑇𝑖 , 𝐾𝑖 , 𝑇 − 𝑡)|. 

This procedure is repeated every day across all the call strike prices. Table 6 reports the out-of-sample absolute 

pricing errors per call option. Also, we hold the same filter on out-of-sample observations and all parameters for 

the numerical schemes are kept. Similarly, we investigate the pricing performance as we have done for in-sampling. 

Overall, the NIG process outperforms the other models. The B-S model's absolute error was, on average, 12% 

greater than those of the NIG process. 

 

Table 6. Out-of-sample average absolute error per call option 

Models BS GH NIG GIG VG Decision 

APE 5.638 0.501 0.486 0.974 0.721 Min in NIG 

 

Based on all the selection criteria, the NIG model shows a better fit than other models for Gold Options.  

7. Conclusion  

Today Gold futures markets are volatile. Therefore, option prices do not support the Black-Scholes world of 

constant volatility and the lognormal distribution of asset prices at options expiration. Hence, it is necessary to add 

the jump process to the model. Lévy's process fame-works can capture these difficulties in the real market.  

In the first part of this study, some exponential Lévy processes used for option pricing were introduced with their 

foremost mathematical properties. Then, option pricing with Fourier Transform methods was calculated based on 

the knowledge of the characteristic function, performing the FFT algorithm. Finally, the model parameters were 

calibrated to option market prices with the non-linear least-squares method. 

The Black-Scholes model with four different Lévy models (Generalized Hyperbolic process, Normal Inverse 

Gaussian Process, Generalized Inverse Gaussian Process and Variance Gamma Process) are calibrated to the Gold 

futures options and compares their pricing performance under in-sampling and out-of-sampling. The result shows 

that jump Lévy models drastically outperform the classic Black-Scholes model in pricing. Moreover, the NIG 
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model provides better performance than all other Lévy models under all selection criteria for Gold options. Further, 

this study can be extended to other option markets to verify the selected model for option pricing. 
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Notes 

Note 1. Let (𝑌𝑛; 𝑛 = 1,2, …) is a sequence of independent random variables and 𝑆𝑛 = ∑ 𝑌𝑖
𝑛
𝑖=1  denotes their sum. 

Suppose that, there exist centering constants 𝑎𝑛 ∈ ℝ and scaling constants 𝑏𝑛 > 0, such that the distribution of 

𝑏𝑛𝑆𝑛 + 𝑎𝑛 converges to the distribution of some random variable 𝑋. Then we say that random variable 𝑋 is a 

member of class 𝐿. As explained above, we shortly can say that, if a random variable 𝑋 has the same distribution 

of the limit of some sequence of normalized sums of independent random variables, random variable 𝑋 has a 

distribution of class 𝐿 by Carr, Geman, Madan and Yor (2007). 

Note 2. The density function of the IG(𝛿, 𝛾) law is given by;     

𝑓𝐼𝐺(𝑥; 𝛿, 𝛾) =
𝛿

√2𝜋
exp(𝛿𝛾) 𝑥−

3

2 exp (−
1

2
(
𝛿2

𝑥
+ 𝛾2𝑥)), for 𝑥 > 0. 

Note 3. The new distribution is formed by adding drift or location parameter (m ∈ ℝ) without changing the original 

one. This extension does not influence the infinite divisibility property or self-decomposability. The new 

distribution has a characteristic function �̅�  in term of the original characteristic function 𝜙 : 𝜙(𝑢) =
 �̅�(𝑢)𝑒𝑥𝑝 (𝑖𝑢𝑚). 

Note 4. Here combine of fine integration grid with a wide enough region for strikes are not possible, as if we 

choose a too small 𝜂 we get a fine integration grid but few strikes lying in the region. 

Note 5. ITM (in-the-money), the moneyness (K/S) is less than one and OTM (out-the-money) the moneyness (K/S) 

is greater than one. In Figure 3.1, the price S consider as $1680 and K is the rage between 1490 to 2100 for the 

increment 10. 

 

Appendix A. Risk-Neutral Variance Gamma Characteristic Function  

The characteristic function of the Variance Gamma process under the measure ℙ is given by:   

(A.1)   𝜙𝑉𝐺(𝑢) = (1 − 𝑖𝑢𝜃𝜈 +
1

2
𝜎2𝜈𝑢2)

−
𝑡

𝜈
,      

and this can be re-written as; 

(A.2)  𝜙𝑉𝐺(𝑢) = exp [−
𝑡

𝜈
ln (1 − 𝑖𝑢𝜃𝜈 +

1

2
𝜎2𝜈𝑢2)].     

This is a characteristic exponent of VGP and it can be split into two parts: a drift part 𝜇(𝑢) = 0 and a non-drift 

part 𝜑(𝑢) = −
𝑡

𝜈
ln (1 − 𝑖𝑢𝜃𝜈 +

1

2
𝜎2𝜈𝑢2).  

The drift part can be re-written under RN measure as:      

(A.3)         𝜇𝑅𝑁(𝑢) = 𝑖 [𝑟 −
𝜑(−𝑖)

𝑡
] 𝑢𝑡 
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        =  𝑖 [𝑟 +
1

𝜈
ln (1 − 𝜃𝜈 −

1

2
𝜎2𝜈)] 𝑢𝑡  

     =  𝑖∆𝑢𝑡       

where ∆ is a RN drift; ∆=  𝑟 +
1

𝜈
ln (1 − 𝜃𝜈 −

1

2
𝜎2𝜈). 

Therefore, the RN characteristic function of the VGP is formulated as:   

   𝜙𝑉𝐺
𝑅𝑁(𝑢) =  𝑒𝜑(𝑢)+𝜇

𝑅𝑁(𝑢) 

(A.4)   𝜙𝑉𝐺
𝑅𝑁(𝑢) =  𝑒𝑖∆𝑢𝑡 (1 − 𝑖𝑢𝜃𝜈 +

1

2
𝜎2𝜈𝑢2)

−
𝑡

𝜈
.     

Thus, the risk-neutral stock price process is given by: 

(A.5)   𝑆𝑡 = 𝑆0𝑒𝑥𝑝{∆𝑡 + 𝑋𝑡
𝑉𝐺} ,       

where 𝑋𝑡
𝑉𝐺 is a VGP.  

Let S0 = 1, for simplicity of calculation, then log S0 = 0. 

This gives the risk-neutral exponential VG process as; 

(A.6)    𝑙𝑜𝑔 𝑆𝑡 = 𝑟𝑡 +
𝑡

𝜈
ln (1 − 𝜃𝜈 −

1

2
𝜎2𝜈) + 𝑋𝑡

𝑉𝐺 ,    

and this is the same equation in (34). Therefore, the characteristic function of the risk-neutral log stock price of 

Variance gamma process, 𝜙𝑉𝐺
𝑅𝑁(𝑢) , can be used to price European options using equation (41) for known 

parameters of 𝜃, 𝜈 and 𝜎.  

 

Appendix B. The plot of Market Prices Vs Model Prices 

 

Figure B.1. Option market prices on 01/10/2017for Gold options (rings) and prices given by the Black-Scholes 

model pluses) for six different maturities (2,4 & 6 months) 

 

 

Figure B.2. Option market prices on 01/10/2017 for Gold options (rings) and prices given by the Generalized-

Hyperbolic model pluses) for six different maturities (2,4 & 6 months) 
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Figure B.3. Option market prices on 01/10/2017 for Gold options (rings) and prices given by the Normal Inverse 

Gaussian model (plus) for six different maturities (2,4 & 6 months) 

 

 

Figure B.4. Option market prices on 01/10/2017 for Gold options (rings) and prices given by the Generalized 

Inverse Gaussian model (pluses) for six different maturities (2,4 & 6 months) 

 

 

Figure B.5. Option market prices on 01/10/2017 for Gold options (rings) and prices given by the Variance-

Gamma model (pluses) for six different maturities (2,4 & 6 months) 
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