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Abstract 

This paper focuses on the effects that the concentration of the banking industry has on its exposure to the risk of 

systemic crises due to direct, balance-sheet financial contagion. Studying three stylized (and analytically 

tractable) classes of interbank networks – namely the complete, star and ring networks – we show that the 

magnitude of the smallest insolvency shock that is capable of causing the default of all banks in the system 

depends on the degree of concentration of the industry. Concerning complete and ring interbank networks, we 

obtain that the more concentrated the banking system is, the smaller the magnitude of the shock that induces the 

insolvency of the entire system. That is, concentration renders the banking system more fragile. Conversely, we 

show that the opposite applies to star interbank networks – i.e. networks composed of a bank at the centre 

connected to a set of peripheral banks that are not connected among themselves. In this case, the more 

concentrated the industry, the larger the smallest shock that causes a systemic crisis, i.e. the smaller the exposure 

to systemic risk. 

Keywords: bank industry concentration, systemic risk, financial contagion, interbank network stability 

1. Introduction and motivation 

Starting from the early ‘90s, banking, financial and insurance systems worldwide have undergone a remarkable 

process of consolidation and industry concentration. In the first decade of the century, this process led to an 

unprecedented level of concentration in the banking sector (Note 1). As a result, two-tiered national banking 

systems have emerged, each characterised by a limited number of very large banks and a large number of small 

banks (Note 2). Due to the magnitude and relevance of this phenomenon, numerous studies have tried to 

establish whether concentration enhances or worsens the stability and resilience of a banking system. This 

stream of literature provides conflicting results, both theoretical and empirical, that can be grouped into two 

opposite views of the issue. Some authors – e.g. Beck et al. (2006), Beck (2007), Berger et al. (2009), Evrensel 

(2008), Freixas and Rochet (2008) – present results that support the view that concentration improves that 

stability of banking systems, the so-called ‘concentration-stability’ hypothesis. Other authors – e.g. De Nicolò et 

al. (2004), Boyd et al. (2006), Uhde and Heimeshoff (2009), Shehzad et al. (2009) – put forward the opposite 

opinion, the ‘concentration-fragility’ hypothesis, which claims that concentration renders banking systems more 

prone to systemic crisis.  

Most of the contributions mentioned above study the impact of industry concentration and consolidation on 

systemic stability by looking at the effects that the growth of the size and the market power of banks have on 

their stability. The variety of views and results appeared in the literature stems from the fact that these effects are 

ambiguous.   

In this paper, we look at the relation between the concentration and stability of banking systems from a different 

viewpoint. We analyse the impact of industry concentration on the risk of systemic crises due to direct, 

balance-sheet financial contagion in interbank networks. As it is known, banks form networks of financial 

obligations. These networks arise from over-the-counter trading, payment systems, syndicated loans, etc. 

Moreover, interbank financial networks arise as risk-sharing devices: banks cross-hold liquid position in order to 

co-insure themselves against the liquidity risk due to customer deposits fluctuations. This network of obligations 

becomes a channel of transmission of financial distress if one or more banks in the system default. The direct 

transmission of losses, from the defaulting debtors to their creditors, has been widely studied in the literature on 
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financial contagion. In what follows, we build upon the analytic results on the stability of complete, star and ring 

interbank networks put forward by Eboli (2018) and Castiglionesi and Eboli (2018). Varying the degree of 

concentration of these three types of interbank networks, we show that the concentration of the industry renders 

the complete and the ring networks more exposed to financial contagion and the risk of systemic crises, while the 

opposite applies to the star networks. To the best of our knowledge, the present paper is the first study of this 

type, i.e. the first application of interbank network theory to the analysis of the effects of the concentration of the 

banking industry on its stability. 

The paper is organised as follows. Section 2 presents a review of the related literature. Section 3 introduces a 

formal model of an interbank network, and the stability results about complete, ring and star networks put 

forward by Eboli (2018) and Castiglionesi and Eboli (2018). Section 4 presents our results on the effects of 

concentration on these three types of networks. Conclusions are drawn in section 5. 

2. Related Literature  

Several scholars have investigated the relation that exists between the concentration of the banking industry and 

its stability, providing contrasting results on both theoretical and empirical grounds.  

On the one hand, we have contributions that sustain the ‘concentration-stability’ hypothesis. Allen and Gale 

(2004) underline the fact that it is easier for the authorities to monitor the behaviour of a few large banks in 

highly concentrated banking systems. Other authors support the view that the bankruptcy risk of a bank 

decreases as its market power increases. Boyd et al. (2006) argue that concentration implies higher profits, hence 

more robust banks. Similarly, Evrensel (2008) and Berger and Bouwman (2013) argue that the high profits due 

to concentration increase the capital buffers of banks and renders them more capable of overcoming solvency 

and liquidity shocks. Freixas and Rochet (2008) also see a positive effect of market power on financial stability 

because of the higher profits that arise from market power, profits that improve the capability to absorb shocks. 

Beck et al. (2006) study the connection between market concentration and banking crises, using data on 69 

countries for the period 1980-1997. They find that the more concentrated a banking system is, the smaller is the 

risk of crises. Along the same line, Beck et al. (2007) claim that large banks are more stable thanks to the higher 

diversification of their exposures. 

On the other hand, the authors that support the ‘concentration-fragility’ hypothesis have a different view about 

the effects of consolidation and market power on stability. Uhde and Heimeshoff (2009) contend that larger 

banks can exploit economies of scale and achieve a more efficient diversification of their portfolios. Nonetheless, 

they find that concentration has a negative effect on the financial soundness of European banks, where the latter 

is measured in terms of Z-score. Boyd et al. (2006) argue that concertation and market power lead to higher 

interest rates on loans, inducing a higher risk of defaults because of the worsening of moral hazard and adverse 

selection problems in the credit market. Similarly, Forssbæ ck and Shehzad (2015) claim that market power in 

loan and deposit markets power has a stable and monotonically negative effect on banks’ risks. Schaeck et al. 

(2009) also present empirical evidence in favour of the ‘concentration-fragility’ view, comparing the 

concentration of banking systems and the occurrence of crises in 38 countries over the period 1980-2003. 

As discussed above, we investigate the concentration-stability issue from the viewpoint of the interbank network 

theory.  Thus, our work is also related to the literature on financial networks and systemic risk. Starting from 

the seminal papers by Allen and Gale (2000) and Eisenberg and Noe (2001), many contributions have studied 

systemic risk in banking networks, both with analytical methods and with numerical simulations. Allen and 

Babus (2009) review this stream of literature. A more recent set of papers—Cabrales et al. (2017), Elliott et al. 

(2014), Glasserman and Young (2015) and Acemoglu et al. (2015)—focuses on the effects of the shape of an 

interbank network on its exposure to systemic risk. Cabrales et al. (2016) provide a thorough description of these 

contributions. The papers that are mostly related to the present one are Eboli (2018) and Castiglionesi and Eboli 

(2018) since we apply their results on the stability of complete, ring and star interbank networks. Eboli (2018) 

presents an analysis of direct contagion in financial networks based on flow network theory. The author 

compares the performance of these three types of networks in terms of thresholds of contagion, as explained 

below. Castiglionesi and Eboli (2018) analyse the efficiency of different interbank networks in moving liquidity 

from banks that experience a surplus of liquidity to banks that face a liquidity deficit. These authors evaluate the 

stability of complete and ring networks under some restrictions that ensure the complete transfer of liquidity 

from surplus banks to deficit banks in both networks. 
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3. Financial Contagion in Interbank Networks 

3.1 An Interbank Network and Its Contagion Thresholds  

As customary, we model an interbank network as a directed and weighted graph, with nodes representing banks 

and links representing financial obligations between pairs of banks. Formally, let N = (Ω, L) be an interbank 

network composed of a set of n banks Ω = {𝜔𝑖 | i = 1,...,n} which are directly or indirectly connected to one 

another by a set of links L = {𝑑𝑖𝑗 | i ≠j; i,j=1,...,n}, i.e. a set of financial obligations, where 𝑑𝑖𝑗  is the amount that 

bank 𝜔𝑖  owes to bank 𝜔𝑗 . Each of such banks is characterized by its own balance sheet 𝑎𝑖 + 𝑐𝑖 = 𝑒𝑖 + 𝑑𝑖 + ℎ𝑖, 

where:  

i)  ai ∈R⁺ is the value of the external assets owned by the i-th bank. Such assets are liabilities — shares, bonds 

and bank loans — of final users of funds, which are not in Ω;  

ii) 𝑐𝑖 = ∑ 𝑑𝑗𝑖𝑗  is the sum of the internal assets — liabilities issued by other banks in Ω — held by bank i;  

iii) 𝑑𝑖 = ∑ 𝑑𝑖𝑗𝑗  is the internal debt of bank i, i.e., the sum of the liabilities issued by bank i and held by other 

banks in Ω;  

iv) ℎ𝑖 is the external debt of bank 𝜔𝑖 , i.e., the amount of claims against bank i held in the form of bonds and 

deposits by final claimants, such as households, who do not belong to Ω;  

v) 𝑒𝑖 is the value of the equity of the i-th bank, which is set residually by the budget identity 𝑒𝑖 = 𝑎𝑖 + 𝑐𝑖 − 𝑑𝑖 −

ℎ𝑖.  

Financial contagion in an interbank network N occurs if one or more banks in Ω default on their obligations. As 

customary in the literature on financial contagion, we suppose that this happens because of an exogenous 

insolvency shock, a shock that consists of a loss of value of some of the external assets 𝑎𝑖 held by the banks. The 

propagation across N of the losses caused by a shock is governed by the rules of limited liability, debt priority 

and pro-rata reimbursement of creditors. If a bank 𝜔𝑖  suffers a loss, this loss is first absorbed by its net worth, 

i.e. its equity 𝑒𝑖. If the bank defaults, i.e. if the loss is larger than 𝑒𝑖, then the residual loss is passed over to its 

creditors in Ω, who receive a loss proportional to their exposure towards the defaulting bank.  

Let 𝑏𝑖∈ [0,1] be a parameter that measures the fraction of the value of the asset 𝑎𝑖 which is lost upon the 

occurrence of the shock. If 𝑏𝑖 > 0, then the bank 𝜔𝑖  suffers a loss equal to 𝑏𝑖𝑎𝑖. Formally, an exogenous shock 

is a vector of scalars [𝑏𝑖𝑎𝑖], i=1,…,n, where at least one 𝑏𝑖 > 0, and its magnitude is 𝑠 = ∑ 𝑏𝑖𝑎𝑖𝑖 . Suppose that, 

upon the occurrence of a shock, one or more banks in Ω default. Let Ω− = *𝜔𝑖 |𝑏𝑖𝑎𝑖 > 𝑒𝑖+ be the set of these 

primary defaults and let Ω+ = *𝜔𝑖 |𝑙𝑖 > 𝑒𝑖+ be the set of secondary defaults, i.e. banks that default because of the 

losses 𝑙𝑖 received from their defaulting creditors in Ω. To evaluate the resiliency of a network, we look at its 

first and final contagion thresholds: 

Definition: The first contagion threshold of an interbank network N is the value of the smallest shock that is 

capable of causing at least one secondary default. The final contagion threshold of an interbank network N is the 

value of the smallest shock that is capable of causing the default of all banks in the network. 

3.2 The Contagion Thresholds of Complete, Ring and Star Networks 

In what follows, we focus on the response to shocks of three types of networks: the complete, the ring and the 

star network (Note 3). Complete networks are maximally connected; ring networks are minimally connected and 

maximally decentralised while star networks are minimally connected and maximally centralised. These three 

classes of networks are, respectively, the stylised example of dense networks, sparse and decentralised networks 

and sparse and centralised networks. 

 

Complete Network Ring Network Star Network 
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3.2.1 Complete Networks 

An interbank network is called complete if its set of links is maximal, i.e. if each bank places a deposit in every 

other bank in the network. Formally, let 𝑁𝑐 = *Ω, 𝐿𝑐+, where 𝐿𝑐 = {𝑑𝑖𝑗|𝑖 ≠ 𝑗; 𝑖, 𝑗 = 1, … , 𝑛 }, be a complete 

interbank network where all the links have the same weight (value) 𝑑𝑖𝑗. In other words, in this class of networks, 

each bank evenly allocates its own interbank deposits 𝑐𝑖 in all other banks. In a complete network 𝑁𝑐, the first 

threshold and the final threshold of contagion coincide and are equal to 

𝜏𝑐 = 𝑛𝑒𝑖 + 𝑒𝑖
ℎ𝑖

𝑑𝑖𝑗
= 𝐸 + 𝑒𝑖

ℎ𝑖

𝑑𝑖𝑗
                                 (1) 

where 𝐸 = ∑ 𝑒𝑖𝑖 = 𝑛𝑒𝑖 is the total amount of equity in the system. This result shows the robust-yet-fragile nature 

of a complete network. This network is fully resilient with respect to a shock of magnitude smaller than 𝜏𝑐 

while it suffers a complete systemic meltdown if hit by shocks equal to or larger than the above threshold. 

3.2.2 Ring Networks 

A ring interbank network is a circular network where each bank has only two neighbours, its predecessor and its 

successor along the ring. That is, a ring network consists of a set of banks connected through a chain of 

obligations, a chain where the start node ad the final node coincide. Formally, a ring network 𝑁𝑟 = *Ω, 𝐿𝑟+ is 

such that 𝐿𝑐 = {𝑑𝑖𝑗|𝑖 = 1, … , 𝑛 − 1, 𝑗 = 𝑖 + 1 } 

Unlike the complete network, the ring network does not have a single final threshold of contagion but rather an 

entire range of such thresholds. The possible final thresholds of 𝑁𝑟 depend on the allocation of the external 

shock s among the banks in the ring. We focus on the smallest and the largest possible final thresholds of this 

network.  

1) The first contagion threshold of 𝑁𝑟 is 

𝜏1
𝑟 = 𝑒𝑖 (2 +

ℎ𝑖

𝑑𝑖
)                                        (2) 

2) The smallest possible final threshold of Nris equal to 

𝜏2
𝑟 = 𝑎𝑖

𝑛

𝑘
                                          (3) 

where k is the largest integer such that 

𝑘 + 2(𝑘 − 1) [(1 +
ℎ𝑖

𝑑𝑖

)
𝑘−1

− 1] ≤
𝑎𝑖

𝑒𝑖

 

3) The largest possible final threshold of Nris equal to 

𝜏̈2
𝑟 = 𝑎𝑖(𝑛 − 𝑘̈ + 1) ,                                                   (4) 

where 𝑘̈ is the largest integer such that 

𝑘̈ + 2(𝑘̈ − 1) [(1 +
ℎ𝑖

𝑑𝑖

)
𝑘̈−1

− 1] ≤
𝑎𝑖 + 𝑑𝑖

𝑒𝑖

 

The integer k is the number of secondary defaults caused by the bankruptcy of a single bank in a ring network, 

i.e. by an idiosyncratic shock 𝑠 = 𝑎𝑖. The smallest possible final contagion threshold in 𝑁𝑟 corresponds to the 

most unfavourable scenario, that is when the primary defaults--the `seeds’ of contagion--are disposed along 𝑁𝑟 

at regular intervals of length k. With this disposition, the scope of contagion of each primary defaults is maximal. 

In this most contagious scenario, n/k primary defaults are sufficient to induce the default of all the other banks in 

the network, i.e. to reach the smallest of the possible final thresholds (Note 5).  

Conversely, the disposition of primary defaults that minimises the impact of a shock is such that all primary 

defaults are adjacent to one another, forming an uninterrupted chain along the ring network. In this case, the 

shock causes a number of secondary defaults equal to 𝑘̈ − 1, and the shock must wipe out the assets of at least 

(n-k+1) banks in order to achieve a complete systemic crisis.  

3.2.3 Star Networks 

A star interbank network is composed of a central node and a set of peripheral nodes. The central node, 𝜔𝑐, 

borrows from and lends to each of the n-1 peripheral nodes 𝜔𝑝, 𝑝 = 1,2, . . . , 𝑛 − 1, which, in turn, have no 

financial obligations among themselves. Formally, a star network 𝑁𝑠 = *𝛺, 𝐿𝑠+ is such that 𝐿𝑠 = {𝑑𝑐𝑝, 𝑑𝑝𝑐|𝑝 =

1, … , 𝑛 − 1}. Let 𝑒𝑐 and 𝑒𝑝 be the amount of equity, and ℎ𝑐 and ℎ𝑝 be the amount of customer deposits, held 
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by the centre bank and a peripheral bank, respectively. As above, all links in 𝐿𝑠 have the same value 𝑑𝑝, that is, 

the deposits cross-held by the centre bank and each peripheral bank are all equal. The response to a shock of this 

network depends on the allocation of the initial losses between centre and periphery. We have three possible 

cases: 1) the shock is idiosyncratic and borne by the central node alone: Ω− = *𝜔𝑐 +; 2) the shock is borne by 𝜔𝑐  

and by some peripheral nodes: Ω− = {𝜔𝑐 , 𝜔𝑝 |𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑝 𝑖𝑛 Ω\𝜔𝑐 }, and 3) the shock is borne by peripheral nodes 

only: Ω− = {𝜔𝑝 |𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑝 𝑖𝑛 Ω\𝜔𝑐 }. In the first two cases, the first and final contagion thresholds coincide, like 

in a complete network: 

1) If Ω− = *𝜔𝑐 +, then the first and the final contagion thresholds of 𝑁𝑠 are equal to 

𝜏𝑠 = (𝑛−1)𝑒𝑝 + 𝑒𝑐 + 𝑒𝑝
ℎ𝑐

𝑑𝑝
= 𝐸 + 𝑒𝑝

ℎ𝑐

𝑑𝑝
 .                           (5) 

2) If Ω− = {ωc , ωp |for some p in Ω\ωc } and for sc < τs,4 then the first and the final contagion thresholds of 

Ns are both equal to 

𝜏̈𝑠 = [𝐸 + 𝑒𝑝
ℎ𝑐

𝑑𝑝
] (1 +

ℎ𝑝

𝑑𝑝
) − 𝑠𝑐

ℎ𝑝

𝑑𝑝
= 𝜏𝑠 + (𝜏𝑠 − 𝑠𝑐)

ℎ𝑝

𝑑𝑝
 ,                     (6) 

where 𝑠𝑐  is the amount of exogenous initial losses suffered by the centre bank. 

Conversely, the first and final contagion thresholds are not equal to one another if the exogenous shock hits 

peripheral banks only: 

3) If Ω− = {ωp |for some p in Ω\ωc }, then the first and final thresholds of contagion are, respectively, equal to 

𝜏1
𝑠 = 𝑚𝑒𝑝 + 𝑒𝑐

ℎ𝑝

𝑑𝑝
                                   (7) 

and 

𝜏2
𝑠 = [𝐸 + 𝑒𝑝

ℎ𝑐

𝑑𝑝
] (1 +

ℎ𝑝

𝑑𝑝
) = 𝜏𝑠 (1 +

ℎ𝑝

𝑑𝑝
) .                           (8) 

These results show that the star network, on the one hand, is exposed to default contagion for relatively small 

shocks that hit peripheral banks only, i.e. for shocks 𝑠 ≥ 𝜏1
𝑠 that are sufficient to induce the default of the centre 

bank. On the other hand, 𝑁𝑠 has a robust-yet-fragile response to large shocks: once the centre bank is in default, 

the losses are evenly spread among all the other banks in the network and, as a consequence, they all default 

together if the shock is sufficiently large, i.e. if 𝑠 ≥ 𝜏2
𝑠. 

4. The Effects of Concentration on the Contagion Thresholds of Complete, Star and Ring Interbank 

Networks 

It can be checked by inspection that all final thresholds of contagion characterised above —  𝜏𝑐 , 𝜏𝑠, 𝜏̈𝑠, 𝜏2
𝑠, 𝜏2

𝑟 , 𝜏̈2
𝑟 – 

grow as the number of banks in a network, n=|Ω|, grows. The growth of the population, n, of the networks at 

hand renders them more robust because of two distinct effects:  

i) the growth of the size of the financial system represented by N, and of its total stock of equity, E;  

ii) the decrease of the degree of industry concentration of the financial system.  

The rationale of point (i) is almost self-evident, recalling that the equity endowment of a bank determines its 

capacity to absorb a shock, and this equally applies to a set of banks hence to all networks. Thus, it is not 

surprising that a larger network requires a larger shock to cause a systemic crisis.  

Conversely, the effects of industry concentration on the exposure to default contagion of the networks at hand are 

less obvious. Indeed, we have that these effects are not the same for all networks. To see this, let us isolate the 

effects of concentration, point (ii), from the effects of the growth of the financial system, point (i). We do so by 

keeping constant the size of the banking system in terms of the stocks intermediated by the industry — i.e., the 

total external assets, A, the total equity, E, the total external liabilities, H, and the total interbank debt, D — while 

varying the number of banks n. This constraint implies that, as n grows, the size of each bank in the system 

decreases. As the population of the network grows while its stocks A, E, H, and D remain constant, the value of 

each balance-sheet item 𝑒𝑖 = 𝐸/𝑛, 𝑎𝑖 = 𝐴/𝑛, 𝑑𝑖 = 𝐷/𝑛 and ℎ𝑖 = 𝐻/𝑛 decrease proportionally. With this restriction, 

the concentration of the industry, measured with the Hirschman-Herfindahl index or the Concentration Ratio Cr, 

diminishes as n grows. Moreover, we assume that each network at hand is composed of banks of equal size. 

Under these assumptions, we have the following results: 
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Proposition 1: The threshold 𝜏𝑐 of a complete interbank network 𝑁𝑐 increases in n. 

Proof: The first addendum of (1), E, is constant by assumption. The second addendum of (1) can be written as 

𝑒𝑖 ∙ ℎ𝑖 𝑑𝑖𝑗 = (𝑛 − 1)𝑒𝑖 ∙  ℎ𝑖 𝑑𝑖 = 𝐸 ℎ𝑖 𝑑𝑖 − 𝑒𝑖 ∙  ℎ𝑖 𝑑𝑖⁄⁄⁄⁄ . Since ℎ𝑖 = 𝐻/𝑛, 𝑑𝑖 = 𝐷/𝑛 and 𝑒𝑖 = 𝐸/𝑛, the first addendum 

of the latter equation is constant while the second addendum decreases in n. Therefore, 𝜏𝑐 increases in n.  

As n grows and the concentration of the industry diminishes, a complete network 𝑁𝑐 becomes more robust, in 

the sense that range of the exogenous shock s for which the network is entirely resilient, 𝑠 < 𝜏𝑐, grows as n 

grows. Under the above-stated assumptions, the more concentrated the industry is, the smaller is the shock 

capable of generating a systemic crisis, i.e. the more the system is exposed to systemic risk. The above result 

shows that the stability of a complete network deteriorates because of industry concentration, a result in line with 

the ‘concentration-fragility’ hypothesis.  

We obtain a similar result for the class of ring networks: 

Proposition 2: In a ring network 𝑁𝑟, we have that as n grows:  

1). The first contagion threshold, 𝜏1
𝑟, decreases. 

2). The smallest possible final contagion threshold, 𝜏2
𝑟, i) remains constant while ii) the probability of its 

occurrence decreases. 

3). The largest possible final contagion threshold, 𝜏̈2
𝑟, increases. 

Proof:  

1. 𝜏1
𝑟 = 𝑒𝑖(2 + ℎ𝑖 𝑑𝑖⁄ ) decreases in n because 𝑒𝑖 = 𝐸/𝑛 diminishes as n grows while ℎ𝑖 𝑑𝑖⁄  remains constant. 

2. i) recall that 𝑎𝑖 = 𝐴/𝑛 and rewrite (7) as 𝜏2
𝑟 = 𝐴/𝑘, which is invariant with respect to n. ii) First note that the 

above-defined parameters k and 𝑘̈ remain constant as n changes because the ratios ℎ𝑖/𝑑𝑖 , 𝑎𝑖/𝑒𝑖   and (𝑎𝑖 +

𝑑𝑖)/𝑒𝑖 remain constant as n changes. Suppose now that a shock 𝑠 = 𝑎𝑖 ∙ 𝑛/𝑘  occurs in a ring network  𝑁𝑟 

composed of n banks, and let m=n/k. In other words, let us assume that the shock causes m primary defaults out 

of n banks in the ring. There are  

(
𝑛
𝑚

) =
𝑛!

𝑚! (𝑛 − 𝑚)!
 

combinations of m primary defaults out of n banks, all equally likely to occur, each with probability m!(n-m)!/n!. 

There are k of these combinations such that the m primary defaults are disposed at a regular distance k from one 

another. The probability that one of these k combinations occurs, provided that there are m primary defaults, is k⋅ 
m!(n-m)!/n!, that is strictly decreasing in n. 

3. To see that 𝜏̈2
𝑟 increases in n, rewrite (8) as 𝜏̈2

𝑟 = (𝑛 − 𝑘̈ + 1)𝐴/𝑛  = 𝐴 − (𝑘̈ − 1)𝐴/𝑛 and recall that A is 

constant by assumption. q.e.d. 

As n grows and the banks in the system become progressively more numerous and of smaller size, a ring 

network  𝑁𝑟 becomes less resilient with respect to small shocks, as shown by the fact that the first contagion 

threshold decreases in n. On the other hand, as n grows, a ring network becomes more stable with respect to 

large shocks, i.e. it becomes less exposed to systemic risk. The magnitude of the shock that corresponds to the 

worst case scenario, i.e. the smallest possible final threshold 𝜏2
𝑟, does not change but the probability of its 

occurrence decreases as n grows. This result implies that as the concentration of the industry grows (and n 

diminishes), the likelihood of a systemic crisis in 𝑁𝑟 increases. This effect of concentration is even more evident 

looking at the largest possible final contagion threshold of the ring network, 𝜏̈2
𝑟: the smaller n, the smaller 𝜏̈2

𝑟 and 

the more the network is exposed to systemic risk. Again, a result in line with the ‘concentration-fragility’ 

hypothesis. In sum, the more concentrated a ring interbank network is, the less it is exposed to local episodes of 

contagion, due to relatively small shocks, and the more it is exposed to the risk of a whole systemic crisis. 

We now proceed to show that the opposite result applies to the class of star networks. 

Proposition 3: The contagion thresholds of a star network 𝑁𝑠, 𝜏1
𝑠,  𝜏𝑠, 𝜏2

𝑠 and 𝜏̈𝑠, decrease as n grows. 

Proof: 1). The first addendum of (4), 𝑚𝑒𝑝, decreases in n because i) m does not change with n. m, the smallest 

number of primary peripheral defaults sufficient to cause the default of the centre node, is s.t. 𝑚𝑙𝑝 ≥ 𝑒𝑐 , where 

𝑙𝑝 = (𝑎𝑝 − 𝑒𝑝) (ℎ𝑝 + 𝑑𝑝)⁄  is the loss that a single peripheral bank in default, subject to an idiosyncratic shock 

𝑠𝑝 = 𝑎𝑝, sends to the centre bank. Since all the balance sheet items 𝑎𝑝, 𝑒𝑝, ℎ𝑝, 𝑑𝑝  and 𝑒𝑐 vary in the same exact 

proportion as n changes, so do 𝑙𝑝 and 𝑒𝑐. Consequently, m remains constant while n changes and 𝑒𝑝 = 𝐸/𝑛 
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diminishes as n grows. ii) The second addendum of (4), 𝑒𝑐 ℎ𝑝 𝑑𝑝⁄ , decreases in n because ℎ𝑝 𝑑𝑝⁄  does not 

change with n while 𝑒𝑐 = 𝐸/𝑛 diminishes as n grows.  

2). The first addendum of (2), E, is constant by assumption. The second addendum of (2), 𝑒𝑝 ∙ ℎ𝑐 𝑑𝑝⁄ , diminishes 

in n because ℎ𝑐 𝑑𝑝⁄  remains constant while n changes and 𝑒𝑝 = 𝐸/𝑛 diminishes as n grows.  

3). Since 𝜏𝑠 diminishes in n and ℎ𝑝 𝑑𝑝⁄  does not change with n, then 𝜏2
𝑠 = 𝜏𝑠(1 + ℎ𝑝 𝑑𝑝⁄ ) also decreases as n 

grows. 

4). Since 𝜏𝑠 diminishes in n and the exogenously given shock to the centre bank, 𝑠𝑐 , does not change with n, 

then 𝜏̈𝑠 = 𝜏𝑠 + (𝜏𝑠 − 𝑠𝑐) ℎ𝑝 𝑑𝑝⁄  also decreases as n grows. 

Contrary to what happens with complete and ring networks, all contagion thresholds of a star network 𝑁𝑠 

decrease as n grows. This result means that, as n grows, the magnitude of the shocks that can cause a systemic 

crisis in 𝑁𝑠 become progressively smaller and, consequently, the industry becomes progressively more exposed 

to systemic risk. In other words, higher concentration (lower n) renders a star interbank network more resilient to 

direct financial contagion, a result in line with the ‘concentration-stability’ hypothesis.  

5. Conclusions 

A stream of economic and financial literature addresses the relationship between the degree of concentration of a 

banking system and its stability. This literature provides contrasting results, with two opposite views: the 

so-called ‘concentration-stability’ and ‘concentration-fragility’ hypotheses. The ambition of this paper is to 

contribute to this line of research. We do so by presenting analytic results on the effects that the concentration of 

the banking industry has on the risk of the occurrence of a specific type of systemic crisis. We focus on the 

systemic risk due to exogenous insolvency shocks that propagate across the industry along the web of 

obligations that form an interbank network. Building on results concerning the stability of complete, ring and 

star interbank networks, put forward by Castiglionesi and Eboli (2018) and Eboli (2018), we investigate the 

impact of the banking industry concentration on the so-called ‘contagion thresholds’ of these three classes of 

interbank networks. A contagion threshold is the magnitude of the smallest shock that can cause contagion and 

systemic crises in an interbank network.  

Our results show that the contagion thresholds of complete and ring interbank networks decrease as the degree of 

concentration of the system increases: concentration makes these networks more exposed to the risk of systemic 

crisis. Conversely, we obtain that the final contagion thresholds of star interbank networks display the opposite 

behaviour: they grow as the degree of concentration grows. In this case, concentration enhances stability making 

the industry less exposed to the risk of systemic crisis.  

Our results shed some light on the impact of industry concentration on the stability of interbank networks, where 

the latter is evaluated with respect to the risk of episodes of direct financial contagion leading to systemic 

insolvency crises. To the best of our knowledge, this is the first paper to address this specific issue. The theorems 

presented in this paper indicate that the concentration/stability controversy mentioned above must take into 

account the structure of the interbank networks. As argued above, concentration renders less stable the banking 

systems that form highly decentralised interbank networks, either dense or sparse. Conversely, banking 

industries that form highly centralised interbank networks become more stable with concentration. The analysis 

presented here, however, is limited to the case where all banks in a network have the same size. The process of 

concentration of the banking industry has also been a process of consolidation. The recent empirical evidence 

shows banking systems composed of a few very large banks and a multitude of small and medium-sized banks. A 

natural and interesting development of the present work is the extension of the analysis to the case of interbank 

networks composed of banks of different sizes. This extension would embrace the study of the two-tiered 

core-periphery banking systems, described by Craig and van Peters (2004), and star networks with very large 

banks at the centre (also known as ‘money centres’), studied by Castiglionesi and Eboli (218). This line of 

research is on our agenda. 
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Notes 

Note 1. According to Deltuvaitė (2010) and to the literature cited therein, in those years the average value of the 

CR3 ratio in the national banking industries became larger than 80 per cent, in 72 countries, and larger than 72 
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per cent in 160 countries. 

Note 2. See, inter alia, Craig, B. and von Peter, G. (2014). 

Note 3. Castiglionesi and Eboli (2018) established the contagion thresholds in eqs. (1) - (5) below, concerning 

complete and star networks (see propositions 4, 5 and 6 therein), while Eboli (2018), in theorem 5, demonstrates 

the contagion thresholds in (6) – (8). 

Note 4. For shocks s.t. 𝑠𝑐 > 𝜏𝑠, the threshold in (2) applies. 

Note 5. The variable k takes on rather small values, for plausible values of leverage and interbank exposures. 

Eboli (2018) shows that, even in the most contagious scenarios, with large interbank exposures and a low 

equity/asset ratios, k is at the most equal to 3. The same applies to the variable 𝑘̈ below. 
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