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Abstract 
The double layer capacitance of polyaniline (PANi)-coated electrode in acidic solution exhibited little frequency 
dispersion under the emeraldine (electrically conducting) state, while it showed large frequency dispersion under the 
insulating state. The former has a possibility of working as such an ideal capacitor that it may generate neither heat in 
iterative charge-discharge processes nor leakage of stored charge. The frequency dispersion is generally expressed by f-λ 
for ac-frequency f and a constant λ. This power law is ascribed to orientation of solvent dipoles rather than non-uniform 
distribution of ions. The value of λ under the conducting state was close to zero, implying the orientation to be 
facilitated by less interaction of solvents. The less interaction was supported indirectly with strain-stress curves of PANi 
by atomic force microscopy. λ-Values close to zero were retained even for thick PANi films. 
Keywords: frequency dispersion of double layer capacitance, polyaniline-coated electrode, ac-impedance, power law 
by ac-frequency 
1. Introduction 
Polyaniline (PANi) exhibits electric conductivity in acidic solution under the oxidized state called emeraldine 
(MacDiarmid, et al., 1989; McManus, et al., 1987). The electric features of PANi-coated films have often been 
examined by use of ac-impedance techniques. Interpretation of the impedance data inevitably needs equivalent circuits 
composed of electronic elements such as ideal resistors and capacitors, which should be translated to electrode reaction 
mechanisms. Since equivalent circuits do not correspond uniquely to electrochemical reaction mechanisms (Brug, et al., 
1984), suggested equivalent circuits do not always lead to an interpretation of the mechanisms. There are some 
complications (Deslouis, et al., 1999) that avoid unique interpretation especially for PANi films. They include (a) redox 
reactions which convert the states between the insulator and the conductor, (b) a function of electrically conducting 
porous PANi films as an electrode (Ren, et al., 1995), (c) hysteresis responding to such a long applied voltage change 
(Heinze, et al., 1987; Feldberg, et al., 1988) that it can be expressed quantitatively by logarithmic time-dependence 
(Aoki, et al., 1994; Odin, et al., 1992), (d) undistinguished Faradaic currents from capacitive ones (Heinze, et al., 1988; 
Feldberg, 1984), which has been extensively discussed (MacDiarmid, et al., 1989), and (e) complicated contribution of 
ions (Deslouis, et al., 1999; Benyaich, et al., 1996). Item (a) is coupled with (b) to expand or shrink the conducting zone 
over the film, called the propagation of the conducting zone (Aoki, et al., 1992; Aoki, et al., 1994). Since the expansion 
of the conducting zone increases the capacitive current through (d), it is not easy to estimate reaction mechanisms from 
equivalent circuits. 
Equivalent circuits of PANi films suggested so far are a parallel resistor-capacitor circuit in series with a resistor 
(Passiniemi, et al., 1995; Fernandes, et al., 2008, Aggas, 2015), nested resistance-capacitance blocks (Sarac, et al., 
2008), dual rail transmission line models (Rubinstein, et al., 1987; Kalaji, et al., 1991; Mondal, et al., 2005), circuits 
including capacitance and inductance as parasitic stay impedance (Horvat-Radosevic, et al., 2009), circuits extracting 
significant contributions of coupled electron-ion transport inside a film (Vorotyntsev, et al., 1999), and power law of the 
impedance with respect to frequency (Babu, et al., 2013; Ravikiran, et al., 2006; Hui, et al., 2004; Ravikiran, et al., 
2015). Unfortunately, they have not included systematically the frequency dispersion of the double layer (DL) 
capacitance such as the constant phase element (CPE) (Brug, et al., 1984; Lasia, et al., 1999; Nyikos, et al., 1985; 
Zoltowski, 1998) or the power law (Aoki, et al., 2013; Hou, et al., 2013; Zhao, et al., 2014; Hou, et al., 2014; Wang, et 
al., 2015). 
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The basic concept of the frequency dispersion is not due to a combination of ideal capacitances and resistances, but lies 
in the charge q stored in a time-dependent DL capacitance C and the voltage V, as represented by the current, I = dq/dt = 
d(CV)/dt, according to the definition of C. Letting the angular velocity of the ac-voltage V0 in amplitude be ω , the 
time-derivative for the ac voltage V = V0eiωt becomes 

( )tCCiVI ti d/de0 += ωω                                 (eq.1) 
where i is the imaginary unit. If the time t in dC/dt is replaced by ω through t → t' = 1/ω, eq.1 can be rewritten through 
dC/dt' = -ω2dC/dω as 

( )ωωωω d/de 2
0 CCiVI ti −=                                 (eq.2) 

Since the current in eq.2 is composed of a series combination of the real term and the imaginary one, the equivalent 
circuit should be a parallel combination of the capacitance Cp and the resistance Rp ≡ -1/(ω2dCp/dω), where C in eq.2 
was represented as Cp for stressing the parallel. The parallel resistance, Rp, is caused from a delay of the capacitance 
associated with the phase shift of 90o. Since the capacitance itself brings about the response with the 90o shift, Rp turns 
out to be shifted by 180o, belonging to an in-phase component. Then the impedance at the electrode|solution (E) 
interface is given by  

ZE = (iωCpE - ω2dCpE/dω)-1                                     (eq.3) 
where the subscript E means the electrode|solution interface. The imaginary component of ZE often has shown a linear 
relation with the real component, i.e. a line in the Nyquist plot, of which slope -CpE /(ωdCpE/dω) is a constant. Letting 
the slope be 1/λE for a constant λE (close to 0), we obtain  

                    
            

(eq.4) 
as a result of solving the differential equation (Aoki, et al., 2018). Values of λE are independent of area of an electrode, 
i.e. independent of choosing a projected area or an area on molecular scale. The logarithmic law in eq. 4 has been 
verified for various solvents and electrodes (Aoki, et al., 2013; Hou, et al., 2013). Inserting eq.4 into eq. 3 yields 

( )[ ] 1
EpEE

−+= λω iCZ                                     (eq.5) 
Since PANi is electrically conducting material especially at the oxidized form, it works as an electrode. The interface 
between the electrode-like conducting film and the solution should also provide a double layer impedance, denoted by 
ZF (film|solution) Therefore, there is the other impedance, ZF, at the film|solution interface, which is predicted to have a 
form similar to ZE, as illustrated in Fig. 1, i.e. 

( )[ ] 1
FpFF

−+= λω iCZ                                   (eq.6) 

A film resistance between the electrode and the film|solution interface, RF, is involved in the observed impedance. 
Furthermore, the solution resistance, Rs, takes part in the total impedance, Z. Since the impedance, Z - Rs, is given by the 
parallel combination of ZE and ZF + RF, we have 

           
 
 

(eq.7) 
Our subject is to evaluate CpF, and RF by variations of Z with frequency in the PANi films. Dependence of these values 
on frequency and dc-potentials may provide electronic properties of PANi films. Especially, we pay attention to values 
of λF from dCpF/dω, which imply time-dependent parameters of the capacitor. The time-dependence is significant for 
energetic reversibility of supercapacitors in charge-discharge processes. We will find very small values of λF, which 
may demonstrate reversibility of the charge/discharge processes from a physicochemical viewpoint. This work does not 
include any kinetics for the redox reaction because we want to extract the DL properties accurately not to be disturbed 
by the faradaic reactions. 
 



http://ijc.ccsenet.org                      International Journal of Chemistry                        Vol. 10, No. 2; 2018 

27 
 

)]1(/[1
)]1(/[

2
FF2

Fs
2
FFF1

+=−

+++=

λω
λωλ

CZ
RRCZ

 
Figure 1. Equivalent circuits of PANi-coated electrode 

2. Experiment 
Water was distilled and then ion-exchanged with an ultrapure water system, CPW-100 (Advantec, Tokyo). All the 
chemicals were of analytical grade. The working electrode was a platinum wire 0.5 mm in diameter, which was inserted 
into solution by a given length ca. 8 mm. The accurate length was measured by means of an optical microscope. The 
inserted wire electrode is useful for avoiding the stray capacitance, which is caused at disk-shielded electrodes by 
crevice of insulator|electrode boundaries. The reference electrode and the counter electrode were, respectively, Ag|AgCl 
in saturated KCl and a platinum coil. Cyclic voltammetry and ac-impedance measurements were carried out with a 
potentiostat, Compactstat (Ivium Tech., Netherlands). Ac-impedance was obtained by applying ac-voltage of the 10 mV 
amplitude superimposed on a given value of dc-potential (Edc) ranging from -0.1 to 0.5 V vs. Ag|AgCl in the frequency 
domain from 1 Hz to 10 kHz. 
PANi films were synthesized with electrochemical oxidation of 0.1 M (= mol dm-3) aniline in 1.0 M sulfuric acid at the 
platinum wire. The oxidation was made by cyclic voltammetry of which potential ranged from -0.15 to 0.80 V vs. 
Ag|AgCl at a given cycle number, ranging from 40 to 300, at the scan rate 30 mV s-1. Atomic force microscope (AFM) 
was Nanocute (Hitachi). Film thickness was estimated from the assumptions of the one electron reaction of 
leucoemeraldine to emeraldine per four-aniline unite (MacDiarmid, A.G., & Epstein, A.J., 1989) and the density 1.35 g 
cm-3 of PANi films. Then the charge density 0.01 C cm-2 for the redox reaction corresponds to 0.3 μm thickness. The 
film thickness was 0.5 μm, unless otherwise stated. 
3. Results and Discussion 
Fig. 2 shows Nyquist plots of a PANi film at three dc-potentials, Edc. The plots at the sufficiently (a) reduced and (c) 
oxidized PANi films show slanted lines rather than a vertical line, like the CPE behavior  (Brug, et al., 1984; Lasia, et 
al., 1999; Nyikos, et al., 1985; Zoltowski, et al., 1998). When ZE >> ZF + RF, eq.7 becomes Z = ZF + (Rs + RF), which is 
composed of a series combination of the impedance at the film|solution interface and the resistances of the PANi film 
and the solution. The real and the imaginary parts are represented respectively by 

            
 
 

(eq.8) 
or  

Z1 = - λFZ2 + Rs + RF                                         (eq.9) 
Then the Nyquist plot shows a line with a slope of 1/λF and an intercept of Rs + RF on the Z1 axis. On the other hands, 
eq.7 for ZE << ZF + RF becomes Z = Rs + ZE, of which Nyquist plot is given by 

Z1 = - λEZ2 + Rs                                            (eq.10) 
Since the plots in Fig. 2 for the reduced (a) and the oxidized (c) forms take lines, either of eq.9 or eq.10 is possible, i.e. 
(either λF or λE) = 0.5 (a) and 0.02 (c). The impedance values at the oxidized PANi (at 82 Hz to be marked as a cross) 
are much smaller than those at the reduced one. Since the values of the impedance vary largely with the redox state of 
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PANi films, the difference in the slopes of the Nyquist plots should be ascribed to λF rather than λE. As a result, we can 
infer ZE >> ZF + RF. 

Figure 2. Nyquist plots at the PANi-coated Pt electrode in 1 M H2SO4 solution at Edc = (a) 0.0, (b) 0.15 and (c) 0.40 V 
vs. Ag|AgCl. The cross marks are at f = 82 Hz 

Fig. 3 shows variation of the intercept of the Nyquist plots on the Z1 axis with the dc-potentials, together with the 
voltammogram of the PANi film in the upper part. The intercept represents Rs + RF, according to eq.9. Values of the 
resistance (RS+RF) for Edc < 0.1 V are six times larger than those for Edc > 0.2 V in Fig. 3. In contrast, the resistivity of 
the reduced PANi film has been reported to be larger by a few order in magnitude than that of the oxidized form 
(McManus, et al., 1987; Paul, et al., 1985; Ofer, et al., 1990; Csahók, et al., 2000). Our result in Fig. 3 is consistent with 
the large ratio of the resistivity, because the difference between the maximum resistance Edc < 0.1 V and the minimum 
one Edc > 0.2 V can be attributed to the film resistance (RF) through the redox reaction, the net ratio being a few order in 
magnitude. 

Figure 3. (A) Variation of the resistance with the dc-potential, and (B) voltammogram of the PANi film in 1 M H2SO4 
solution at the scan rate of 10 mV s-1 

We let the admittance of ZF be YF, i.e.,  
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(eq.11) 

According to eq.6, the admittance can be rewritten through the f-dependent capacitance: 

( )( ) ( ) 1
pF,1HzFpFFF

Fπ2 ++=+= λλωλ fCiCiY                        (eq.12) 

Values of the imaginary part, YF2, calculated from eq.11 were plotted against the frequency in the logarithmic scale in 
Fig. 4. The linearity supports the validity of eq.12, of which slopes and intercepts give λF and CpF,1Hz, respectively. 

 
Figure 4. Logarithmic plots of YF2 against frequency at Edc = (a) 0.0 and (b) 0.4 V vs. Ag|AgCl 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Dependence of (circles) λF and (triangles) CpF,1Hz on the dc-potential 
Fig. 5 shows the variation of CpF,1Hz with the dc-potentials on the right axis. The oxidized PANi which lies in the 
potential domain Edc > 0.15 V exhibits values of CpF,1Hz much larger than of the reduced one (in Edc < 0.15 V). The large 
capacitance values can readily be understood in terms of the porous, conducting PANi film, which provides huge net 
area of the electric conducting material, as if the electrode area were large. They are 1000 times as large as those at 
Pt|aqueous solution interfaces. In contrast, the reduced PANi exhibits 400-700 μF cm-2, which is more than 10 times 
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larger than at Pt|aqueous solution interfaces. The 10 time larger capacitance supports the assumption of ZE >> ZF + RF 
for eq.8 and eq.9, or supports that the capacitance at the film|solution interface is much predominant over that at the 
electrode|solution interface. As a result, the capacitance in Fig. 5 should be CpF rather than CpE. Although values of the 
net area of the interface are ambiguous, values of λE and λF have been determined independently of the area from the 
plot in Fig. (4). 
Fig. 5 also shows the variation of λF with the dc-potentials on the left axis. The oxidized PANi provides values of λF (= 
0.04) as small as values at the highly oriented pyrolytic graphite (λ = 0.06) and thin (< 0.1 μm) films of graphene flakes 
in aqueous solutions (Wang, et al.,2015) in comparison with at platinum electrodes (λ ≈ 0.1) (Aoki, et al., 2013; Hou, et 
al., 2013; Zhao, et al., 2014; Hou, et al., 2014). Smaller values of λ imply less contribution of frequency dispersion or of 
the associated resistance expressed by ω-2(dC/dω)-1 in eq.2. They are ascribed to high feasibility of the orientation of 
solvent dipoles (Aoki, 2016). The thicker are electrically conducting materials, the longer is the orientation time of 
dipoles generally (Wang, et al., 2015). PANi films are often as thick as of μm order, and hence are predicted to yield 
large values of λF. The evaluated small values of λF can be attributed to the high feasibility of the orientation of water 
molecules around the oxidized form of PANi molecular wires. 

Figure 6. Force-depth curves when a cantilever of AFM was pressed on the PANi film under (a) the reduced state and (b) 
the oxidized one 

The feasibility may be related with microscopic Young's modulus of PANi. The mechanical properties such as 
macroscopic moduli of PANi films have been discussed in the context of the redox states (Mohamoud, et al., 2007; 
Valentová, et al., 2010; Han, et al., 2004; Yu, et al., 2009). The Young moduli of the oxidized state are smaller than 
those of the reduced one (Valentová, et al., 2010). We regarded the modulus as a slope of stress-strain curves or 
force-depth curves by the force mode of atomic force microscope (Passeri, et al., 2011). Fig. 6 shows the force-depth 
curves of the reduced and the oxidized forms of PANi films. The curves varied with locations of touching a cantilever 
with the film, but they were always composed of two lines with a critical point. Two lines with a junction have been 
exhibited in most PANi films (Mohamoud, et al., 2007; Valentová, et al., 2010; Han, et al., 2004; Yu, et al., 2009; 
Passeri, et al., 2011) although complicated curves appeared in a single polymer chain (Yu, et al., 2009). The slope of 
force against the depth, proportional to the Young modulus, of the oxidized form (8.8±3.8 mV nm-1) is smaller than that 
of the reduced one (10.5±5.9 mV nm-1), where these values were averaged for 46 curves at different locations, and the 
errors mean the standard deviation. Therefore, the oxidized form is higher feasibility of the orientation for generating 
the capacitance than the reduced form. This fact supports the dependence of λF on the dc-potential.  
Supercapacitors are desired to have such physical properties as a) high density of capacitance, b) high voltage, c) 
reversibility without heat generation, and d) the absence of leakage of current through the DL layer. Item d) is more 
essential from the physicochemical viewpoints than the others which have resorted practically to hybridization of 
polyaniline with carbons (Cheng, et al., 2013; Tayel, et al., 2016) as pseudocapacitors (Liu, et al., 2014; Gup, et al., 
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2015; Leary, et al., 2016; Liu, D., et al., 2015; Sarangapani, et al., 1996) and morphological variations I, II, III(Grover, et 
al., 2016; Chen, et al., 2013; Singu, et al., 2012). It includes two causes: one is the leakage due to time-variation of voltage 
through RpF (= -1/(ω2dCpF/dω)) and the other is due to redox reactions. The former is related with λF. Since an increase in 
the film thickness generally increases λF, item a) is competitive with λF in d). In order to know a degree of the competition, 
we examine the relation between values of λF and the film thickness or the redox charge involved in PANi films. We 
determined the amount of the redox charge from the linear sweep voltammograms on the assumption that the observed 
current, I(E), was the sum of the current, Ird(E), for the surface wave of the redox reaction and the capacitive current of the 
oxidized PANi. The capacitive component can be expressed in terms of the integral of kIrd(E), as illustrated in the inset of 
Fig. 7, where k is a proportional constant. The solution of the integral equation yields (Tezuka, et al., 1989) 

       
 

(eq.13) 
or 

     
 

(eq.13’) 
where Ein is the initial potential. A value of k was determined so that Ird(E) = 0 for sufficiently positive potential, e.g. 0.4 
V vs. Ag|AgCl. We regard the integral of Ird as the redox charge Q. We examined the reliability of k within 6 % errors 
for different film thicknesses and scan rates, as consistent with the previous result (Tezuka, et al., 1989). Fig. 7 shows 
the variation of λF for the oxidized state (at Edc = 0.4 V) with the redox charge density, σ = Q/S for the projected surface 
area S. Values of λF did not vary with the film thickness within the standard deviation. In contrast, CpF,1Hz increased 
proportionally with the film thickness (on the right axis), as conventionally predicted without complications. Therefore, 
item a) is not competed with λF. Even a thick PANi film can keep values of λF to be close to zero, i.e. an ideal capacitor. 

 
Figure 7. Variations of λF (circles) and CpF,1Hz (triangles) with the charge density of the PANi film 

The bar means the standard deviation of λF. The inset illustrates a linear sweep voltammogram (solid curve) and a 
charging current (dotted curve) 
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4. Conclusion 
Ac-impedance of PANi films obeys the equivalent circuit in Fig. 1, in which most of the ac-current flows through the 
film|solution rather than electrode|solution, represented by ZE >> ZF + RF. The capacitance of the PANi film is followed 
by the power law of the frequency, similar to the power law at the electrode|solution interface. The values are quite 
different, i.e., CpF >> CpE and λF < 0.04 <λE. Since the conducting state of the PANi can be regarded as an assembly of 
conducting wires, the former inequality is obvious for the electrode area. The latter is significant for applying PANi 
films to supercapacitors in the viewpoint of suppressing heat generation at the film|solution interface in 
charge-discharge processes. 
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