
International Journal of Chemistry; Vol. 6, No. 4; 2014 
ISSN 1916-9698   E-ISSN 1916-9701 

Published by Canadian Center of Science and Education 

38 
 

Numerical Simulation of Black Oil-three Compound Combination 
Flooding  

Yirang Yuan1, Aijie Cheng1, Danping Yang1 & Changfeng Li1,2 
1 School of Mathematics, Shandong University, Jinan, China 
2 School of Economics, Shandong University, Jinan, China 

Correspondence: Yirang Yuan, School of Mathematics, Shandong University, Jinan, Shandananlu 27, China. Tel: 
86-531-8836-4732. E-mail: yryuan@sdu.edu.cn 

 

Received: July 28, 2014   Accepted: September 9, 2014   Online Published: October 25, 2014 

doi:10.5539/ijc.v6n4p38          URL: http://dx.doi.org/10.5539/ijc.v6n4p38 

 

The research is financed by the National Tackling Key Project (Grant Nos: 2011ZX05011-004, 2011ZX05052, 
20050200069), National Natural Science Foundation of China (Grant Nos: 11101244, 11271231, 10771124, 
10372052), National Doctoral Foundation (Grant No: 20030422047) and Natural Science Foundation of 
Shandong Province (Grant No: ZR2011AM015) 

 

Abstract 

Numerical methods of permeation fluid mechanics for black oil (water, oil and gas)--three compound 
combination flooding (polymer, surface active agent and alkali) in porous media is discussed in this paper. In 
view of petroleum geology, geochemistry, computational mechanics of flow and computer technology, a 
mechanics model of three-phase flow (water, oil and gas)--three compound combination flooding (the polymer, 
surface active agent and alkali) is presented firstly, then the characters and the application are stated in this paper. 
A numerical algorithm consisting of a full implicit program, an implicit computation for the pressure and an 
implicit/explicit program respective for the pressure and the concentration is given by structuring an upstream 
sequence and an iterative algorithm of implicit fined upwind fractional step finite difference to solve the pressure 
equation, the saturation equation and the concentration of chemical substance components and the petroleum 
acid concentration equation. This program runs quickly and is of high accuracy. The design of this software is 
given and can be applied in major industries, which is made up on ten-meters steps, hundreds of thousands nodes 
and tens of years and has been carried out successfully in analysis and simulation of national major oil-fields 
extraction such as Daqing Oilfield, Shengli Oilfield and Dagang Oilfield and others, which gives rise to 
outstanding economic and social benefits. A precise analysis is given for a simplified model and the numerical 
simulation system depends on mathematics and mechanics. An idea is presented to solve this international 
famous problem. 

Keywords: three compound combination flooding (the polymer, surface active agent, alkali), permeation fluid 
mechanics of black oil (water, oil and gas), model and numerical simulation, actual application of oil fields, 
theoretical analysis 

1. Introduction 

A popular numerical simulation way, water flooding, is applied in the world to keep the reservoir pressure, and 
the recovery efficiency is more outstanding than any other natural exploring forms. This gives more benefits and 
helps Chinese oil fields keep high quantity production. It continues to be more important how a strategic project 
works to develop the exploiting efficiency of crude oil in the way of water-flooding driving.  

There remains plenty of residual crude oil in the reservoir after water-flooding exploiting because the constraint 
of capillary force weakens the motion and the volume of influenced regions is small due to the disadvantageous 
fluidity ratio between displacement phase and driven phase. Then it is more important to develop the 
displacement efficiency. A popular method is considered that the mixture is injected into the underground fluid 
including chemical addition agents such as polymer, surface active agent and alkali. The polymer can optimize 
the fluidity of displacement phase, modify the ratio with respect to driven phases, balance the leading edges well, 
weaken the inner porous layer flow, improve the efficiency of displacement phase and increase the pressure 
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gradient. Surface active agent and alkali can decrease interfacial tensions of different phases, then make the 
bounded oil move and gather. 

Some hypotheses are given as follows to find the mathematical models. The mixture fluid flows along isothermal 
curves, different phases keep equilibrium state, different components have no chemical reaction and expanded 
Darcy Theory holds and so on. In view of the pressure p(x,t) and the saturation ci(x,t), the flow equation and 
convection-diffusion equations are derived with corresponding boundary value conditions and initial conditions. 

The mass balance relation of multi-phase, multi-components and slight compressible mixture is formulated by a 
nonlinear coupled partial differential equations. It is hard to solve this system because many modern numerical 
methods such as mixed element, finite element, finite difference and numerical algebra, will be involved in the 
simulation. In general speaking, based on physical meanings the pressure function is solved by an implicit 
scheme and the concentration values are obtained by an explicit solver or an implicit solver. The scholars try to 
find good ways analyzing the data and numerical results and accomplishing some research work in simulation, 
and the results can describe the whole process of chemistry displacements very well and help the engineers 
control the rules and process of displacement and forecast the recovery efficiency of natural oil and compute the 
oil percentage of output liquid and the percent of polymer and surface active agent. By numerical research the 
curves describing different components motion are shown, and some plans are made about the beginning and end 
of injected liquid and some related parameters of natural oil efficiency are derived. These conclusions, important 
techniques in chemistry displacements, can used in forecasting the characters of fields, choosing different 
optimization plans, establishing the models of chemical displacements of reservoir, completing computational 
software and carrying out the numerical simulation. Petroleum engineers and mathematicians pay more attention 
to modern new techniques of exploiting natural oil. 

Yuan visited United States and accomplished some work cooperate with Prof. R. E. Ewing during 1985 to 1988, 
and kept a series of research in theoretical analysis and applications of numerical simulation. Yuan and his 
research group (1993,1993,1994) undertake some important projects from 1991 to 1995 such as "Eighth-Five" 
national key science and technology program (the Program for Tackling Key Programs) (85-203- 01-087) 
entitled "research and application of the polymer displacement software"1. The software has been applied in 
designing plan and research work of polymer displacements in industrial production region of Daqing Oilfield. 
Many conclusions from actual numerical results are illustrated by Yuan, Yang and Qi (1998,2000) such as effects 
of fragments, fragments setting of rinsing protection, quantity of polymer, and used in actual simulations which 
give rise to outstanding economic and social benefits2. Later the authors undertook a key tackling program of 
Daqing Petroleum Administration Bureau (DQYJ-1201002-2006-JS-9565)----solving development of 
mathematical models and completing explain of reservoir3. This software system is also applied in numerical 
simulation of the polymer displacement of Zaobei fault block of Dagang Oilfield, optimization of designing plan 
of expanded experimental area of three compound combination flooding of Gudong Little Well experimental 
region of Shengli Oilfield, polymer flooding of Gudong Middle One experimental region, Gudong West region 
and feasibility of active water flooding of Gudong eighth region, and many interesting results are obtained4. In 
recent years the research group finishes the successive key tackling project of Daqing Petroleum Administration 
Bureau (DQYJ-1201002-2009-JS-1077)--research on alkali flooding principle model of chemical displacement 
simulator and horizontal wells model structuring and solving methods5 and presents many important results. 

                                                        
1 Institute of Mathematics, Shandong University, Exploration Institute of Daqing Petroleum Administration. 
Research and application of the polymer flooding software (summary of "Eighth-Five" national key science and 
technology program, Grant No. 85-203-01-08), 1995.10. 
2 China National Petroleum Corporation. Evaluation report of executive condition of "Eighth-Five" national key 
science and technology program (Grant no. 85-203-01-08). 1995.10. 
3 Institute of Mathematics, Shandong University, Exploration and development of Daqing Petroleum 

Corporation. Modification of solving mathematical models of the polymer and improvement of reservoir 

description. 2006. 
4 Institute of Mathematics, Shandong University, Shengli Oilfield Branch, China Petroleum & Chemical. 
Research on key technology of high temperature and high salinity chemical agent displacement, Chapter 4,§4.1 
Numerical method, 83-106. 2011.3. 
5 Institute of Shandong University, Exploration and development of Daqing Petroleum Corporation. Research 

on alkali flooding principle model of chemical displacement simulator and horizontal wells model structuring  
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This paper concludes the former research and discusses proceeding analysis, mainly consisting of permeation 
fluid mechanical mathematical models of numerical simulation of black oil--three compound combination 
flooding in porous media, numerical methods, applicable software structuring, theoretical analysis and 
applications of actual oilfields. 

2. Permeation Fluid Mechanical Model of Black Oil--three Compound Combination Displacement 

The numerical simulation program of black oil model is shown based on the following factors: three phases (oil, 
gas and water) in the reservoir, oil-component and solution gas-component of the oil phase, water-component of 
the water phase, gas-component of the gas phase and the exchange of gas-component between the oil phase and 
the gas phase because of the changing pressure. An improved black-oil model is given to simulate the 
displacement process of three compound combinations (polymer, surface active agent and alkali) and a new 
simulation system is made for three compound combinations by considering the black oil module and the 
chemical reaction balance equation, and revising and adding three compound combinations module. 

The oil, water and gas three phases are considered in the system, where the oil phase consists of oil component 
and solution gas component, the water phase includes water component, the chemical agent component includes 
polymer, surface active agent, petroleum acid and so on, and the gas phase only has gas component. Petroleum 
acid is contained in the water phase and oil phase and the other chemical components are only in the water phase. 
The exchange of gas components occurs between the oil phase and the gas phase when the pressure of neighbor 
environments changes. The solving system consists of three basic modules: the program for solving the 
three-phase flow, the program for solving the component equations and the program for solving the chemical 
balance equation. 

The solving module of three phases inherits a partial algorithm of the black oil model. The water viscosity is a 
variable in three compound combinations displacement because of the chemical agent component but a constant 
in the black oil model. Additional design structure and algorithm should be compatible with the black oil model 
for solving the components equation and chemical reaction balance equation, and some computational programs 
are modified for solving the system to satisfy engineering applications of wedge-out area, fault and edge-bottom 
water. 

Then two different algorithms are presented in this paper. 

(I) Full implicit algorithm (FIA). It is one of the most dependable finite differences to compute the values of 
variables implicitly such as the pressure, the water saturation, the gas saturation and the ratio of solution gas and 
oil. More computational time is spent for a full implicit scheme to complete each extrapolation iterative. The full 
implicit scheme proceeds more stable than an implicit/explicit algorithm for the pressure and saturation (IEAFPS) 
which is invalid sometimes because of strong stability conditions, so a large time step is introduced to decrease 
the total simulation cost. 

(II) Implicit/explicit algorithm for the pressure and saturation (IEAFPS). This algorithm means a coupled 
numerical system consisting of an implicit scheme for solving the pressure and an explicit scheme for solving the 
saturation dependent on an assumption: no distinct flow of the fluid occurs though the saturation varies during 
one time step. Under this hypothesis the unknown saturation variable of discretized convection equation can 
canceled and the pressure is computed coupled implicitly only at different iterations. The values of saturation is 
updated point by point explicitly once the pressure change rules are determined during one iteration process. 
While the IEAFPS is unstable as the saturation changes more large with respect to time step. This 
implicit/explicit algorithm is really efficient as the time step is taken sufficiently small to decrease the 
rangeability (the relative rangeability usually is 5%). 

Let "w" and "o" denote the water phase and the oil phase of water-oil two phases problem, whose mathematical 
model of permeation fluid mechanics is stated as follows (see Ewing, Yuan, ＆ Li, 1989; Yuan, 2013; Yuan, 
Yang, ＆ Qi, 1998; Yuan, 2000): 

 , , ;l l
l l l

l

p z S
q l w o

x x x t B
  

                     
                     (1a) 

 , 1.0.c o w o wp p p S S                                 (1b) 

Let "w", "o" and "g" respectively denote the water phase, the oil phase and the gas phase, and the mathematical 
model of three phases permeation fluid mechanics is followed12345, 



www.ccsenet.org/ijc International Journal of Chemistry Vol. 6, No. 4; 2014 

41 
 

  

,

,

1
;

w w
w w w

w

o o
o o o

o

g w g go
s o o g g s s o g

o o

p z S
q

x x x t B

p z S
q

x x x t B

p S S Sp z z
R R R q q

x x x x x x t B B

  

  

     

                    
                    

                                        











   (2a) 

  , ,o w cow g o cogp p p p p p                                  (2b) 

  , , , , ,rl
l l l

l l

KK
l w o g g

B
  


                                (2c) 

   u , , , .l l l lp z l w o g                                  (2d) 

where means the porosity, lp is the pressure of l-phase,
lS is the concentration of l-phase, K is the absolute 

permeability,
lB is the volume factor of l-phase,

rlK is the relative permeability of l-phase, l is the viscosity of 

l-phase, l is the density of l-phase,
sR is the ratio of solution gas and oil, and lq is the source sink term of l-phase 

(floor condition). 

The viscosity of water phase w is a constant of black oil model, while the viscosity is a function with respect to 
the density of polymer of black oil-polymer displacement, ( )w w pwC  ,where

pwC denotes the concentration of 
polymer relative to water. The compound combination flooding components move in water, the concentration 
affects in turn the viscosity field of the water phase, then influences the flow of the three phase fluid 
accompanying the motion of components. The coupled algorithm runs consistent with the nonlinear coupled 
system consisting of a convection-diffusion equation of the polymer and the mathematical model of black oil. At 
a time step the motion values of three phases are computed first, the flow field is obtained, then the solution of 
three compound combination flooding by solving a convection diffusion equation are gotten, then the viscosity 
field of water phase is updated. Then the computation proceeds at the next time step. 

    div u ,w w wS C C S K C Q
t
 

   


                      (2e) 

  .w w C                                    (2f) 

Surface active agents can change interfacial tension, thus increase capillary number, then decrease the residual 
oil saturability. The curve of relative permeability is updated by an interpolation of the relative permeability 
curves of lower capillary number and upper capillary number. 

The primary principle of alkaline flooding is stated as follows. The alkali is injected into the fluid and surface 
active agents arise because of a chemical reaction of the alkali and petroleum acid. These agents can decrease 
interfacial tension of the fluid and reduce bottom oil. Petroleum acid components exist both water phase and oil 
phase, so mass transfer takes place between different phases. An assumption is given that the petroleum acids in 
water and oil can level off instantaneously, and the equation of total concentration of petroleum acid (a type of 
convection) is stated. 

     u u ,HA

w w w o o o w o

tot

w HA w HA HA o HA o HA HA w HA o HA

C
C S K C C S K C q C q C

t
 


           


    (2g) 

where 
wHAK and 

oHAK denote petroleum acid dispersion tensors (including molecular diffusion and dispersion) 

of water phase and oil phase, respectively. The total concentration 
HAtotC is defined as follows 

                                .w o

HA

w HA o HA
tot

w o

S C S C
C

B B
                              (2h) 

Eqs. (1a), (1b), (2e), (2f), (2g) and (2h) give a full description of the mathematical model of water and oil 
two-phase polymer displacement, and eqs. (2a), (2b), (2c), (2d), (2e), (2f), (2g) and (2h) represent the full 
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explanation of the mathematical model of water-oil-gas three phases polymer displacement. 

The computation of the black oil-polymer displacement model runs in the following steps: 

Step 1. At the time level t1, solve the pressure and saturation, then solve the concentrations of different chemical 
components. 

Step 2. Correct the viscosity of water phase dependent on the concentration. 

Step 3. At the time level t2, solve the pressure and saturation, then solve the concentrations of different chemical 
components. 

Step 4. Correct the viscosity of water phase dependent on the concentration. 

…… 

In a similar way the pressure and saturation of the (n+1)th time step tn+1 are obtained, the concentration of 
different chemical components at tn+1 is computed, then the viscosity of water phase is corrected according to the 
concentration. 

…… 

The program ends. 

3. Numerical Methods  

Two different numerical methods are presented as follows. 

3.1 Full Implicit Numerical Method of the Three Phase Flow  

It aims to cancel some spare unknown variables and compute only three unknown variables, generally meaning 
the pressure of oil phase, the concentrations of water and gas phases. All the values of the left side of the 
equation such as the pressure, the saturation, the quantity, the relative permeability, the capillary force and other 
parameters are replaced by the latest numerical values during implicit computations. The resulting implicit 
difference is a nonlinear algebraic equations solved by iteration and its computation scale is more rich seven 
times the implicit/explicit method of one iteration (outer iteration). Because the full implicit method is 
unconditionally stable, it is applied to compute some difficult and complicated problems such as black oil 
simulation. In this paper let  denote the difference of a function between the n-th time level and the (n+1)-th 
level and let be the difference during a time step by one iteration such as from the k-th iteration to the (k+1)-th 
iteration. 

1 1 1,   ,   .n n k k k n k nf f f f f f f f f f f f               

Applying Euler backwards finite difference method for eq. (2), 
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            (3) 

where 1  as l=g and 0  as l=w,o, and bV x y z    . 

Then a full implicit finite difference algorithm for the black oil model is derived as follows 

     1 11 1 1 ( ) , , , ,
n nn n n b

l l l o s o o s l l o s o

V
T q T R q R b S b R S l w o g

t
                   

     (4) 

where 1l lb B and l l lp D   . Rewrite the above expression as follows by using an operator , 

 

 

 

Give an expansion of the above equation and omit quadratic terms, and the remainder after the k-th iteration is 

 

 

 

Continue to express the above equation with a remainder term as, 
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The iterations are convergent as 0k
lR   for l=w,o,g and k=1,2,…. A resulting formulation is  

                     
1 2 3 , , , .k

l l o l w l g lRHS C p C S C S R l w o g                         (6) 

First, the equation is turned into a linearized expansion. Solving variables are denoted by op , wS and gS , 
and the right side term is considered later. 
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Consider the right side term of oil phase equation, 
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For the right side term of the gas phase equation, 
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In the above expressions 'lb and ' present the derivatives of volume factor and porosity with respect to the 
pressure,

cowp' denotes the derivative of pc with respect to Sw and
cgop' is the derivative of pc with respect to Sg. 

Two operators are introduced to discuss the left side term, 
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The values of conductivity coefficient appearing in two-order difference operator are given according to 
upstream rule, and let i+ and i- denote the upstream nodes between the i-th node and the (i+1)-th node and 
between the i-th node and the (i-1)-th node, respectively, 
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1 1( ) ( ) ( ), , , .l i li i i li i iT f T f f T f f l w o g    
              

Substitute the left side and the right side terms into the initial difference equation, and get the algebraic 
system. 

3.2 Implicit/explicit Algorithm for the Pressure and the Saturation 

The implicit/explicit method is based on an equation only involved of the pressure by combining the flow 
equations, and the values of the saturation are obtained explicitly as the pressure at some time level is known. 

Discrete difference scheme of eq. (2) is written related with po and the saturation, 

 

 

 

A basic hypothesis is assumed for deriving the implicit/explicit scheme that the capillary pressure of the flow 

term of the left side is a constant number during a time step computation. The values of some terms related of 

cowp and       at the previous time level can be computed explicitly, and                    . The 

notation po is simplified to be replaced by p. 
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(11) 

The coefficient C is defined by 
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               (12) 

Consider the three equations of (11) together and cancel all the t lS  terms by multiplying the water phase 
equation by A, testing the gas equation by B, and adding three equations. The right term is 

1 2 3 1 2 3 1 3( ) ( ) ( ) .p p p t w o o t o w p t gAC C BC p AC C BC S AC BC S             

The numbers A and B are defined by the following relations. 

1 2 3 1 30,     0.w o o w gAC C BC AC BC        

By simple algebraic calculations, 
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Then the pressure equation turns into 
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It is a typical finite difference equation from a parabolic type, whose matrix form is 
1 1( ) ,n n nTp D p p G Q      

where T denotes a tridiagonal matrix and D is a diagonal matrix. The vector G is dependent of gravity and 
capillary pressure. 

Given the pressure, taken in the former two equations of (11), the saturation
1n

lS 
is obtained explicitly. Then the 

capillary pressure
1n

cowp 
 and 1n

cogp   are considered, which are used explicitly in next time level. 

3.3 Numerical Method for Component Concentration Equations 

The components meaning sorts of chemical agents in water phase such as surface active agents, polymer, alkali 
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and kinds of ions and so on are considered in this paper. The physical nature, conversation of mass, is described 
by a convection-diffusion equation but convection-dominated. It is more efficient and high order of accuracy to 
decompose the equation into a hyperbolic equation only related of diffusion and a parabolic equation only 
related of dispersion. The former is discretized by an implicit upwind scheme and an upstream rule inheriting 
some advantages of explicit algorithms such as solving the values point by point. The latter is solved by an 
alternating direction finite difference method, which can accelerate the computation speed and improve the 
efficiency. For simplicity, the concentration equation of components is rewritten by a typical convection 
diffusion type. 

    div u ,w w wS C C S K C Q
t
 

   


                     (15) 

where dispersion tensor is a matrix of diagonal type. When the saturation Sw and the flow velocity field uw 

of water phase at tn+1 are given, it is to compute the concentration Cn+1 at the first direction, the second and 

then the third direction alternatively. C denotes the concentration of any component ignoring the subscript k. 

A convection equation is discussed by an implicit upwind scheme, 
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where uw=(uwx,uwy,uwz)
T is a velocity vector. By which Cn+1,0 is obtained. Then the dispersion equation is 

discussed alternatively in three directions. First consider x-direction, 
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Secondly consider y-direction, 
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Thirdly consider z-direction, then Cn+1 is computed by  
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The values of
1n

op 
,

1n
wS 

, 1n
gS  and

1nC 
are obtained, and the computation ends at present time level then 

continues at next time level. A technique is introduced in actual applications to overcome some difficulties and 
effects of grids orientation (such as the symmetrical computation kept consistently with symmetric physical 
problems). The values are obtained in two continuous processes, x-direction first then y-direction, then 
y-direction first then x-direction, then the algorithm continues in z-direction by using an average result of the 
above computational values. This efficient method is applied in present software. 

3.4 Newton-Raphson Iterations of Chemical Reaction Balance Equations 

The chemical balance equations, a nonlinear system consisting of liquid chemical agent, solid chemical agent 
and ions adsorbed in rocks, are solved by Newton-Raphson iterations. Considering the nonlinear equations 
F(X)=0, 
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where F=(F1,F2,…,FN)T, X=(x1,x2,…,xN)T, 0=(0,0,…,0)T. Its Newton-Raphson iterations are 
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where k denotes the number of iterations, 1 2 1( ) ( , , , , ) ,k k k k T
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Nx and the convergent condition is defined by || ( ) ||kF X  or by 1|| X ||k kX    . The choice of the 

initial values X0 affects the convergence of Newton-Raphson iteration sequences. DF(Xk), a Jacobian matrix, is 
defined by 
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where                         denotes the partial derivative value of 1 2 1( , , , , )i N NF x x x x  with 

respect to jx at 1 2 1( , , , , )k k k k
N Nx x x x . 

4. Computation Program Illustration  

This section illustrates three computation programs1,2,3,5: the program of black oil-three compound combination 
flooding, the data program of upstream sequence algorithm of fault-joints, the implicit computational program of 
the water phase concentration equation, the explicit computation program of the total  concentration equation of 
petroleum acid components, the computation program of relative permeability and the computation program of 
chemical reaction balance equation (see Fig.1, Fig.2, Fig.3, Fig.4, Fig.5 and Fig.6).  

5. Experimental Tests in Oil Fields of Black Oil-three Compound Combination Alkali Flooding 

5.1 Test I 

The model grids scale of experimental tests is defined by 46×83×7, and oil displacement efficiency is tested 
under different petroleum acid numbers and different concentrations of injected alkali. Three SLUGs are 
installed and the simulation period, 1970.1.1-1994.1.1, is divided into three time segments: water flooding 
segment 1970.1.1-1982.1.1, injected polymer and three compound combination flooding segment 1982.1.1 
-1988.1.1 and water flooding segment 1988.1.1-1994.1.1. There are five strategies considered in the simulation 
and let X45ASP be the polymer flooding. X45ASP2 denotes the compound flooding combination the polymer 
with alkali, the acid number is 0.0006, and the concentration values of injected Na ions and CO3 ions are 0.3351 
and 0.3929 in the second way. X45ASP3 is the compound flooding combination the polymer with alkali, the acid 
number is 0.006 and the concentration values of Na ions and CO3 ions are 0.3351 and 0.3929 in the third way. 
X45ASP4 is the compound flooding combination the polymer with alkali, the acid number is 0.0006 and the 
concentration values of Na ions and CO3 ions are 0.3351 and 0.3929 in the fourth way. X45ASP5 is the 
compound flooding combination the polymer with alkali, the acid number is 0.006 and the concentration values 
of Na ions and CO3 ions are 0.3351 and 0.3929 in the fifth way. The moisture content, instantaneous oil 
production and accumulative oil production in five different strategies are compared in the following curves (Fig. 
7a, Fig. 7b and Fig. 7c). 
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5.2 Test II 

The model grids scale in this test is defined by 119×79×9 (84609 nodes), and oil displacement efficiency is 
tested under different petroleum acid numbers and different concentrations of injected alkali. Three SLUGs are 
installed and the simulation period is 4000 days divided into three time segments: water flooding segment during 
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the former 730 days, injected polymer and three compound combination flooding segment during the middle 
thirteen hundreds and seventy days and water flooding segment during the last nineteen hundreds days. There are 
five strategies considered in the simulation and let B1DDASP be the polymer flooding. B1DDASP2 denotes the 
compound flooding combination the polymer with alkali, the acid number is 0.0006, and the concentration 
values of injected Na ions and CO3 ions are 0.3351 and 0.3929 in the second way. B1DDASP3 is the compound 
flooding combination the polymer with alkali, the acid number is 0.006 and the concentration values of Na ions 
and CO3 ions are 0.3351 and 0.3929 in the third way. B1DDASP4 is the compound flooding combination the 
polymer with alkali, the acid number is 0.0006 and the concentration values of Na ions and CO3 ions are 0.3351 
and 0.3929 in the fourth way. B1DDASP5 is the compound flooding combination the polymer with alkali, the 
acid number is 0.006 and the concentration values of Na ions and CO3 ions are 0.3351 and 0.3929 in the fifth 
way. The moisture content, instantaneous oil production and accumulative oil production in five different 
strategies are compared in the following curves (Fig. 8a, Fig. 8b and Fig. 8c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Test III 

The model grids scale of this test is defined by 149×
149×7 (155407 nodes), and oil displacement efficiency 
is tested under different petroleum acid numbers and 
different concentrations of injected alkali. Three SLUGs 
are installed and the simulation period, 
2010.9.1-2015.11.1, is divided into three time segments: 
water flooding segment 2010.9.1-2012.11.1, injected 
polymer and three compound combination flooding 
segment 2012.11.1-2014.11.1 and water flooding 
segment 2014.11.1-2015.11.1. There are five strategies 
considered in the simulation and let P be the polymer 
flooding. The number 1 denotes the compound flooding 
combination the polymer with alkali, the acid number is 0.0006, and the concentration values of injected Na ions 
and CO3 ions are 0.3351 and 0.3929 in the second way. The number 3 is the compound flooding combination the 
polymer with alkali, the acid number is 0.006 and the concentration values of Na ions and CO3 ions are 0.3351 
and 0.3929 in the third way. The number 4 is the compound flooding combination the polymer with alkali, the 
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acid number is 0.0006 and the concentration values of Na ions and CO3 ions are 0.3351 and 0.3929 in the fourth 
way. The number 5 is the compound flooding combination the polymer with alkali, the acid number is 0.006 and 
the concentration values of Na ions and CO3 ions are 0.3351 and 0.3929 in the fifth way. The moisture content, 
instantaneous oil production and accumulative oil production in five different strategies are compared in the 
following curves (Fig. 9a, Fig. 9b and Fig. 9c). 

The conclusion is derived from above figures that the more efficient the oil flooding is, the larger the acid 
number of petroleum acid and the concentration value of injected alkali. Error data of mass balance are shown in 
the following table (Table 1). 

Table 1. Error results of mass balance 

 

 

 

 

 

 

 

 

 

6. Theoretical Analysis of the Model 

Theoretical analysis of numerical simulation is given for three dimensional three phases (oil, water and gas) 
–three compound combination flooding in porous media. A simplified model is discussed in theoretical analysis 
without loss of generality, that is to say a compressible oil water two phase displacement of three dimensional 
multi-components problem in porous media is discussed in a nonlinear partial differential equations with initial 
and boundary values (see Ewing, Yuan, ＆ Li, 1989; Yuan, 2013; Ewing, 1983; Yuan, 2002, 1999, 2003, 2001 ). 
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where p(x,t) is the pressure of the mixture, ( , )c x t is the saturation of the -th component, 1,2, , cn   and 

nc is the number of components. There are nc-1 independent components because of           . Let 

c(x,t)=(c1(x,t),c2(x,t),…,cnc-1(x,t))T be the vector function of component saturations,               , ( )x  

be the porosity of rock, z be the compressible invariant of  , u be Darcy velocity of the mixture,   
1( ) ( ) ( )a c x c   , ( )x be the permeability, ( )c be the viscosity,                   , and let D=D(x) 

be the diffusion parameter. The pressure p(x,t) and the saturation vector c(x,t) are basic unknown functions to 

compute. 

Boundary condition without permeation: 

0, , ( c ) 0, , , 1,2, , 1,cx D c x t J n             u u             (21) 

where  is the outer normal vector of boundary surface of . 

Initial conditions: 

0 ,0( ,0) ( ), , ( ,0) ( ), , 1,2, , 1.cp x p x x c x c x x n                    (22) 

Douglas (1983) presents a fundamental paper to analyze a type of two dimensional incompressible two-phase 
displacement problems. Because the computation of modern reservoir exploration and development is of huge 
scale, its simulation region is large, its simulation time is really long and there are tens of thousands or hundreds 
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of thousands nodes, it is impossible to solve so complicated problems of this type by using common methods. 
Alternating direction finite difference methods are put forward by Peaceman (1980) and Douglas (1963) and are 
successfully applied in two dimensional problems but there is substantial difficulty to give theoretical analysis. 
Using Fourier method Peaceman and Douglas discuss the stability and convergence for the problems with 
constant coefficients, while this method is not able to generalize in variable coefficient problems. Yanenke 
(1967), and Marchuk (1990) give many important results on fractional steps methods. Yuan (1999) presents a 
characteristic finite difference fractional steps method for compressible two-phase displacement problem and 
discusses convergence analysis. An implicit upwind finite difference fractional steps method is considered for 
black oil and polymer flooding problem and some substantial improvements are given in this paper. The three 
dimensional problem is turned into three one-dimensional problems and this can greatly reduce the computation 
and can solve actual problems. Error estimates in L2 norm are presented by using variation, energy analysis, 
decomposition of high order difference operators and theory and technique of product commutativity. 

For simplicity, assume computational domain  ={[0,1]}3 and the problem is  -periodic. The nonpermeation 
boundary condition can be dropped. Let h=1/N, Xijk=(ih,jh,kh)T, tn=n t and W(Xijk,t

n)= n
ijkW , and let 

1/2, 1, 1,

1
( , ) ( , ) ,

2
n n n
i jk ijk ijk i jk i jkA a X C a X C     

                     (23a) 

 
1 1

1 2 1 1 1 1
1/2, 1, 1/2, 1,(P P ) (P P ) .n n n n n n n n

x x i jk i jk ijk i jk ijk i jkijk
A P h A A       

                   (23b) 

Difference operators
, 1/2,
n
i j kA  ,

, 1/2
n
ij kA  ,  

2 2

1n n
x x ijk

A P    and  
3 3

1n n
x x ijk

A P   can be defined similarly. 

The implicit finite difference fractional steps algorithm for the flow equation (20a) is shown as follows, 

     
1 1 2 2 3 3

1/3
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t
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 (24a) 
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             (24b) 
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P P
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t
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              (24c) 

Darcy velocity U=(U1,U2,U3)
T is computed by the following expression 

1 1 1 1
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1, 1/2, 1/2,

1
,
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 
                (25) 

and analogous forms 1
2,
n

ijkU  , 1
3,
n

ijkU  can be derived. 

The implicit upwind finite difference fractional steps algorithm for the saturation equations is 
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The implicit upwind fractional steps algorithm runs as follows. Given
,{ , , 1,2, , 1}n n

ijk ijk cP C n    , the values of 

transition layer by (24a) and speedup method in x1 direction firstly. Then 2/3{ }n
ijkP   and 1{ }n

ijkP  are computed by 

(24b) and by (24c), respectively. Using (25) we can have the numerical values of velocity 1{ }n
ijkU  . Secondly, 

1/3
,{ }n
ijkC
 is computed by (26a) and speedup method in x1 direction. 2/3

,{ }n
ijkC
  and 1

,{ }n
ijkC
  are obtained similarly 

by (26b) and (26c). Notice the problem is positive definite, so the solution of (24)-(26) exists and is unique. 

Let p P   and c C      where p, c  are exact solutions and P, C are numerical solutions. The 

pressure equation is considered firstly, and its equivalent difference expression is 
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       (28) 

Then the error equation of the pressure is 
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where 1 1 2( ) ,| | { }.n n n n
t ijkd t M h t           

Multiplying both sides of error equation (29) by
1n n n n

t td t        , summing by parts, and obtaining 
an inner product form 
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Then it follows from (30) by complicated estimates, 
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Secondly an error analysis proceeds for the saturation equations. Eq. (26) is rewritten in the following equivalent 
form 
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From (20c) and (32), 
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, , , ,

n n n n
t ijk ijk ijk t ijkd t           , summing by parts, and 

obtaining an inner product form 
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where  .           . 

 

Using complicated calculations of (34),     
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Collecting (36a) and (36b), 
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Theorem Suppose that the exact solutions of (20)-(22) are suitably smooth. Applying implicit upwind difference 
fractional steps method (24)-(26) to compute layer by layer, we can conclude the following error estimates, 
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where *M depends on ( , )p x t , ( , )( 1,2, , 1)cc x t n    and their derivatives. 

7. Discussion 

Theory, method and application of numerical simulation of three-dimensional three-phase (water, oil and gas) 
percolation mechanics of three compound combination flooding (the polymer, surface active agents and alkali) 
in porous media are discussed in this paper consisting of six sections. Summary is first stated about our project 
and the full process of this project. Mathematical model of permeation fluid mechanics, basic physical 
assumption and the characters of the model are presented in the second section. A full implicit numerical scheme 
and implicit/explicit algorithm for the pressure and the saturation are given, and an upwind difference fractional 
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steps algorithm based on upstream sequence is structured in the third section. This program runs quickly, is of 
high accuracy and applied in general cases. A type of software applicable in major industries has been 
accomplished, mostly carried out with the spacial step of ten-meters, tens of thousands nodes and tens of years 
simulation period in the fourth section. Some experimental tests occurring successfully in national major oil 
fields such as Daqing Oilfield, Shengli Oilfield and Dagang Oilfield, are illustrated in the fifth section. This 
gives outstanding social benefits and economic benefits, and accelerates the development of energy sciences. 
Numerical analysis proceeds for the model problem and precise theoretical results are stated on mathematical 
and mechanical consideration in the sixth section. This research brings important theoretical values for the 
design and development of enhanced oil recovery simulation, the principle, method and the software. 
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