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Abstract 

The peroxisome proliferator-activated receptors (PPARs) are ligand-activated trasncription factors belonging to 
the nuclear receptor family. The objective of this study is to analyze the molecular aspects of PPARγ agonists 
which used to design of new antidiabetic drugs. The analysis method was comparing the interactions of ligands 
in the ligand binding domain of the PPARγ. This analysis showed that most known agonists of PPARγ interacted 
via hydrogen bond with Tyr473. Pioglitazone showed three hydrogen bonds with His323 and Tyr473. 
Netoglitazone showed four hydrogen bonds with Ser289, His323, His449, and Tyr473. Rosiglitazone showed 
five hydrogen bonds with Ser289, His323, His449, and Tyr473. AZ72, an agonist of PPARα and γ showed five 
hydrogen bonds with Ser289, His323, His449, and Tyr473. Molecular modeling was performed by redocking 
pioglitazone and rosiglitazone using AutoDock Vina. Docking showed that both pioglitazone (Ki 0.22 μM) and 
rosiglitazone (Ki 0.70 μM) occupied their origin sites and interacted with Tyr473. Docking simulation was also 
performed between dehydro-di-isoeugenol and macelignan to visualize the interaction with PPARγ. These two 
compounds are found in nutmeg’s seed (Myristica fragrans Hout) that have been proven had antidiabetic activity 
in vitro. It can be concluded that agonists of PPARγ should have hydrogen bond donor and acceptor groups for 
interacting with Tyr473. Tyr473 might be a critical site of interaction between the PPARγ ligand binding domain 
and its agonists.  

Keywords: dehydro-di-isoeugenol, docking simulation, macelignan, netoglitazone, PPARγ, pioglitazone, 
rosiglitazon  

1. Introduction 

Diabetes mellitus (DM) is a group of clinical and genetic disorder that characterized by increasing levels of 
glucose in the blood. Among the various types of DM, more than 95% of people with diabetes is type 2 diabetes 
mellitus (T2DM) (American Diabets Association, 2009). T2DM is a combination of insulin resistance and 
pancreatic β cell insufficiency. One of the receptors target for the treatment of T2DM is peroxisome 
proliferator-activated receptor γ (PPARγ).  

The peroxisome proliferator-activated receptors (PPARs) γ, β, and α compose a nuclear receptor subfamily that 
modulates the transcription of a large compendium of genes encoding proteins that regulate lipid metabolism, 
cell differentiation, and signal transduction in a ligand-dependent manner. PPARs bind as heterodimers with a 
retinoid X receptor and, upon binding agonist, interact with cofactors so the rate of transcription initiation is 
increased. The PPARs play a critical physiological role as lipid sensors and regulators of lipid metabolism 
(Berger & Moller, 2002). PPARγ has been shown to be a master regulator of adipogenesis and nutrient 
metabolism in adipocytes where it is highly expressed. PPARs are activated by fatty acids and eicosanoids, 
which have been identified as natural ligands for the PPARs, hence these receptors are targets for 
antidyslipidemic drugs and of antidiabetic agents (Cronet et al., 2001; Berger & Moller, 2002). More potent 
synthetic PPAR ligands, including the fibrates and thiazolidinediones (TZDs), have proven effective in the 
treatment of dyslipidemia and diabetes (Berger & Moller, 2002). TZDs or glitazones, a class of antidiabetic 
agents, have been reported as high affinity agonists of PPARγ (Willson et al., 2000).  
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TZDs were acted as insulin sensitizers. These compounds improve insulin resistance by increasing cell 
sensitivity to insulin. PPARγ agonists increase peripheral insulin sensitivity by increasing the transcription of 
genes, which, in turn, increase glucose uptake, also improving insulin-stimulated glucose disposal in muscle. 
PPARγ agonists also increase insulin signaling, reduce circulating levels of free fatty acids and stimulate 
adipocyte differentiation, thus favoring the formation of smaller, more insulin-sensitive adipocytes. TZDs have 
been proven effective in different experimental models to evaluate their effectiveness as an antidiabetic agent. 
There were excellent correlation between the hypoglycemic action of TZDs and their affinity for PPARγ 
(Vazquez et al., 2002). TZDs produce a conformational change in PPAR analogous to those produced by agonists 
of other nuclear hormone receptors. Antidiabetic actions of TZDs are directly mediated through binding to 
PPARγ and the resulting active conformation of the receptor. Therefore, binding and transactivation assays using 
PPARγ should serve to identify other novel therapeutic agents with potential antidiabetic activities (Berger et al., 
1996). 

Macelignan that had been isolated from nutmeg’s seed (Myristica fragrans Hout) can activate the PPARγ (Han et 
al., 2008). Other studies indicate that macelignan not clearly detected in extracts of nutmeg because its 
concentration is very small. Based on screening of chemical compounds in nutmeg extracts and in vitro test with 
GAL-4/PPAR chimera assay and reported gene method, dehydro-di-isoeugenolhas proved can activate PPARγ 
(Lestari, 2010). This study is aimed to study the molecular aspects of PPARγ agonists’ binding mode by 
comparing the interactions of ligands that were co-crystalized in the ligand binding domain of PPARγ for 
antidiabetic drug design. 

2. Method 

2.1 Materials 

Personal computer with Mobile Dual Core Intel Core 2 Duo T7250, 1978 MHz (10 x 198) (www.intel.com), 
hard disk 250 GB, graphic ATI Mobility Radeon HD 3400 Series (256 MB) and system memory 2044 MB 
(DDR2 - 667 DDR2 SDRAM). Softwares used in this study were Jmol Viewer version 12.2.15 and RSCB PDB 
Ligand Explorer Viewer 3.9 (powered by the MBT) that are embedded in http://www.pdb.org/, and Q-SiteFinder 
(http://bmbpcu36.leeds.ac.uk/qsitefinder/help.html).  

2.2 Macromolecule Preparation and Molecular Modeling 

3D structures of PPARγ crystallized using X-ray diffraction (code: 2XKW, 1FM6, 3B0Q, 1I7I, 3B0R, 3AN3) 
were downloaded from online Protein Data Bank (http://www.pdb.org) and viewed by using Jmol Viewer 
version 12.2.15. Ligand interactions were analyzed by using RSCB PDB Ligand Explorer Viewer 3.9 (powered 
by the MBT). The chain A of the protein and its co-crystallized inhibitors were separated by using 
SwissPDBViewer version 4.01 (http://www.expasy. org). The volume and position of PPARγ’s binding site was 
calculated and located by using Q-SiteFinder. Q-SiteFinder was also used to predict amino acid residues in the 
ligand binding domain of PPARγ. Molecular docking was performed by using AutoDock Vina (Molecular 
Graphics Laboratory, The Scripps Research Institute, http://vina.scripps.edu/download.html).  

3. Results and Discussion 

PPARγ ligand binding domain contains amino acid residues 204 to 477. The volume of the binding domain 
calculated by Q-SiteFinder is 864 cubic angstroms. Six agonists that has been co-crystallized in the ligand 
binding domain of PPAR selected from Protein Data Bank (http://www.pdb.org), were extracted and redocked 
into their origin place in the PPARγ binding domain. The results were showed in Figure 1. 
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Figure 1. 3D structure of PPARγ homodimer co-crystallized with its partial agonists (a) pioglitazone (code: 
2XKW); (b) rosiglitazone (code: 1FM6); (c) netoglitazone (code: 3B0Q); (d) AZ72 (code: 1I7I); (e) GW9662 
(code: 3B0R); (f) MO3S (code: 3AN3) viewed by using Jmol Viewer version 12.2.15. These macromolecules 

were downloaded from http://www.pdb.org/ 

(e) (f) 
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All of these ligands, except the benzophenilpropionic acid derivate, interacted via hydrogen bond formation with 
Tyr473 located within helix 12 of the ligand binding domain. Pioglitazone showed three hydrogen bonds: His323 
(2.56 Å) and Tyr473 (2.36 and 3.16 Å). Netoglitazone showed four hydrogen bonds: Ser289 (26.5 Å), His323 
(2.68 Å), His449 (2.72 Å), and Tyr473 (2.84 Å). Rosiglitazone showed five hydrogen bonds: Ser289 (2.95 Å), 
His323 (2.66 Å), His449 (2.84 Å), and Tyr473 (2.82 and 3.21 Å). Nitrogen and oxygen atoms of TZD’s 
thiazolidine ring plays important role in this interaction (Figure 1a, b, and c). 

AZ72, C20H24O7S, an agonist of PPARα and γ showed five hydrogen bonds: Ser289 (2.81 Å), His323 (2.78 Å), 
His449 (2.73 and 3.23 Å), and Tyr473 (2.70 Å) (Figure 1d). The carboxylic group in this propanoic derivate 
shows its role as hydrogen bond donor and acceptor. GW9662, C13H9ClN2O3, showed four hydrogen bonds: 
Cys285 (2.90 Å), Tyr327 (3.04 Å), His449 (2.85 Å), and Tyr473 (2.28 Å). The oxygens of the nitro and carbonyl 
groups of the molecule interacts as hydrogen bond acceptors. MO3S, C37H43NO4, a benzophenylpropanoic acid 
derivate, showed interesting result in hydrogen bond formation. This ligand did not show interaction with Tyr473, 
but with Ser289 (2.74 Å) and Tyr327 (2.46 Å) instead. It was concluded that this compound showed a reversal of 
stereochemistry-transactivation activity (Tomioka, 2011). 

Ligand preparation for dehydro-di-isoeugenol and macelignan begins with the design of 2D structure, then 
converted into a 3D structure by using ChemDraw Ultra v8.0.3 and Chem3D Ultra v8.0.3 in Chemoffice 2004 
program. 3D structure then optimized geometrically to obtain the most stable conformation. Conformational 
changes before and after optimization shown in Figure 2. The next step is the analysis of the ligand properties 
using Portable HyperChem Release 8.0.7. The results of the analysis are displayed in Table 1. 

      

       

 

 

 

 

 

                  

 

 

 

 

 

 

Figure 2. The results of geometry optimization (a) dehydro-di-isoeugenol, (b) macelignan 

 

Table 1. Analysis of dehydro-di-isoeugenol, macelignan, pioglitazone, and rosiglitazon properties 

Compound 
Energy 
(kcal.mol-1) 

Volume (Å3) Mass (amu) Log P 

Dehydro-di-isoeugenol -4897.40 982.52 326.39 -0.57 

Macelignan -5026.97 954.26 328.41 0.64 

Pioglitazone -4821.54 1040.99 356.44 1.63 

Rosiglitazone -4679.04 1003.71 357.43 0.55 

(a) 

(b) 
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Figure 4. Molecular docking of (a) pioglitazone and (b) rosiglitazone with PPARγ. Hydrogen bond interactions 
of the ligands with Tyr473 were showed by black ovals 

 

4. Conclusion 

• Agonists of PPARγ should have hydrogen bond donor and acceptor for interacting with Tyr473 residue in 
the ligand binding domain of the receptor. Nitrogen and oxygen atoms of TZD’s thiazolidine ring plays 
important role in this interaction. Tyr473 might be a critical site of interaction between PPARγ ligand 
binding domain and TZD derivates. 

• Agonists of PPARγ with benzophenylpropanoic acid system interacted with Tyr327 instead of Tyr473. This 
phenomena confirmed a reversal of stereochemistry-transactivation activity of these class of compounds.  

• Dehydro-di-isoeugenol and macelignan potentially can be developed into an oral antidiabetic drug because 
the value of energy interaction and inhibition constant are still relatively close to pioglitazone. 
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