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Abstract 

The surface properties of TiO2 nanofibers were utilized for the in-situ and ex-situ nucleation and growth of metal 
nanoparticles. Pt nanoparticles were generated on the titania surface without the use of external stabilizing agents. 
These nanoparticles were effectively anchored on the numerous pores present on the TiO2 surface and acted as 
sites for continued nanoparticle growth. The TiO2 surface exhibited extensive folding resulting in increased 
surface area that was then explored for the effective adsorption of reacting materials for heterogeneous catalysis. 
The resulting TiO2-based catalysts were found to facilitate UV/Visible light sensitized degradation of Rhodamine 
B (RH-B). The photodegradation followed first order kinetics with a rate constant of 0.0158 min-1. An 
investigation of the mechanism of RH-B degradation suggests a role of reactive oxygen species (ROS) as 
intermediates in the photodegradation process. 

Keywords: electrospinning, transition metal nanoparticles, polyol technique, photodegradation, electron-hole 
recombination, rhodamine B 

1. Introduction 

Heterogeneous photocatalysis is an emerging area of research (Mills & Hunte, 1997; Bouras et al., 2007). The 
most commonly used photocatalyst has been titanium dioxide, which is a wide-band gap (~3.0-3.2 eV) 
semi-conductor metal oxide. The photocatalytic activity of a semi-conductor is due to the photo-induced 
electron-hole pairs created by illumination with light. These energetically excited species can be harvested to 
generate electricity in solar cells or in chemical processes for the degradation of organic pollutants (Carp et al., 
2004; Guo et al., 2011). Titania-based materials have gained much interest in environmental remediation due to 
their transparency to visible light, high refractive index, low absorption coefficient, chemical stability, 
non-toxicity and cost effectiveness (Kwon et al., 2004; Wang et al., 2008). Some of the commercial applications 
of titania include antibacterial action and waste water treatment (Kwon et al., 2004; Im et al., 2009). Due to its 
wide band gap, UV light is required to generate electron-hole pairs. This significantly limits titania as an 
effective photocatalyst since UV light accounts for only 5% of total solar radiation. Additionally, the fast 
recombination rate of photogenerated electron-hole pairs lowers the photocatalytic efficiency (Zhu et al., 2008). 
To solve these problems, numerous research efforts are currently focused on the generation of novel materials 
that will shift the optical response of the photocatalyst to the visible range while preventing the recombination of 
the photogenerated electrons and hole (Friedmann et al., 2010; Fu et al., 2011; Sakthivel et al., 2006)  

A popular approach used to shift the optical absorption of titania from UV to visible range has been doping with 
transition metal elements (Wang et al., 2008; Zhu et al., 2008; Seery et al., 2007) non-metal ions (Im et al., 2009; 
Guo et al., 2010), dye-sensitization (Kozuka et al., 1996) and semi-conductor coupling (Liu et al., 2009; Wang et 
al., 2004). The role of the transition metal/non-metal doping is to introduce trapping sites that would scavenge 
the photogenerated electrons to separate the electron-hole pairs (Yalda et al., 2010; Ali et al., 2011), thus 
promoting redox processes on the catalyst surface (Bouras et al., 2007; Wang et al., 2008; Zhu et al., 2008). 
Further, dopants shift the absorption maximum of titania to the visible range by introducing energy states within 
the semi-conductor band gap that lower the energy required for excitation and hence the use of direct solar 
radiation (Bouras et al., 2007). The doped titania materials have been actively used in photosensitization 
reactions as useful means of detoxification of environmental pollutants (Wang et al., 2009; Kment et al., 2010). 
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Photosensitization reactions are also involved in effective therapies for the control of certain types of cancer, 
psoriasis, vitiligo and other skin diseases (Smith, 1989). Photosensitization technology has previously been 
employed for the purification of contaminated water, infectious blood and controlling neonatal bilirubemia 
(MacCormack, 2008; Pasale et al., 1976; Pillay & Salih, 2004).  

The traditional methods used for the environmental remediation of organic pollutants have not been very 
effective, since they only transform the organic molecules from one form to another without complete 
degradation (Chumcheng et al., 2010). Furthermore, the mechanism for degradation of these dyes remains 
unclear. It is well established that reduction of particle size has a marked influence on increasing the system’s 
catalytic activity. The shift to nanostructured materials for photocatalysis is a very active area of research in 
order to obtain materials with high surface areas and large pore volumes for enhanced dispersion and catalytic 
activity (Zhang et al., 2008; Libanori et al., 2009). The aspect ratios for nanostructured materials shortens the 
transportation length of electrons and holes from the crystal interface to the surface, thus accelerating their 
migration to the surface for redox reactions (Wang et al., 2008). 

This paper highlights the synthesis and characterization of a new type of nanostructured TiO2-based material 
with efficient electron-hole charge separation and high specific surface areas. We have explored the electronic 
and surface structures of titania nanofibers for the deposition of Pt nanoparticles via comparison of a modified 
in-situ with a newly developed ex-situ polyol synthesis procedure. Rhodamine B, a triphenylmethane dye (Yu et 
al., 2009; He et al., 2009a, 2009b) was used to probe catalytic activity. Visible light was harvested by the doped 
TiO2 for a more efficient and sustainable process while the nanoparticles acted as effective electron traps to 
prevent recombination of the TiO2 electron-hole pair. An investigation of the involvement of ROS in Pt-TiO2 
sensitized degradation of the dye under UVA was undertaken to facilitate an understanding of as plausible 
mechanistic pathway of the reactive species on the TiO2 surface.  

2. Experimental  

2.1 Materials  

Catalase, deoxyguanosine (dGuo), ethylene glycol (EG), histidine, hydrogen peroxide (H2O2), mannitol, 
N,N-dimethylformamide (DMF), N,N-dimethyl-p-nitrosoaniline (RNO), chloroplatinic acid hydrate 
(H2PtCl6.xH2O), polymethymethacrylate (PMMA), polyvinyl pyrrolidone (PVP), Rhodamine B (RH-B), 
riboflavin (RF), rose bengal (RB), sodium azide (NaN3), sodium bicarbonate (NaHCO3), sodium carbonate 
(Na2CO3), sodium phosphate dibasic (Na2HPO4), sodium phosphate monobasic (NaH2PO4), superoxide 
dismutase (SOD) and titanium isopropoxide (TiP) were purchased from Sigma/Aldrich Chemical Company, St. 
Louis, MO, and were used as received. 

2.2 Instrumentation 

The PMMA/TiP nanofibers were electrospun using a high KV Spellman SL 30 generator. The morphology and 
size of the fibers were determined using a Hitachi S-570 or Supra Zeiss 55VP Scanning Electron Microscope 
(SEM), equipped with an EDAX system for Energy Dispersive Spectroscopic (EDS) analysis. Transmission 
Electron Microscopy (TEM) images of the catalysts was obtained on a JEOL 2010 FETEM instrument. The 
samples were dispersed in ethanol by sonication. The resulting solution was placed onto a lacey carbon-coated 
Cu grid. UV-Visible determinations were done on an 8452A Hewlett Packard Diode Array spectrophotometer 
instrument in the 190 to 820 nm range. The ultraviolet irradiation system comprised a horizontal planar array of 
three, 4-foot long UVA-emitting (320–400 nm, TL-D 36 W), fluorescent tubes manufactured by Philips, Holland. 
The irradiance of the emitted light was measured by a VLX-3W UVR probe which was equipped with UVA 
(SX-365nm), UVB (290–320 nm, SX-312nm) and UVC (180–290 nm, SX-254nm) detectors, manufactured by 
Vilber Lourmat, Marne La Valle, France. The UVR dose is expressed in Joules (J = W/cm2 x Second). The 
irradiance output of UVA was 5.8 mW/cm2 at a distance of 10 cm from the source. The interference of UVB in 
the UVA source was below 0.2 mW/cm2. No UVC was detected in the UVA source. 

3. Methods  

3.1 Fabrication of TiO2 Nanofibers 

The detailed procedure has been described earlier (Obuya et al., 2011). Briefly, a solution of TiP was mixed with 
PMMA to achieve a viscous polymer blend. For the electrospinning process, a high voltage power supply (25 
kV/cm) induced electrical charges on the polymer blend to stretch the solution into submicron length fibers. 
DMF was added to ensure a dielectric constant sufficient to withstand the high electric voltages. As the solvents 
evaporated, the stretched PMMA/TiP fibers were collected on an aluminum foil attached to the collector plate. 
TiO2 nanofibers were then synthesized after heat treatment at 500 oC to remove the polymer matrix.  
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3.2 Deposition of Pt Nanoparticles on the Surface of the TiO2 Nanofibers 

3.2.1 In-Situ Polyol Deposition  

EG (10 ml) was heated at 110 oC in an oil bath (30 minutes) followed by addition of TiO2 fibers. The EG/TiO2 
mixture was irradiated under UV light for 30 minutes. Subsequently, Pt2+ and PVP (1:20 mole ratio) were added 
to the EG solution, which was left stirring for an additional 30 minutes to control the nucleation process of the 
nanoparticles. At the end of the reaction, the catalyst was washed several times with acetone, centrifuged and 
dried in an oven at 120 oC for 3 h to remove residual PVP and EG. 

3.2.2 Ex-Situ Polyol Deposition  

EG (10 mL) was heated in an oil bath at 110 oC (60 minutes), followed by addition of a 1:5 mole ratio of Pt2+: 
PVP to initiate the nucleation process. This solution was left stirring for 60 minutes, after which it was 
immediately cooled in ice to stop further growth of the Pt nanoparticles. The Pt nanoparticles (in 2 mL ethanol) 
were dispersed on the surface of the TiO2 nanofibers with sonication (120 minutes). The catalysts were cleaned 
and dried via steps described in section 3.2.1.  

3.3 A Probe of the Catalyst Efficiency 

3.3.1 Photodegradation of RH-B 

Pt-TiO2 catalyst (50 mg) was sonicated in 10 mL distilled water (15 minutes) to ensure complete dispersion of 
nanoparticles in solution. The catalyst was mixed with a 10-5 M solution of RH-B in distilled water (50 mL) for 
30 minutes in the dark to reach an adsorption/desorption equilibrium. The mixture was continuously stirred in air 
and irradiated under UV light. The distance between the UV lamp and the reaction beaker was maintained at 20 
cm. The progress of reaction was monitored by recording the absorption spectra of irradiated samples after every 
10 minutes. Aliquots (0.5 ml in 5 mL H2O) were centrifuged at 1550 RPM for 30 minutes to remove the 
dispersed catalyst before recording the absorption spectrum. Control experiments included: (i) dye with UV light 
in the absence of catalyst, (ii) both in-situ and ex-situ Pt-TiO2 in sunlight, (iii) undoped TiO2 nanofibers under 
UV light and (iv) undoped TiO2 in sunlight.  

3.3.2 Mechanism of Photodegradation 

RH-B degradation with the in-situ Pt-TiO2 was carried out under three different conditions: (i) irradiation in 
0.01M phosphate buffer, pH 7.0, (ii) irradiation in the presence of Pt-TiO2 as a photosensitizer, pH 7 and (iii) 
irradiation in the presence of Pt-TiO2 and selected scavengers of free radical/reactive O2 species (ROS) 
scavenger. 20 mL samples of a 6.25 × 10-6 M solution of RH-B (prepared in pH 7 phosphate buffer) were 
irradiated in a Petri dish with or without a sensitizer (10.0 μg/mL) or varying amounts of a quencher under UVA 
at a dose ranging from 2 to 20 J.  

4. Results and Discussion 

4.1 Scanning Electron Microscopy and Energy Dispersive Spectroscopy  

SEM analysis of the TiO2 nanofibers indicated an enlarged surface area that was highly folded and wrinkled, 
providing favorable sites for heterogeneous nucleation of metal nanoparticles (Figure 1). In Figure 2, a highly 
magnified SEM image shows the presence of numerous pores that are indicative of a mesoporous structure of the 
TiO2 that allows for the effective absorption of reacting molecules. This porosity, coupled with its ability to 
create photoinduced electron-hole pairs makes it a very effective support for the in-situ synthesis of 
nanoparticles without the need for external stabilizing agent. Figure 3 illustrates EDS image that shows the 
elemental composition and distribution of the in-situ Pt-TiO2 catalysts, where the presence of a carbon peak on 
both spectra is indicative of incomplete combustion of PMMA.  
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Figure 9. XPS spectra showing atomic percentages of the elements present in Pt-TiO2 catalyst 

 

Table 1. A summary of the elemental composition and atomic percentage of the Pt-TiO2 catalyst 

Pt-TiO2  O/Ti ratio is 39.5/18.4 = 2.15 ΔB.E of O - Ti = 529.7 - 458.5= 71.2 

Atomic % 

from XPS 

spectrum 

 

Peak 
B.E 

(eV) 

Peak 

assignment 
Area 

Area 

ratio 
Area % FWHM 

Pt 2  4f5/2 70.6 Pt N/A N/A N/A N/A 

Ti 18.4  2p3/2 458.5 Ti in TiO2 7900 N/A N/A 1.03 

C 32.2 

 

1s 

284.8 

286.3 

283.6 

288.4 

C-C, C-H 

C-OH,C-O-C

CO/Pt/Ti 

O--C=O 

1915 

368 

324 

267 

0.67 

0.13 

0.11 

0.09 

21.4 

4.12 

3.63 

2.99 

1.65 

1.72 

1.24 

1.64 

O 47.3 
 

1s 
529.7 

531.4 

O in TiO2 

Adsorbed O 

8838 

1737 

0.84 

0.16 

39.5 

7.76 

1.20 

1.62 

 

A summary of the elemental composition and relative percentages of the Pt-TiO2 catalysts obtained from the 
XPS spectrum is given in Table 1. It provides the atomic percentages, binding energies, and peak areas for each 
assigned peak for Ti, O, C and Pt elements. These binding energies are used for peak identification against 
known values so as to establish the electronic states of the elements, while the atomic percentages and peak areas 
are used to calculate the percentage of O bonded to Ti, C and/or adsorbed on the TiO2 surface. The Pt 4f5/2 
peaks that were observed at binding energies of 70.6 and 74.0 eV were assigned to elemental Pt. 

4.2.4 Catalytic Activity of Titania Nonofibers 

The semiconductor nature of titania nanofibers was explored for the in-situ reduction of metal ion precursors on 
the TiO2 surface using conduction band electrons. The presence of oxidizable additives, in our case EG, made 
use of the valence band holes thereby preventing electron-hole recombination. The ex-situ method was preferred 
for the Pt-TiO2 catalyst since more of the nanoparticles were available on the TiO2 fiber surface, which resulted 
in improved adsorption and degradation of organic pollutants. The objective of loading TiO2 with nanoparticles 
was to maximize the extension of the existing wavelength response of the catalyst to longer wavelength (visible) 
region. The Pt nanoparticles also provided enhanced charge mobility on the TiO2 surface thus preventing 
electron-hole recombination.   
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The results were compared with well recognized 1O2 generating photosensitizers like RF and RB. While 
photosensitized RF and RB degraded dGuo by 99.1 ± 0.3% and 50.8 ± 1.6%, respectively, the Pt.TiO2 
photocatalyst was relatively ineffective (3.5 ± 0.1% degradation) under similar conditions. The photodegradation 
of dGuo by RF and RB was inhibited by over 95% with 10 mM NaN3 (Joshi, 1985).   

 
Table 2. A comparison of photosensitized degradation of deoxyguanosine by Pt-TiO2, Riboflavin (RF) and Rose 
Bengal (RB) under UVA 

Reaction Mixture 
Concentration of Photosensitizer

(µg/mL) 
UVADose

(Joule) 
Photodegradation 

(%) 
dGuo + Buffer - 10.0 0.00 
dGuo + Pt-TiO2 3.50 3.50 0.9 ±0.01 
dGuo + Pt-TiO2 7.00 7.00 3.0 ±0.10 
dGuo + Pt-TiO2 10.0 10.0 3.5±0.01 
dGuo + RF 3.50 3.50 73.0 ±0.4 
dGuo + RF 7.00 7.00 94.9 ± 0.1 
dGuo + RF 10.0 10.0 99.1 ± 0.3 
dGuo + RB 3.50 3.50 27.2 ± 2.4 
dGuo + RB 7.00 7.00 44.8 ± 1.9 
dGuo + RB 10.0 10.0 50.8 ± 1.6 

 

The results of this study suggest that photosensitized degradation of dGuo by RF and RB is largely due to the 
involvement of 1O2. However, Photosensitized Pt-TiO2 did not show significant involvement in dGuo 
degradation providing additional evidence that its involvement in RH-B photodegradation was not due to 1O2. In 
order to reconfirm this result, 1O2 determination test were carried out with Pt-TiO2, RF, RB and RH-B in an 
experiment described below. 

4.3.2 Determination of 1O2 Generation by Pt-TiO2 and Its Comparison With Riboflavin, Rose Bengal and RH-B 

The production of 1O2 by photosensitized Pt-TiO2, RF, RB and RH-B under aerobic condition was measured in 
an aqueous solution by literature procedure (Kraljic & El Moshni, 1978). 1O2 forms transannular peroxide 
intermediate with histidine leading to the bleaching of RNO, which was quantitatively measured 
spectrophotometric ally at 440 nm. The results confirmed that Pt-TiO2 and RH-B were not major producers of 
1O2 as compared to RF and RB, Figure 14. 

 

 
Figure 14. Formation of 1O2 by various test compounds as determined by the bleaching of RNO (red) and 

quenching by sodium azide (blue) 
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4.3.2.1 Role of Superoxide Anion Radicals (O2
-·) in the Photodegradation of RH-B   

The involvement of O2
-· in the Pt-TiO2 sensitized (UVA, 20J) degradation of RH-B was determined by carrying 

out the photosensitized reaction in the presence of 25 U/μL SOD (Beauchamp & Fridovich, 1971). The 
photodegradation was not affected by SOD indicating no involvement of O2

-· in the reaction.  

4.3.2.2 Role of Hydroxyl Radicals (·OH) in the Photodegradation of RH-B   

The involvement of ·OH in the Pt-TiO2 sensitized degradation of RH-B was determined by carrying out the 
reaction in the presence of mannitol (10 mM; Goldstein & Czapski, 1984). Photodegradation of RH-B was 
inhibited by 74.4% in the presence of mannitol indicating that ·OH was involved in the reaction. 

4.3.2.3 Role of Hydrogen Peroxide (H2O2) in the Photodegradation of RH-B   

The involvement of H2O2 in the photosensitized degradation of RH-B was determined by carrying out reaction in 
the presence of catalase (Seaver & Imlay, 2001). A stock solution of catalase (100 mg/mL) was prepared in 
phosphate buffer (0.01 M, pH 7) and 400μg/mL aliquot was added to the irradiation solution of RH-B. The 
Pt-TiO2 sensitized degradation of RH-B was inhibited by 47.8% in the presence of catalase indicating partial 
involvement of H2O2 in the reaction. 

4.4 Mechanism of RH-B Photodegradation   

RH-B structure contains four N-ethyl groups on either side of the xanthene ring and a carboxylic acid group on 
the phenyl group connected to the xanthene ring (Figure 15). 

 

NON

COOH

 

Figure 15. Chemical structure of Rhodamine B 

 
The presence of non-bonded lone pairs of electrons on the functional groups and the extended π conjugation 
makes this molecule susceptible to attack by ROS produced by oxidative and reductive pathways on the 
semiconductor surface (Wu et al., 1998). The positively charged amine groups assists in the adsorption of RH-B 
onto the negatively charged TiO2 surface. Previous reports suggest that the photocatalytic cleavage of the RH-B 
molecule takes place via two competitive processes; N-de-ethylation and chromophore cleavage (He et al., 
2009b). Subsequently, ring opening and mineralization occurs to give rise to various products.  

For this study, UV-Vis absorption data were used to track the degradation process; chromophore cleavage of the 
dye led to the destruction of π conjugation across the RH-B molecule and thus the complete disappearance of the 
absorption maximum band at 554 nm (Figure 10). Due to its auxochromic properties, the stepwise removal of the 
N-ethyl group lead to a consistent hypsochromic shift of the absorption maximum band at 554 nm. A consistent 
decrease in the absorption at 554 nm with a simultaneous increase in absorption at ~248 nm (Figure 16) 
suggested the degradation of RH-B with the formation of lower wavelength-absorbing photoproducts. The 
identification of photoproducts is the subject of our ongoing research. Chromophore cleavage of RH-B under 
microwave irradiation using graphite-supported TiO2 or Bi2WO6 as catalysts proceeds through the formation of 
benzoic, hydroxybenzoic, phthalic and terephthalic acids, as identified by GC/MS analysis (He et al., 2009a, 
2009b; Wu et al., 1998). Based on the experiments showing the participation of ·OH and H2O2 in RH-B 
degradation, a mechanism for RH-B degradation involving ·OH has been proposed (Figure 17). The 
N-de-ethylation is initiated by the attack on an ethyl group of the RH-B molecule by ·OH. The resulting radical 
undergoes β-cleavage to generate a stabilized radical and ethylene, which abstracts a hydrogen atom from water 
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5. Conclusion  

An efficient Pt-TiO2 catalyst was prepared by a modified ex-situ polyol method. The mesoporous nature of the 
TiO2 nanofibers, coupled with a large surface to volume ratio provided a suitable anchorage for the Pt 
nanoparticles. Additionally, the TiO2 surface was crucial for the adsorption of RH-B and the generation of ROS 
required for the degradation reaction. Maximum degradation using Pt-TiO2 was observed in sunlight, which 
followed a first order reaction kinetics, with a rate constant of 0.0158 min-1. Presence of Pt nanoparticles 
provided additional active sites for the adsorption of reactive intermediates as well as improved charge mobility 
on the TiO2 surface, thereby preventing electron-hole recombination. Quenching studies suggested that ·OH and 
H2O2 were responsible for the Photodegradation of RH-B, while 1O2 and O2

-· were not involved. These 
observations were in agreement with earlier studies on photosensitization reactions of Pt-TiO2 complexes where 
damage to protein and DNA analogues was demonstrated via formation of ·OH and H2O2 (Macyk & Kisch, 2001; 
Hirakawa et al., 2004). This study provided useful information on the role of selective ROS as intermediates in 
the photocatalytic degradation of RH-B. 
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