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Abstract 

The study of drying of red alga (Gelidium sesquipedale, Rhodophyta), with initial sample masses varying from 1 
to 10 g, was carried at different temperatures 30 – 80 °C. The experimental drying curves show a slight effect of 
the initial mass. Two types of curves are obtained: those at temperatures below 50 °C are fitted into straight line 
according to an interfacial progression process in cylindrical symmetry. Those of high-temperature drying (50 < 
θ < 80 °C), are perfectly parabolic and show that the kinetic regime is controlled by the three-dimensional 
diffusion according to the Jander equation. The two types of water molecules identified were also highlighted 
during the drying kinetics process. The apparent activation energy of the strongly bounded water (20%) is about 
36.25 kJ·mol-1, and that of the wetting water is in the range of 47.68 kJ·mol-1. 

Keywords: Gelidium sesquipedale, drying kinetic, rate of progress, regulating process, apparent activation 
Energy 

1. Introduction 

Seaweed has attracted considerable attention as a potential source for several applications and is the subject of 
several studies (Corrigan, 1995; Miyagawa et al., 1995; Usov, 1998; Bannov et al., 1998; Ait Mohamed, 2005; 
Wang et al., 2009; Ye et al., 2010, etc.). Moroccan coasts are rich in red algae. Gelidium sesquipedale is the 
primary source for the production of agar, highly recommended product in the food industry. The industrial 
process for preparing the agar is always preceded by the step of storing the red algae which depends on ways and 
technology used in the drying phase.  

In a previous studies (Hnini et al., 2013), we have presented the experimental results concerning the 
thermodynamic equilibrium of the sorption and desorption of water in red algae. The main aim was to understand 
the nature of the interaction between water molecules and the Gelidium sesquipedale. The sorption and desorption 
isotherms were performed using the static gravimetric method at temperatures 30, 45, and 60 °C and showed a 
slight hysteresis. In this study, the thermodynamic aspects has allowed to understand that 20% of water molecules 
are strongly linked to potential adsorption sites inside the plant cells and 80% of water molecules constitutes 
dampening water (Hnini et al., 2013). 

To better control the behavior of the Gelidium sesquipedale with water, and to determine the optimal conditions for 
storage of dried seaweed, we study in this work the kinetic drying of Gelidium sesquipedale by conventional 
heating in order to understand:  

 the influences of temperature and initial sample mass on drying;  

 the mechanism that regulates the drying process and the kinetic parameters which can be used for 
modeling and optimization of the drying processes.  

These results will be also compared in a further work, with those achieved under the same conditions of drying by 
the application of microwave technology. This comparison will allow us to better understand the interaction 
between water and the algae during the drying process.  
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Figure 5. Initial speed of drying versus time at different temperatures (m0 = 1.83 g) 

 

The results obtained in this study can be compared with those obtained by Bakass et al. (1997) for the adsorption 
and the desorption of water vapor on a superabsorbent polymer, Aouad et al. (2006) during the drying of 
phosphates black and Aouad et al. (2002) during the decomposition of natural phosphate and its kerogen.  

Figures 6 and 7 show respectively the variation of extent of conversion α and the instantaneous speed of drying 
versus time at 60 °C, for samples that have different initial masses (from 1 to 10 g). The analysis of these results 
show that for the initial masses used, the rate of desorption is continuously decreasing and the curves converge to 
the level α = 1 even faster than the initial mass of the sample decreases.  

 

Figure 6. Evolution of the rate progress of the drying process at 60 °C for samples that have different initial 
masses 
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6. Conclusion  

In this work we are interested to studying the drying kinetics of the Gelidium sesquipedale under different 
temperatures and for different initial masses. Two main objectives were set at the beginning:  

 The determination of the effects of temperature and initial mass of the sample,  

 The knowledge of the mechanism that can regulate the drying process and the kinetic parameters that can be 
used for modeling and optimizing the drying process.  

From the analysis of all results, we can note:  

 For a given initial mass of the sample, the temperature has a significant influence on drying. Its effect is 
manifested by increasing the speed of drying when the temperature increases.  

 For a fixed temperature, the initial mass of the sample has a slight influence on the rate of drying. In the area 
of initial mass studied the drying mechanism remains the same.  

 The drying of samples occurs by mechanisms that depend on temperature: interfacial progression at low 
temperatures (range I) and diffusion at high temperatures (range II). During the drying process, these two 
mechanisms occur with the start of the water desorption, but at high temperature, they compete with 
mechanical phenomena that begin over early.  

The drying kinetics is influenced by temperature but also the way in which heat transfer takes place within the 
algae. These results encourage us to undertake a further systematic study on the drying process under microwave 
irradiation. This technology is now playing an important role in energy optimization of industrial processes and 
drying at the quality of dried products.  
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