The Photochemistry of 1-Alkenyl-Substituted-1,2,3-Triazoles Leading to Formation of Pyrrole Derivatives

Nader A. Al-Jalal¹, Nouria A. Al-Awadi¹, Maher R. Ibrahim¹ & Mohamed H. Elnagdi¹

¹Department of Chemistry, Faculty of Science, Kuwait University, Safat, Kuwait

Correspondence: Nader A. Al-Jalal, Department of Chemistry, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait. Tel: 965-2498-7079. E-mail: nader.aljalal@ku.edu.kw

Received: July 23, 2013Accepted: August 26, 2013Online Published: October 14, 2013doi:10.5539/ijc.v5n4p80URL: http://dx.doi.org/10.5539/ijc.v5n4p80

Abstract

Irradiation of 1-alkenyl-substituted-1,2,3-triazoles 5a-d using 16 W low pressure mercury arc-lamp (254 nm) for 16 hrs produced 3-dimethyamino-1*H*-pyrrole derivatives 9a-d, together with 4-phenyl or (4-ethoxycarbonyl)-1*H*-1,2,3-triazoles 10a,b.

Keywords: photolysis, 1,2,3-triazoles, pyrrole, microwave

1. Introduction

Previous studies have shown that thermolytic and/or photolytic reactions of 1-substituted benzotriazole derivatives take place with elimination of N_2 followed by subsequent ring closure of the resulting biradical intermediates to form heterocyclic products (Dib, Al-Awdi, Ibrahim, & El-Desoqui, 2003, 2004; H. Al-Awadi, M. Ibrahim, Y. Ibrahim, & N. Al-wadi, 2008; Maerky, Schmid, & Hansen, 1979; Wender & Cooper, 1986). These efficient processes have been described by Katritzky and his coworkers (Katritzky, Lan, Yang, & Denisko, 1998). More recently we have reported the synthesis of indoles **2** and benzimidazoles **3** via photolysis of readily obtainable 1-substituted-1,2,3-benzotriazoles **1a,b** (Scheme 1) (Al-Jalal, Al-Awadi, Ibrahim, & Elnagdi, 2011a, 2011b).

Scheme 1. Photolysis of 1-substituted benzotriazoles 1a,b to indoles and benzimidazoles

However, literature survey indicated that little investigation have been made on thermolytic and/or photolytic behavior of 1-alkenyl-substituted-1,2,3-triazoles (Boyer & Silvarajan, 1969; Burgess, Carithers, & McCullagh, 1968; Michell & Rees, 1987; Ogata, Takaji, & Hayashi, 1977; Silvarajan & Boyer, 1972; Wender & Cooper, 1969). In the light of the established pharmaceutical activity of 3-dimethylaminopyrrole which is reported as an analgesics and anticonvulsants agent (Bellina & Rossi, 2006; Rochais, Lisowski, Dallemagne, & Rault, 2004;

Liebscher et al., 1992) we became interested in developing photoinduced synthetic route to such compounds via photolysis of suitably 1-substituted-1,2,3-triazole.

In this work we report the first successful photochemical conversion of various 1-alkenyl-substituted-1,2,3-triazoles into polysubstituted pyrrole derivatives by elimination of N_2 followed by ring closure of the resulting biradical intermediates.

2. Experimental

General: Melting points were recorded on a Gallenkamp apparatus. IR spectra were recorded in KBr disks on a Perkin Elmer System 2000 FT-IR spectrophotometer. ¹H- and ¹³C- NMR spectra were recorded on a Bruker DPX 400 MHz NMR spectrometer with proton spectra measured at 400 MHz and carbon spectra at 100 MHz. Mass spectra were measured on a VG Auto-spec-Q (high resolution, high performance, tri-sector GC/MS/MS) and with LCMS using Agilent 1100 series LC/MSD with an API-ES/APCI ionization mode. Microanalyses were performed on LECO CH NS-932 Elemental Analyzer. The UV-visible absorption spectra were scanned using Varian Cary 5 instrument in the wave length range 200-450 Explorer. Microwave experiments were carried out using a CEM Corporation, NC, USA microwave apparatus. X-ray analysis was performed using a Rigaku Rapid II and Bruker X8 Prospector diffractmeter. A photochemical reactors limited fitted with a 16 W low pressure mercury arc-lamp was used for the irradiation.

2.1 Click Synthesis of 1-Alkyl Substituted-1,2,3-Triazoles 4a-f

General procedure: A mixture of terminal alkynes (2.50 g, \approx 25 mmole), sodium azide (1.95 g, 30 mmole), alkyl halide derivatives (25 mmol), copper sulfate pentahydrate (0.6225 g, 0.01 equiv) and sodium ascorbate (0.99 g, 0.02 equiv) in a mixture solvent of tertiary butanol and water (1:1v/v, 50 ml), was stirred at room temperature for 3-12 hrs. After the color of the mixture was changed to yellow brown it was poured on to ice water (150 ml), filtered, washed with water to give compounds **4a-f**.

2.1.1 1-(4-Phenyl-1,2,3-Triazol-1-yl)Propan-2-One 4a

Colorless solid from ethanol, yield 4.0 g (80%), mp. 142-144 °C. LCMS (m/z) = 202 (M + 1). ¹H NMR (400 MHz, CDCl₃): δ 8.89-8.86 (m, 3H), 7.46 (td, 2H, J = 7.4, 1.6 Hz), 7.37 (tt, 1H, J = 7.6, 1.6 Hz), 5.29 (s, 2H), 2.32 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆): δ 200.9, 146.2, 130.7, 128.9, 127.9, 125.1, 122.7, 58.4, 27.1 (HRMS = 201.0896, requires C₁₁H₁₁N₃O 201.0902).

2.1.2 4-Phenyl-1,2,3-Triazol-1-yl-acetic Acid Isopropyl Ester 4b

Colorless solid from benzene, yield 4.0 g (78%), mp. 130-132 °C. MS: m/z (%) = 245 (M⁺, 30), 175 (100), 116 (100). IR (KBr, cm⁻¹): 3087, 2987, 1789, 1463, 1443, 1379, 1259, 1105, 1045, 765, 694. ¹H NMR (400 MHz, CDCl₃): δ 7.94 (s, 1H), 7.88 (dd, 2H, J = 7.8, 1.2 Hz), 7.46 (t, 2H, J = 7.6 Hz), 7.38 (tt, 1H, J = 7.8, 1.2 Hz), 5.20 (s, 2H), 5.16 (sex, 1H, J = 6.4 Hz), 1.32 (d, 6H, J = 6.4 Hz, 2CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 148.3, 130.4, 128.9, 128.3, 125.8, 120.9, 70.6, 51.2, 21.7 (2C) (HRMS = 245.1164, requires C₁₃H₁₅N₃O₂ 245.1157).

2.1.3 1-(2-Oxo-2-phenyl-ethyl)-1*H*-1,2,3-triazole-4-carboxylic Acid Ethyl Ester **4c**

Colorless solid from ethanol, yield 4.5 g (69%), mp.170-172 °C. MS: m/z (%) = 259 (M⁺, 10), 202 (50). ¹H NMR (400 MHz, CDCl₃): δ 8.31 (s, 1H), 8.02 (dd, 2H, J = 7.6, 1.2 Hz), 7.72 (t, 1H, J = 7.6 Hz), 7.59 (t, 2H, J = 7.6 Hz), 5.95 (s, 2H), 4.46 (q, 2H, J = 7.2 Hz), 1.44 (t, 3H, J = 7.2 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 189.4, 160.6, 140.7, 134.9, 133.6, 129.5, 129.3, 128.2, 61.4, 55.5, 14.5 (HRMS = 259.0951, requires C₁₃H₁₃N₃O₃ 259.0957).

2.1.4 4-Phenyl-1,2,3-Triazol-1-yl-acetic Acid Methyl Ester 4d

Yellow solid from ethanol, yield 7.5 g (88%), mp. 82-83 °C (lit.mp 81-82 °C, Kumar, Patel, & Reddy, 2009).

2.1.5 1-Allyl-4-phenyl-1*H*-1,2,3-triazole **4e**

Colorless solid from benzene, yield 3.6 g (78%), mp.110-112 °C (lit.mp. 112-113 °C, Kidwai & Jain, 2011). 2.1.6 Trans 1-(2-Ethoxycarbonylvinyl)-1*H*-1,2,3-Triazole-4-Carboxylic Acid Ethyl Ester **4f**

This compound was prepared from ethyl propiolate (2.0 g, 20.0 mmol) and sodium azide (0.78 g, 12.0 mmol) after stirring at room temperature for 3 hrs at the same condition of general procedure as colorless crystals from benzene, (R_f 0.5, EtOAc: petroleum b.p. 60-80, 1:2v/v), yield 1.2 g (50%), mp.93-95 °C. MS: m/z (%) = 239 (M⁺, 10), 194 (60), 138 (100). IR (KBr, cm⁻¹): 3103, 3051, 2980, 1735, 1713, 1663, 1539, 1447, 1373, 1305, 1210, 1157, 1049, 961, 864, 781. ¹H NMR (400 MHz, CDCl₃): δ 8.38 (s, 1H), 8.23 (d, 1H, J = 14.4 Hz), 6.67 (d,

1H, J = 14.4 Hz), 4.47 (q, 2H, J = 7.2 Hz), 4.32 (q, 2H, J = 7.2 Hz), 1.45 (t, 3H, J = 7.2 Hz), 1.37 (t, 3H, J = 7.2 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 164.6, 160.0, 141.1, 135.3, 126.0, 113.0, 61.8, 61.5, 14.3, 14.2 (HRMS = 239.0900, requires C₁₀H₁₃N₃O₄ 239.0906).

2.1.7 Cis 1-(2-Ethoxycarbonylvinyl)-1*H*-1,2,3-Triazole-4-Carboxylic Acid Ethyl Ester 4f

White solid from petroleum b.p. 60-80, (R_f 0.65, EtOAc: petroleum b.p. 60-80 °C, 1:2v/v), yield 0.5 g (20%), mp. 66-68 °C. MS: *m/z* (%) = 239 (M⁺, 10), 194 (60), 138 (100). IR (KBr, cm⁻¹): 3103, 3052, 2980, 1735, 1713, 1663, 1539, 1447, 1373, 1304, 1208, 1157, 1048, 961, 781. ¹H NMR (400 MHz, CDCl₃): δ 9.69 (s, 1H), 7.65 (d, 1H, *J* = 10.8 Hz), 5.83 (d, 1H, *J* = 10.8 Hz), 4.46 (q, 2H, *J* = 7.0 Hz), 4.29 (q, 2H, *J* = 7.0 Hz), 1.44 (t, 3H, *J* = 7.0 Hz), 1.36 (t, 3H, *J* = 7.0 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 163.7, 160.2, 140.2, 133.0, 130.0, 109.6, 61.5 (2C), 14.3, 14.0 (HRMS = 239.0900, requires C₁₀H₁₃N₃O₄ 239.0906).

2.2 Synthesis of 1-Alkenyl substituted-1,2,3-Triazole Derivatives 5a-d

General procedure: A mixture of each of compounds **4a-d** (10 mmol) and dimethylformamidedimethyleacetal (DMF-DMA) (3 ml, 25 mmol) in xylene (3 ml) was introduced in a microwave oven and irradiated at 150 °C for 3 minutes. The mixture was cooled and poured on petroleum ether p.b. 60-80 °C (50 ml), filtered, and crystallized from ethanol to give compounds **5a-d**.

2.2.1 4-Dimethylamino-3-(4-Phenyl-1,2,3-Triazol-1-yl)but-3-en-2-one 5a

White solid, yield 2.0 g (78%), mp.160-162 °C. MS: m/z (%) = 256 (M⁺, 5), 228 (100), 185 (25). IR (KBr, cm⁻¹): 3132, 3047, 2929, 1656, 1600, 1425, 1311, 1217, 1114, 1033, 923, 769. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (dd, 2H, J = 7.6, 1.2 Hz), 7.87 (s, 1H), 7.73 (s, 1H), 7.48 (t, 2H, J = 7.4 Hz), 7.39 (t, 1H, J = 7.8 Hz), 3.20 (s, 3H, CH₃), 2.35 (s, 3H, CH₃), 1.91 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 192.3, 147.9, 146.4, 130.2, 129.0, 128.4, 125.7, 125.1, 108.2, 47.9, 36.7, 24.6 (HRMS = 256.1319, requires C₁₄H₁₆N₄O 256.1324).

2.2.2 3-Dimethylamino-2-(4-Phenyl-1,2,3-Triazol-1-yl)acrylic Acid Isopropyl Ester 5b

White solid, yield 2.1 g (70%), mp. 155-156 °C. MS: m/z (%) = 300 (M⁺, 5), 229 (100), 201 (25). IR (KBr, cm⁻¹): 3091, 2976, 2967, 1694, 1623, 1465, 1428, 1348, 1285, 1226, 1108, 1085, 1046, 768, 694. ¹H NMR (400 MHz, CDCl₃): δ 7.90 (dd, 2H, J = 7.6, 1.2 Hz), 7.86 (s, 1H), 7.63 (s, 1H), 7.46 (t, 2H, J = 7.6 Hz), 7.36 (t, 1H, J = 7.8 Hz), 5.06 (quin, 1H, J = 6.4 Hz), 2.97 (br, 3H, NCH₃), 2.42 (br, 3H, NCH₃), 1.20 (d, 6H, J = 6.4 Hz, 2CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 165.3, 147.0, 146.5, 130.5, 128.9, 128.2, 125.9, 125.7, 97.3, 67.7, 47.6, 36.9, 22.0 (2C) (HRMS = 300.1580, requires C₁₆H₂₀N₄O₂ 300.1586).

2.2.3 1-(1-Benzoyl-2-Dimethylamino-vinyl)-1H-1,2,3-Triazole-4-Carboxylic Acid Ethyl Ester 5c

Colorless solid, yield 2.3 g (73%), mp.132-134 °C. LCMS: (m/z) = 315 (M + 1). MS: $m/z (\%) = 314 (M^+, 15)$, 286 (15), 213 (40), 105 (100%). IR (KBr, cm⁻¹): 3132, 3047, 2929, 1656, 1600, 1425, 1311, 1217, 1114, 1033, 923, 769. ¹H NMR (400 MHz, CDCl₃): δ 8.13 (s, 1H), 7.56 (s, 1H), 7.47 (d, 2H, J = 7.6 Hz), 7.44 (t, 1H, J = 7.6 Hz), 7.39-7.35 (m, 2H), 4.43 (q, 2H, J = 7.2 Hz), 3.17 (br, 3H, NCH₃), 2.38 (br, 3H, NCH₃), 1.42 (t, 3H, J = 7.2 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 188.7, 160.7, 150.2, 140.0, 138.5, 133.2, 130.7, 128.4, 127.9, 108.3, 61.4, 48.2, 38.0, 14.3 (HRMS = 314.1373, requires C₁₆H₁₈N₄O₃ 314.1379).

2.2.4 3-Dimethylamino-2-(4-Phenyl-1,2,3-Triazol-1-yl)acrylic Acid Methyl Ester 5d

Colorless solid, mp.118-120 °C, yield 2.0 g (73%). MS: m/z (%) = 272 (M⁺, 5), 244 (50), 229 (100). IR (KBr, cm⁻¹): 3133, 2948, 1698, 1640, 1468, 1430, 1402, 1327, 1294, 1223, 1158, 1109, 1082, 1023, 764. ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, 2H, J = 7.6 Hz), 7.84 (s, 1H), 7.65 (s, 1H), 7.44 (t, 2H, J = 7.8 Hz), 7.34 (t, 1H, J = 7.2 Hz), 3.66 (s, 3H, OCH₃), 3.13 (br, 3H, NCH₃), 2.34 (br, 3H, NCH₃). ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 146.9, 146.1, 130.4, 128.8, 128.2, 125.7, 125.5, 96.7, 51.6, 47.6, 36.2 (HRMS = 272.1268, requires C₁₄H₁₆N₄O₂ 272.1273).

2.3 Synthesis of 1-Arylhydrazono-1,2,3-Triazole Derivatives 6a-c

General procedure: To a cooled solution (0 $^{\circ}$ C) of compound **4a** (2.01 g, 10 mmol), sodium acetate (1.64 g, 20 mmol) in ethanol (100 ml) was gradually added with stirring in about 30 min cooled solution of appropriate aromatic diazonium chloride (10 mmol). The mixture was stirred for 24 hours at room temperature. The yellow solid so formed was filtered and crystallized from ethanol to give compounds **6a-c**.

2.3.1 1-(Phenylhydrazono)-1-(4-Phenyl-1,2,3-Triazol-1-yl)propan-2-one 6a

Yield 2.3 g (75%), mp.155-156 °C.MS: m/z (%) = 305 (M⁺, 5), 277 (40), 92 (100). IR (KBr, cm⁻¹): 3179, 3162, 3038, 1668, 1562, 1552, 1510, 1378, 1355, 1257, 1238, 1210, 1142, 1078, 1012, 763, 690. ¹H NMR (400 MHz, CDCl₃): δ 12.23 (s, 1H), 9.05 (s, 1H), 7.95 (dd, 2H, J = 8.4, 1.2 Hz), 7.49 (t, 2H, J = 7.6 Hz), 7.44-7.37 (m, 5H),

7.16-7.12 (m, 1H), 2.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 190.6, 146.1, 142.0, 129.6, 129.0, 128.8 (2C), 126.1, 124.2, 123.9, 120.8, 115.1, 26.1. Anal. Calc. for C₁₇H₁₅N₅O (305.34): C, 66.87; H, 4.95; N, 22.94. Found: C, 66.79; H, 5.01; N, 22.84.

2.3.2 1-p-Chlorophenylhydrazono-1-(4-Phenyl-1,2,3-Triazol-1-yl)propan-2-one 6b

Yield 2.5 g (73%), mp.158-160 °C. MS: m/z (%) = 339 (M⁺, 10), 311 (40), 126 (100). IR (KBr, cm⁻¹): 3271, 3149, 3058, 3038, 1673, 1564, 1488, 1397, 1258, 1231, 1083, 1011, 821, 760, 691. ¹H NMR (400 MHz, CDCl₃): δ 12.26 (s, 1H), 9.04 (s, 1H), 7.92 (dd, 2H, J = 8.4, 1.6 Hz), 7.48 (dt, 2H, J = 8.0, 1.2 Hz), 7.41 (tt, 1H, J = 8.0, 1.2 Hz), 7.36 (d, 2H, J = 8.0 Hz), 7.30 (d, 2H, J = 8.0 Hz), 2.71 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 190.5, 146.1, 140.6, 129.7, 129.5, 129.1, 129.0, 128.8, 126.0, 124.1, 120.8, 116.2, 26.1. Anal Calc. for C₁₇H₁₄ClN₅O (339.79): C, 60.09; H, 4.15; N, 20.61. Found: C, 60.02; H, 4.24; N, 20.49.

2.3.3 1-(4-Phenyl-1,2,3-Triazol-1-yl)-1-p-Tolylhydrazono-propan-2-one 6c

Yield 2.4 g (75%), mp.164-166 °C. MS: m/z (%) = 319 (M⁺, 5), 291 (70), 106 (100). IR (KBr, cm⁻¹): 3268, 3171, 3038, 1661, 1552, 1506, 1402, 1265, 1145, 1013, 818, 760, 687. ¹H NMR (400 MHz, CDCl₃): δ 12.21 (s, 1H), 9.07 (s, 1H), 7.95 (dd, 2H, J = 8.4, 1.2 Hz), 7.50 (t, 2H, J = 7.6 Hz), 7.42 (t, 1H, J = 7.6 Hz), 7.29 (d, 2H, J = 8.4 Hz), 7.23 (d, 2H, J = 8.4 Hz), 2.73 (s, 3H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 190.4, 146.0, 139.7, 133.9, 130.2, 129.7, 129.0, 128.7, 126.0, 123.7, 120.8, 115.1, 26.0, 20.9. Anal Calc. for C₁₈H₁₇N₅O (319.37): C, 67.70; H, 5.37; N, 21.93. Found: C, 67.72; H, 5.34; N, 21.80.

2.4 Photolysis of Compounds 4e, f, 5a-d and 6a-c

Irradiation using (16 w) low pressure mercury arc-lamp. Each of the substrates **4e,f**, **5a-d** and **6a-c** (1.0 mmol) was dissolved in acetonitrile (25 mL) in quartz tubes and irradiated using (16 W) low pressure mercury arc-lamp for 16 hrs at room temperature. The progress of the reaction was monitored by TLC and the formation of products was detected with LCMS. The solvent was removed in *vacuo* and the resulting residue was subjected to column chromatography on silica gel using ethyl acetate/petroleum ether b.p. 60-80 °C the % yield in (Table 1).

2.4.1 2-Acetyl-3-Dimethylamino-4-Phenyl-1H-Pyrrole 9a

Yellow solid, (R_f 0.55, EtOAc: petroleum b.p. 60-80 °C, 1:4v/v). mp. 158-160 °C. MS: m/z (%) = 228 (M⁺, 100), 211 (55), 169 (30). IR (KBr, cm⁻¹): 3276, 3070, 2927, 1614, 1550, 1458, 1398, 1286, 1122, 973, 919, 763. ¹H NMR (400 MHz, CDCl₃): δ 9.39 (br, 1H, NH), 7.40-7.28 (m, 5H), 6.89 (d, 1H, J = 3.6 Hz), 2.79 (s, 6H, N(CH₃)₂, 2.61 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 188.5, 135.1, 129.6 (2C), 128.2, 127.0, 125.6, 123.7, 122.6, 45.6 (2C), 26.4 (HRMS = 228.1257, requires C₁₄H₁₆N₂O 228.1263).

2.4.2 3-Dimethylamino-4-Phenyl-1H-Pyrrole-2-Carboxylic Acid Isopropyl Ester 9b

Colorless solid, (R_f 0.70, EtOAc: petroleum b.p. 60-80 °C, 1:4v/v). mp. 150-152 °C. MS: m/z (%) = 272 (M⁺, 90), 212 (100), 169 (55). IR (KBr, cm⁻¹): 3476, 3088, 2986, 1753, 1560, 1465, 1378, 1334, 1223, 1191, 1106, 1082, 846, 766. ¹H NMR (400 MHz, CDCl₃): δ 8.82 (br, 1H), 7.55 (d, 2H, J = 7.6 Hz), 7.38 (t, 2H, J = 7.6 Hz), 7.29 (t, 1H, J = 7.4 Hz), 6.90 (d, 1H, J = 3.2 Hz), 5.31-5.25 (m, 1H), 2.85 (s, 6H, N(CH₃)₂, 1.39 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 159.7, 128.3, 128.2, 126.3, 126.2, 125.3, 122.3, 119.7, 115.8, 67.6, 44.2, 34.4, 22.3 (2C) (HRMS = 272.1519, requires C₁₆H₂₀N₂O₂ 272.1525).

2.4.3 5-Benzoyl-3-Dimethylamino-1H-Pyrrole-3-Carboxylic Acid Ethyl Ester 9c

Yellow solid, (R_f 0.95, EtOAc: petroleum b.p. 60-80, 1:4v/v). mp. 138-140 °C. LCMS = 287 (M + 1). MS: m/z (%) = 286 (M⁺, 100), 269 (60), 225 (35). IR (KBr, cm⁻¹): 3262, 2979, 2928, 1714, 1600, 1534, 1446, 1401, 1374, 1273, 1184, 1093, 1032, 736. ¹H NMR (400 MHz, CDCl₃): δ 9.30 (br, 1H, NH), 7.71 (d, 2H, J = 7.8 Hz), 7.56 (s, 1H), 7.54 (t, 1H, J = 7.4 Hz), 7.47 (t, 2H, J = 7.8 Hz), 4.30 (q, 2H, J = 7.2 Hz), 2.61 (s, 6H, 2CH₃), 1.37 (t, 3H, J = 7.2 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 185.5, 163.4, 146.3, 139.4, 131.6, 129.6, 128.6, 128.1, 122.9, 111.4, 59.8, 44.1 (2C), 14.5 (HRMS = 286.1314, requires C₁₆H₁₈N₂O₃ 286.1317).

2.4.4 3-Dimethylamino-4-Phenyl-1H-Pyrrole-2-Carboxylic Acid Methyl Ester 9d

Colorless solid, (R_f 0.9, EtOAc: petroleum b.p. 60-80, 1:3v/v). mp. 142-144 °C. LCMS = 245 (M + 1). MS: m/z (%) = 244 (M⁺, 45), 229 (100), 201 (25). IR (KBr, cm⁻¹): 3329, 2957, 2928, 1717, 1691, 1556, 1447, 1437, 1383, 1282, 1259, 1138, 1059, 914. ¹H NMR (400 MHz, CDCl₃): δ 8.81 (br, 1H, NH), 7.52 (d, 2H, J = 7.6, Hz), 7.38 (t, 2H, J = 8.0 Hz), 7.28 (t, 1H, J = 7.2 Hz), 6.90 (d, 1H, J = 3.6 Hz), 3.91 (s, 3H, OCH₃), 2.84 (s, 6H, 2CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 160.4, 134.9, 128.34, 128.28, 128.15, 126.4, 122.0, 120.4, 114.7, 51.3, 44.3 (HRMS = 244.1206, requires C₁₄H₁₆N₂O₂ 244.1212).

2.4.5 4-Phenyl-1*H*-1,2,3-Triazole 10a

White solid, mp.146-148 °C (lit.mp 147-147.4 °C, Zhang, Kung, & Yang, 2010).

2.4.6 Ethyl-1H-1,2,3-Triazole-4-Carboxylate 10b

Colorless solid, mp.103-104 °C (lit.mp 102-103 °C, Avat-Arman & Khojasteh, 2009).

2.4.7 4-Allyl-5-Phenyl-4H-1,2,3-Triazole 13

Colorless oil, (R_f 0.85, EtOAc: petroleum b.p. 60-80 °C, 1:3v/v). MS: m/z (%) = 185(M⁺, 10), 157 (20), 116 (100). IR (KBr, cm⁻¹): 3081, 3032, 2924, 1495, 1454, 1275, 1076, 995, 925, 754, 699. ¹H NMR (400 MHz, CDCl₃): δ 7.56-7.28 (m, 5H), 5.88-5.78 (m, 1H), 5.22 (t, 2H, J = 7.2 Hz), 3.88 (t, 1H, J = 7.2 Hz), 2.72-2.61 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 135.2, 132.5, 129.0, 128.1, 127.3, 120.3, 119.3, 39.8, 37.5 (HRMS = 185.0947, requires C₁₁H₁₁N₃ 185.0940).

3. Results and Discussion

3.1 Synthesis

1-Alkyl substituted-1,2,3-triazoles **4a-f** were prepared from terminal alkynes, sodium azide and alkyl halides using CuSO₄.5H₂O and Na-ascorbate in *ter*-butanol/water mixture solvent after stirring at room temperature for 3-12 hrs some of which are new compounds (click chemistry, Liu & Reiser, 2011). Condensation of **4a-d** with dimethylformamide dimethyl acetal (DMFDMA) in a microwave oven (M.W.) at 150 °C for 3 min. produced 1-alkenyl substituted-1,2,3-triazoles **5a-d**. Coupling of **4a** with the appropriate aromatic diazonium chloride in ethanol and sodium acetate produced 1-arylhydrazono-1-(4-phenyl-1,2,3-trizole-1-yl)propan-2-ones **6a-c** (Scheme 2). The UV spectrum of these compounds shows absorption maxima in the region 248-312 nm (Table 1).

Scheme 2. Synthesis of 1-substituted-1,2,3-triazoles 4a-f, 5a-d and 6a-c

The structure of compounds **4a-f**, **5a-d** and **6a-c** were well established based on full data of ¹H, ¹³C and 2D-NMR, GC-MS, LCMS (see Experimental section) and moreover X-ray crystal structures of compounds **4f**, **5a** and **6c** were determined (Figure 1).

Figure 1. ORTEP drawing of compounds 4f, 5a and 6c

3.2 Photolysis

Irradiation of 1-alkenyl substituted-1,2,3-triazoles **5a-d** using 16 W low pressure mercury arc-lamp for 16 hrs produced 3-dimethylamino-1*H*-pyrrole derivatives **9a-d**, in 34-38% yield together with 4-phenyl or (4-ethoxycarbonyl)-1*H*-1,2,3-triazoles **10a,b** in 25-35% yield. The formation of these photoproducts can be explained through extrusion of N₂ molecule to form the corresponding 1,3-diradical intermediate **7** which cyclized to **8** followed by 1,3H-shift produced **9a-d**. Formation of **10a,b** can be explained by photo-hydrolysis of N1-C bond (Scheme 3).

The structure of the new pyrrole derivatives **9a-d** were established based on full data ¹H, ¹³C-NMR, GC-MS and X-ray crystal structures of compounds **9a,c,d** (Figure 2).

Scheme 3. Photoproducts of compounds 5a-d

Figure 2. ORTEP drawing of compounds 9a, 9c and 9d

Irradiation of compound **4e** under the same conditions produced 4-allyl-5-phenyl-4*H*-1,2,3-triazole **13** in 38 % yield through 1,5-allyl shift, and not the expected pyrrole **11** (Scheme 4). The structure of photoproduct **13** was suggested by 2D NMR, HSQC, H,H-COSY and HMBC, 2-D experiments (Figure 3).

Scheme 4. Photoproduct of compound 4e

Figure 3. Important HMBC, H-C correlation of compound 13

Irradiation of compounds **4f** (*trans*) under the same condition afforded formation of photo-stachionary *E-Z* photo-isomerization mixture (*trans/cis*, 60 : 40%) isomers of **4f** (Scheme 5). Moreover irradiation of the isolated *cis* isomers **4f** yielded *trans/cis*, 60: 40% mixture. The two isomers were separated and fully characterized by ¹H, ¹³C-NMR (see Experiment section).

Scheme 5. Trans/Cis photoisomerisation of compound 4f

Irradiation of 1-arylhydrazono-1,2,3-triazole derivatives **6a-c** in an attempt to prepare the corresponding 1anilino-imidazole derivatives **14a-c** through loss of molecular nitrogen did not produce any photoproducts (Scheme 6). Table 1 shows the absorption maxima (λ_{max}) and % yield of photoproducts **4e,f** and **5a-d**.

Scheme 6. Photolysis of compounds 6a-c

Substrat	λ max	Irradiation	Irradiation	Photoproducts
		condition	time (h)	and Yield %
4 e	248	16 W	16 h	13 (38)
4f	260	16 W	16 h	4f (60 <i>trans</i> : 40 <i>cis</i>)
5a	287	16 W	16 h	9a (36), 10a (35)
5b	296	16 W	16 h	9b (34), 10a (28)
5c	312	16 W	16 h	9c (35), 10b (25)
5d	284	16 W	16 h	9d (38), 10a (30)

Table 1. Photoproducts of compounds 4e,f and 5a-d

4. Conclusions

1-alkenyl substituted-1,2,3-triazoles **5a-d** were photochemically converted into 3-dimethylamino-1*H*-pyrrole derivatives **9a-d** together with 4-phenyl or (4-ethoxycarbonyl)-1*H*-1,2,3-triazoles **10a,b**. The photochemical behavior of 1-substituted-1,2,3-triazoles **5a-d** is similar to those of benzotriazoles (Al-Jalal, Al-Awadi, Ibrahim, & Elnagdi, 2011). However 1-allyl-4-phenyl-1*H*-1,2,3-triazole **4e** produced upon irradiation 4-allyl-5-phenyl-4*H*-1,2,3-triazole **13**, while *trans* 1-(2-ethoxycarbonyl-vinyl)-1*H*-1,2,3-triazole-4-carboxylic acid ethyl ester **4f** produced *trans/cis* photo-isomerization mixture.

Supplementary Material

Crystallographic data of (excluding structure factors) for the structure in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 928598 (4f), CCDC 928127 (5a)and CCDC 928599 (6c), CCDC 929700 (9a), CCDC 929701 (9c) and CCDC 939635 (9d). Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, fax: +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk.

Acknowledgements

The support of the University of Kuwait received through research grant # SC 04/08 and the facilities of ANALAB/SAF (grants no. GS01/01, GS02/01, GS03/08) are gratefully acknowledged.

References

- Al-Awadi, H., Ibrahim, M., Ibrahim, Y., & Al-Awadi, N. (2008). Gas-phase thermolysis of benzotriazole derivatives. Part 4: Pyrolysis of 1-acylbenzotriazole phenylhydrazones. Intersting direct routes toward N-aminobenzimidazoles. J. Heterocyclic Chem., 45, 723-727. http://dx.doi.org/10.1002/jhet.5570450314
- Al-Jalal, N., Al-Awadi, N., Ibrahim, M., & Elnagdi, M. (2011a). The photochemistry of 1-alkenyl-substituted-1,2,3-triazole leading to formation of indole and fused indole derivatives. *Arkivoc*, 2011(10), 299-308. http://dx.doi.org/10.3998/ark.5550190.0012.a24
- Al-Jalal, N., Ibrahim, M., Al-Awadi, N., & Elnagdi, M. (2011b). The photochemistry of benzotriazol derivatives. Part 2: Photolysis of 1-substituted benzotriazole arylhydrazone: New route to phenanthridin-6-yl-2-phenyldiazine. Molecules. 8257-8263. 16. http://dx.doi.org/10.3390/molecules161210256
- Avat-Arman, T., & Khojasteh, K. (2009). One-pot microwave-assisted solvent free synthesis of simple alkyl 1,2,3-triazole-4-carboxylates by using trimethylsilylazide. J. Heterocyclic Chem., 46, 131-133. http://dx.doi.org/10.1002/jhet.36
- Bellina, F., & Rossi, R. (2006). Syntheis and biological activity of pyrrole, pyrroline, and pyrrolidinederivatives with two aryl groups on adjacent positions. *Tetrahedron*, 62, 7213-7256. http://dx.doi.org/10.1016/j.tet.2006.05.024
- Boyer, J. H., & Selvarajan, R. (1969). Photolysis of vic-triazole. *Tetrahedron Lett.*, 10, 47-50. http://dx.doi.org/10.1016/S0040-4039(01)97649-x
- Burgess, E. M., Carithers, R., & McCullagh, L. (1968). Photochemical decomposition of 1H-1,2,3-triazole derivatives. J. Am. Chem. Soc., 90, 1923-1924. http://dx.doi.org/10.1021/ja01009a056

- Dib, H., Al-Awadi, N., Ibrahim, Y., & El-Desoqui, O. (2003). Gas-phase thermolysis of benzotriazole derivatives. Part 2: Synthesis of benzimidozo[1,2-b]cinnolines, a novel heterocyclic ring system, by pyrolysis of benzotriazole derivatives. Kinetic and mechanistic study. *Tetrahedron*, 59, 9455-9464. http://dx.doi.org/10.1016/j.tet.2003.09.009
- Dib, H., Al-Awadi, N., Ibrahim, Y., & El-Desoqui, O. (2004). Gas-phase thermolysis of benzotriazole derivatives. Part 1-synthesis of α-N(1)- and N(2)-benzotriazolyl ketones and kinetic and mechanism of their gas-phase pyrolysis. *J. Phys. Org. Chem.*, *17*, 267-272. http://dx.doi.org/10.1002/poc.717
- Katritzky, A. R., Lan, X., Yang, J., & Denisko, O. (1998). Preparation and synthetic utility of N-substituted benzotriazole. *Chem. Rev.*, 98, 409. http://dx.doi.org/10.1021/cr941170v
- Kidwai, M., & Jain, A. (2011). Regioselective synthesis of 1,4-disubstituted triazoles using bis[(L)-prolinato-N,O]Zn complex as an efficient catalyst in water as a sole solvent. *App. Organom. Chem.*, 25, 620-625. http://dx.doi.org/10.1002/aoc.1816
- Kumar, D., Patel, G., & Reddy, V. B. (2009). Green and expeditious synthesis of 1,4-disubstituted 1,2,3-triazoles from terminal acytelene and in situ generated α-azido ketones. *Synlett*, *3*, 399-402. http://dx.doi.org/10.1055/s-0028-1087556
- Liebscher, J., Knoll, A., Ushmaev, A., Rolfs, A., Lohmann, D., Faust, G., . . . Scharfenberg, P. (1992). Ger. East, DD 298915 A5 19920319.
- Liu, M., & Reiser, O. (2011). A copper (1) isonitrile complex as a heterogeneous catalyst for azide-alkyne cycloaddition in water. *Org. Lett.*, *13*, 1102-1105. http://dx.doi.org/10.1021/ol103134c
- Mäerky, M., Schmid, H., & Hansen, H. (1979). Photoreaction of 1-alkylbenzotriazoles. *Helv Chim. Acta, 62*, 2129-2153. http://dx.doi.org/10.1002/hlca.19790620710
- Michell, G., & Rees, C. W. (1987). Photolysis of 1-aryl-1,2,3-triazoles; rearrangement via 1H-azirines. J. Chem. Soc., Perkin Trans, 1, 413-422. http://dx.doi.org/10.1039/p19870000413
- Ogata, Y., Takaji, K., & Hayashi, E. (1977). Photochemical Dimroth rearrangement of 1,4-diphenyl-5-aminoand 4-phenyl-5-anilino-1,2,3-triazoles. *Bull. Chem. Soc. Jpn., 50*, 2505-2506. htt://dx.doi.org/10.1246/bcsj.50.2505
- Rochais, C., Lisowski, V., Dallemagne, P., & Rault, S. (2004). First synthesis of methyl 3-amino-4-(het)aryl-1H-pyrrole-2-carboxylates as useful scaffolds in medicinal chemistry. *Tetrahedron*, 60, 2267-2270. http://dx.doi.org/10.1016/j.tet.2004.01.019
- Silvarajan, R., & Boyer, J. H. (1972). Photo-and thermal elimination of nitrogen from 4-phenyl-and 4,5-diphenyl-1,2,3-triazole. J. Heterocyclic Chem., 9, 87-90. http://dx.doi.org/10.1002/jhet.5570090114
- Wender, P. A., & Cooper, C. B. (1986). The photochemistry of 1-alkenylbenzotriazoles. Methodology for the synthesis of indoles. *Tetrahedron*, 42, 2985-2991. http://dx.doi.org/10.1016/S0040-4020(01)90589-7
- Wender, P. A., & Cooper, C. B. (1987). Indole synthesis based on triazole photochemistry: Total synthesis of 7-methoxymitosene. *Tetrahedron Lett.*, 28, 6125-6128. http://dx.doi.org/10.1016/S0040-4039(00)61825-7
- Zhang, W., Kung, C., & Yang, Q. (2010). Palladium-catalyzed one-pot synthesis of 4-aryl-1H-1,2,3-triazoles from anti-3-aryl-2,3-dibromopropanoic acids and sodium azide. *Synthesis*, *2*, 283-287. http://dx.doi.org/10.1055/s-0029-1217097

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).