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Abstract 

Experimentally determined phase diagram of palm kernel oil-based wax esters (PKOEs) nano-emulsion was 
selected to explore an atomic insight into the self-assembly of PKOEs nano-emulsion using molecular dynamics 
(MD) simulation technique. A model system including PKOEs molecules and nonionic Tween80 surfactant in 
aqueous solution was prepared. We used MD to explore a detail atomic insight into the self-assembly process of 
and the shape of the micelle formed. MD simulation was performed for 20 ns. MD results involving the radius of 
gyration, the solvent accessible surface areas, the number of clusters formed, and the moment of inertia analysis 
revealed that the model prepared showed a stable prolate ellipsoid shape.  

Keywords: palm kernel oil, wax ester, nano-emulsion, tween80, molecular dynamics simulation 

1. Introduction 

Inflammatory problems are related to skin disorders which can be controlled using non-steroidal 
anti-inflammatory drugs (NSAIDs) such as ibuprofen and diclofenac (Consola et al., 2007). NSAIDs are widely 
used as pain killers but they can be toxic if they consumed in high dosages. Oral therapy of NSAIDs, e.g. 
ibuprofen is limited due to the irritation and the ulceration of the gastro-intestinal mucosa (Al-Saidan, 2004). 
Therefore, they have been formulated in different topical and transdermal emulsions in order to reduce their side 
effects (Cho & Choi, 1998; Adrian et al., 2004; Cevc & Vierl, 2010). The nano size of nano-emulsions helps 
significantly solve the penetration problem of drug at stratum corneum (Swarnalatha et al., 2008). 
Nano-emulsions are dispersion of nano size droplets (20-200 nm) (Solans et al., 2005). Nano-emulsions can’t 
form spontaneously because of the surface tension at oil/water interface, thus an extra energy is usually required 
to break the bigger droplets to smaller ones (Mason et al., 2006). Currently, unsaturated palm oil-based wax 
esters (PKOEs) are widely used in the formulation of nano-emulsions for cosmetic and pharmaceutical 
applications (Salim et al., 2011, 2012). Palm oil-based wax esters are synthesized using enzymatic reactions 
(Sulaiman et al., 2005). PKOEs are a mixture of different esters which illustrate both lipophilic and hydrophilic 
properties.  

Additionally, theoretical studies of nano-emulsion of palmitate ester have illustrated the potential application of 
palm oil esters for transdermal delivery of NSAIDs (AbediKarjiban et al., 2012). They selected two different 
compositions of palmitate ester and Tween80 surfactant molecules in water with and without diclofenac acid 
from an experimentally determined phase diagram. They found a prolate-like shape for both systems, while 
adding the hydrophobic diclofenac produced a more compact structure. Molecular dynamics (MD) simulation 
technique is used to predict the structure and dynamics of the self-assembled structures for many years. MD can 
effectively simulate the molecular systems at atomic details using selected force fields based on Newton’s 
second law of motion (Van Gunsteren et al., 2008). In MD, atoms and molecules can interact for a selected 
period of time and produce an atomic detail of the dynamics of atoms involved. The traditional MD simulation 
calculations have been extensively carried out to explore the self-assembly process in surfactant molecules such 
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as octyl glucoside (Bogusz et al., 2000, 2001), C12E4 in β-cyclodextrin (Cunha-Silva & Teixeira-Dias, 2002), 
sodium dodecyl sulfate (SDS) (Bruce et al., 2002), and sodium octanoate (DeMoura & Freitas, 2004, 2005).  

Abdul Rahman et al. (2009) reported the MD simulation calculations of palm oil-based esters (POEs) 
nano-emulsions according to experimental results. They selected a composition of water/palm oil ester/span20 
with a ratio of 75:5:20 and carried out MD calculations. They got a spherical micelle in which the palm oil ester 
molecules were surrounded by nonionic Span20 surfactants. In another study by Abdul Rahman et al. (2010), a 
model consisted of oleyl oleate ester with a mixture of nonionic Span20 and Tween80 molecules was simulated 
in aqueous solution to find the structural properties of the aggregated structures formed. Their MD simulation 
results showed a cylindrical shape in which the oleyl oleate/Tween80 system was more compact compared to the 
oleyl oleate/Span20 model. Both Span20 and Tween80 are among very commonly used nonionic surfactants in 
nano-emulsion preparation. Here, a model system containing palm kernel oil-based wax ester and Tween80 has 
been explored using all-atom level MD simulations calculations based on our previously reported experimental 
results (Salim et al., 2012). MD was utilized to give a detail insight into palm kernel oil-based wax esters 
self-assembly and the shape of the aggregates formed.  

2. Method 

Palm kernel oil-based wax ester (PKOEs) is consisted of oleyl caprylate (7.65%), oleyl caprate (6.69%), oleyl 
laurate (50.08%), oleyl myristate (11.53%), oleyl palmitate (3.78%), oleyl stearate (1.49%), oleyl oleate 
(11.42%), and oleyl linoleate (3.15%) (Gunawan et al., 2005). A spot from the isotropic region of ternary phase 
diagram with a ratio of 75:5:20 containing Water:PKOEs:Tween80 was chosen to calculate the total number of 
molecules (Salim et al., 2012). Since the actual number of molecules was very large according to our 
calculations, in order to save the MD simulation time, the total number of molecules was divided by the lowest 
number of molecule obtained. Only main esters including oleyl oleate, oleyl myristate and oleyl laurate were 
selected for MD calculations. The model prepared was consisted of 2 oleyl oleate, 2 oleyl myristate, 10 oleyl 
laurate, and 30 molecules of Tween80.  

All molecular structures were geometry optimized using WinGAMESS (Schmidt et al., 1993) by applying 
Density Functional Theory (DFT) based on Becke’s three-parameter hybrid functional method (B3LYP) 
followed by optimization of the molecules at 6-31G level of theory. MD simulations were performed using 
GROMACS version 3.3.2 (Lindahl et al., 2001; Van der Spoel et al., 2005) using Optimized Potential for Liquid 
Simulation-All Atom (OPLS-AA) force field (Jorgensen et al., 1996). The randomly placed starting structure 
was prepared using Packmol (Martinez & Martinez, 2003). Later on, the model obtained was placed into a 1000 
nm3 cubic simulation box using SPC water model.  

Energy minimization was performed using the steepest descent and conjugate gradient techniques and it 
continued until the energy converged to the maximum force smaller than 50 kJ.mol-1.nm-1. The minimized model 
was then underwent 1 ns of pre-equilibration using isobaric-isothermal ensemble (NPT) followed by a 20 ns of 
MD production simulation in a canonical ensemble (NVT). The integrating timestep was set at 2 fs and periodic 
boundary condition was applied. Temperature kept constant at 300K using Berendsen coupling while the 
pressure turned off during production simulation (Berendsen et al., 1984). Particle Mesh Ewald (PME) method 
was used to control the electrostatics interactions with a cut-off value of 0.9 nm (Essman et al., 1995). The 
cut-off value for van der Waals (VDW) short range forces was also set at 0.9 nm in order to correlate with 
electrostatic interactions calculations computed during neighbour searching. The coupling time was 0.1 ps and 
all-bonds were constraints using LINCS algorithm (Hess et al., 1998).  

3. Results and Discussion 

Emulsions exhibit a size distribution rather than a fixed size at equilibrium (Maillet et al., 1999; Konidala et al., 
2006). The aggregation of the Tween80 and PKOEs molecules can be further explained using radius of gyration 
(Rg) results to find the compactness of the aggregates obtained. Figure 1 shows the fluctuation of Rg as a 
function of simulation time. From Figure 1, at 0 ns, the total Rg of the system was 3.92±0.05 nm and it reduced 
to 3.08±0.10 nm at the end of simulation. However, the biggest compactness was detected from 16 to 17 ns with 
an average value of 2.49±0.05 nm. The big fluctuations from 10 ns onward until the end of simulation could be 
as a result of periodic boundary condition.  

We calculated the size of the aggregate formed by computing the average diameter of the aggregate at the end of 
the simulation using VEGAZZ program (Pedretti et al., 2004). The average diameter of the aggregate formed 
was 5.78±0.05 nm compared to which it was approximately consistent with experimentally measured value of 
6.03±0.05 nm (Salim et al., 2012). The snapshot pictures of PKOEs and Tween80 surfactant molecules in the 
simulation box are shown in Figure 2(a) to Figure 2(e). The water molecules were removed from pictures for 
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Figure 4 shows the solvent accessible surface area (SASA) fluctuation as a function of time. The SASA analysis 
was done by using g_sas tool in GROMACS version 3.3.2 which computes hydrophobic, hydrophilic and total 
solvent accessible surface area. The average initial values of the hydrophobic, hydrophilic and the total SASA 
were 427.30±3.80 nm2, 64.20±1.20 nm2, and 491.40±3.80 nm2, respectively. A drastic decrease was observed for 
the hydrophobic and the total SASA until 3 ns and then it remained more or less constant until the end of 
simulation. The minimum value of SASA was detected around ~18 ns with an average value of 171.00±1.20 nm2 
for the hydrophobic part and 202.40±1.20 nm2 for the total accessibility where the most compact aggregate was 
detected. Our SASA results may propose that the self-assembly of the PKOEs esters and Tween80 surfactant 
molecules could be mainly due to the hydrophobic interaction resulting in from the amphiphilic characteristics of 
both esters and nonionic surfactant molecules. 

4. Conclusion 

Palm kernel oil-based nano-emulsion formulation can be a suitable alternative for transdermal delivery of active 
ingredients such as NSAIDs. These kinds of formulations can be used as carriers for the delivery of NSAIDs by 
removing the adverse effects of drug due to the oral therapy showed experimentally (Salim et al., 2011, 2012). We 
performed all-atom level MD simulations of the model Water, PKOEs, and Tween80 provided by our 
experimental groups to explore how can the self-assembly of nano-emulsions containing palm kernel oil wax 
esters and nonionic Tween80 surfactants proceed in aqueous solution and what is the shape of aggregate formed. 
Our structural analysis showed a stable prolate ellipsoid shape at the end of MD simulation. From our results, it can 
clearly be seen that the self-assembly of the esters and surfactants might be mainly due to the hydrophobic 
interaction due to the amphiphilic characteristics of both esters and surfactant molecules. 
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