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Abstract 

ZnO/γ-Fe2O3 nanocomposite was synthesized via simple precipitation. The synthesized nanocatalysts underwent 
heat treatment at 450 oC for an hour. The characteristics of the nanocomposite were investigated by XRD, TEM, 
and BET surface area measurement. Zeta potential analysis was used to examine the surface charge properties of 
the nanocatalysts. The synthesized nanocomposite has an average particle size of 11 nm and a surface area of 20 
m2 g-1. The potential of ZnO/γ-Fe2O3 as a photocatalyst was evaluated by photodegrading chlorophenoxyacetic 
acids (PAA, 2,4-D, 2,4,5-T and 4CA). The decomposition of chlorophenoxyacetic acids by ZnO/γ-Fe2O3 
followed 4CA > 2,4,5-T ≈ 2,4-D > PAA. The result indicates the applicability of ZnO/γ-Fe2O3 nanocomposite as 
a photocatalyst in removing organic pollutants in wastewater. 
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1. Introduction 

Rapid industrialisation has resulted in, among other things, problems with water pollution. The discharge of 
wastewater and chemical spillage into water channels has exacerbated the water quality crisis (Richardson, 2008; 
Wintgens, Salehi, Hochstrat, & Melin, 2008). Although many conventional methods have been applied in 
removing organic contaminants, those methods do not lead to total mineralisation of the pollutants. Moreover, 
further treatment is needed since the methods employed are unable to convert the pollutants into harmless 
products such as CO2 and H2O, which indirectly increases the operational cost (Allegre, Maisseu, Charbit, & 
Moulin, 2004; Gaya & Abdullah, 2008; Lu, Zhang, Ma, & Chen, 2009; Padmanabhan et al., 2006; Yang & 
Cheng, 2007). Therefore, the development of an efficient wastewater treatment solution is imperative. 

Semiconductor photocatalysis has received increased attention due to its inherent ability to lead to complete 
mineralisation of organic carbon into carbon dioxide and water (Erquez & Pichat, 2006; Kaneco, Itoh, 
Katsumata, Suzuki, & Ohta, 2009; Kaniou, Pitarakis, Barlagianni, & Poulios, 2009; Pera-Titus, García-Molina, 
Baños, Giménez, & Esplugas, 2004; Rao, Sivasankar, & Sadasivam, 2005; Uddin, Hasnat, Samed, & Majumdar, 
2007) without a mass transfer. Moreover, this process can be performed under ambient conditions using 
atmospheric oxygen as the oxidant (Chatterjee & Dasgupta, 2005). 

One of the major drawbacks in semiconductor photocatalysis is the recombination of photogenerated holes (h+) 
and electrons (e-). This recombination step lowers the quantum yield and wastes energy. Therefore, the e--h+ 
recombination process should be inhibited to ensure efficient photocatalysis. Coupled semiconductors have been 
proven to enhance the charge separation of electron-hole pairs, which increases the lifetime of the charge carriers 
and consequently reduces the recombination of electron-hole pairs (Serpone, Maruthamuthu, Pichat, Pelizzetti, 
& Hidaka, 1995). This is based on the fact that the photogenerated electrons can flow from one semiconductor 
with a higher to a lower conduction band minimum. Under such conditions, the separation of electron-hole pairs 
was promoted while keeping reduction and oxidation reactions at two different sites (Peng, Xie, Lu, Fan, & 
Wang, 2010; Shang et al., 2009; Wang et al., 2009). As a result, the efficiency of semiconductors improved (Jing, 
Xu, Sun, Jing, & Cai, 2001; Lin, Wu, Zhang, & Pan, 2009; Liu, Ye, Xiong, & Liu, 2010; Vaezi, 2008; Zheng et 
al., 2009). 

The widespread use of chlorophenoxyacetic acids as herbicides in agriculture has raised public concern due to 
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the accumulation of disposed residues in natural waters (Bucheli, Grüebler, Müller, & Schwarzenbach, 1997). 
There have been many studies on the removal of chlorophenoxy herbicides using titanium dioxide (Bahnemann, 
Muneer, & Haque, 2007; Giri, Ozaki, Ishida, Takanami, & Taniguchi, 2007; Kamble, Sawant, & Pangarkar, 2006; 
Singh, Saquib, Haque, & Muneer, 2007; Tanaka & Reddy, 2002) Very little work involved ZnO (Djebbar & 
Sehili, 1998). Since ZnO has almost the same band gap energy (3.2 eV) as TiO2, its photocatalytic capability is 
anticipated to be similar to that of TiO2. Moreover, ZnO is relatively cheaper compared to TiO2 whereby the 
usage of TiO2 and platinum catalyst are uneconomic for large scale water treatment operations (Daneshvar, 
Salari, & Khataee, 2004). The greatest advantage of ZnO over TiO2 is the ability to absorb a wide range of solar 
spectrum (Behnajady, Modirshahla, & Hamzavi, 2006). Based on these factors, we synthesized ZnO/γ-Fe2O3 and 
evaluated its potential as photocatalyst. To our best knowledge, no works have been carried out by ZnO/γ-Fe2O3 
on the removal of the selected chlorophenoxyacetic acids. In this paper, ZnO/γ-Fe2O3 nanocomposites were 
obtained via precipitation. The characteristics of the resulting catalysts and their efficiency in degrading 
chlorophenoxyacetic acids were studied. The ease of degradation of chlorophenoxy herbicides by ZnO/γ-Fe2O3 
was also studied. 

2. Method 

2.1 Reagents and Apparatus 

Zinc acetate dihydrate (Zn(CH3COO)2·2H2O), ammonia solution (25% v/v, NH3·H2O) and 
4-chlorophenoxyacetic acid (C8H7ClO3) were obtained from Merck. Iron acetate (Fe(CH3COO)2) and  
phenoxyacetic acid (C8H8O3) were purchased from Aldrich. 2,4-dichlorophenoxyacetic acid (C8H6Cl2O3) and 
2,4,5-trichlorophenoxyacetic acid (C8H5Cl3O3) were obtained from Fluka. All the chemicals were used without 
any purification. Deionized water was used throughout the study. 

2.2 Synthesis and Characterization of ZnO/γ-Fe2O3 Nanocomposite 

0.01 mole of Zn(CH3COO)2·2H2O and 0.001 mole of Fe(CH3COO)2 were dissolved in 100 mL deionized water 
at room temperature. Ammonia solution was added drop-wise into the zinc-iron solution with vigorous stirring to 
ensure homogenous formation of precipitate. The precipitate was centrifuged, washed with deionized water and 
oven-dried overnight at 110 oC. The resulting powder was then calcined at 450 oC for an hour in a box furnace 
(Carbolite, CWF 1200). 

The obtained products were characterized by XRD (Shimazdu XRD-6000 Diffractometer), TEM (Hitachi 7100) 
and BET surface area (Autosorb AS-1, Quantachrome). ImageJ, a free software package was used to measure the 
particle size of the catalyst based on TEM micrographs while SPSS software (IBM) was applied in constructing 
the particle size distribution histogram. The band gap of the synthesized catalysts was determined by UV-Vis 
diffuse reflectance spectrometry. The surface charge of ZnO/γ-Fe2O3 was measured by a zeta potential analyzer 
(Zetasizer Nano series, Malvern Instruments). 

2.3 Photodegradation Experiments  

The photodegradation efficiency of the synthesized ZnO/γ-Fe2O3 nanocomposite was evaluated by 
photodegrading chlorophenoxyacetic acids in a photoreactor under 6 W UV-A irradiation (365 nm, Hitachi). In a 
typical experiment, appropriate amounts of photocatalyst were suspended into 1 L solution of phenoxyacetic acid 
in a photoreactor. Where required, the pH of the solution was adjusted by the addition of HNO3 or NaOH. The 
solution was stirred for 15 min at 280 rpm to attain adsorption equilibrium prior to irradiation. During irradiation, 
agitation was maintained by a magnetic stirrer and air was bubbled into the reaction medium to ensure a constant 
supply of oxygen (2 L min-1). Other factors such as temperature and light intensity were held constant. 5 mL 
samples were withdrawn at regular time intervals for 4 hours and were immediately filtered by 0.45 μm cellulose 
nitrate filters to remove catalyst particles. The concentration of chlorophenoxyacetic acids in test samples was 
determined by a Perkin Elmer Lambda 35 UV-Vis spectrophotometer. 

3. Results 

3.1 Characterization of ZnO/γ-Fe2O3 Nanocomposite 

Figure 1 depicts the XRD patterns of the synthesized ZnO/γ-Fe2O3 nanocomposite. It can be seen that the XRD 
patterns of the ZnO/γ-Fe2O3 exhibit the typical pattern of hexagonal ZnO (JCPDS card no.: 36-1451) and cubic 
γ-Fe2O3 (JCPDS card no.: 39-1346). No other impurity peaks were detected. 
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Figure 1. XRD patterns of ZnO/γ-Fe2O3 nanocomposite 

 

Figure 2(a) is the TEM micrograph of ZnO/γ-Fe2O3. The nanoparticles were spherical with an average size of 11 
nm, as determined from the particle size distribution histogram (Figure 2(b)). The surface area of the 
ZnO/γ-Fe2O3 nanocomposite was 20 m2 g-1. This agrees with TEM analysis, where small particle sizes result in a 
large surface area. The synthesized ZnO/γ-Fe2O3 catalyst has band gap energy of 3.11 eV (Figure 3). In order to 
study the surface properties of the ZnO/γ-Fe2O3 nanocomposite, the electrokinetics of the composite were 
measured as zeta potentials as a function of pH.  The pH of point of zero charge (pHzpc) of the nanocatalyst was 
7.3, indicating that the catalyst surface is positively charged below pH 7.3 and is negatively charged when the 
pH value is greater than 7.3 (Figure 4). 

 

(a) (b)

Figure 2. TEM image and particle size distribution histogram of ZnO/γ-Fe2O3 nanocomposite 
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Figure 3. Band gap energy plot of ZnO/γ-Fe2O3 

 

 
Figure 4. Zeta potential curve of ZnO/γ-Fe2O3 as a function of pH 

 
3.2 Photodegradation Studies 

3.2.1 Preliminary Experiments 

In order to validate the significant role of photocatalysis (UV/ZnO/γ-Fe2O3/ chlorophenoxyacetic acids) in the 
removal process, photolysis (UV/chlorophenoxyacetic acids) and adsorption (ZnO/γ-Fe2O3/ chlorophenoxyacetic 
acids) was performed as background experiments. The removal percentage of chlorophenoxyacetic acids was 
summarized in Table 1. It can be seen that there is no noticeable change in the concentration of 
chlorophenoxyacetic acids either in photolysis or adsorption test except for photocatalysis. Thus, there is a 
synergistic effect between the ZnO/γ-Fe2O3 catalyst and UV irradiation for the photodegradation process to work 
effectively. 
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Table 1. Removal of chlorophenoxyacetic acids under various experimental conditions 

Pollutant Percentage of removal (%) 

Photolysis Adsorption Photocatalysis

2,4-D 0.97 1.98 55.29 

2,4,5-T 0.48 2.90 57.00 

PAA 1.40 3.24 47.17 

4CA 2.86 2.73 59.43 

Experimental conditions: Photocatalyst loading = 0.20 g L-1, pollutant concentration = 20 mg L-1. 

 

3.2.2 Effect of Photocatalyst Loading 

The effect of ZnO/γ-Fe2O3 dosage on the removal of chlorophenoxyacetic acids was examined at an initial 
concentration of 20 mg L-1. A series of experiments were performed while varying only the amount of 
photocatalyst from 0.20 to 0.60 g (Figure 5). The percentage of photodegradation initially increased with the 
amount of catalyst loaded and then decreased beyond optimum mass. This phenomenon is based on the fact that 
the increase in catalyst dosage also increases the total active surface area and the number of reaction sites (L.Wei, 
Shifu, Z. Wei, & Sujuan, 2009). As a result, the number of hydroxyl and superoxide radicals increases as well, 
which facilitates the degradation of the pollutant. Thus, the degradation percentage is enhanced. However, a 
reduction in photodegradation was observed when the photocatalyst dosage went beyond the optimum 
concentration (0.4 g L-1 for 2,4-D and 2,4,5-T and 0.5 g L-1 for PAA and 4CA). This may be due to the opacity of 
the solution, reducing UV light penetration, which consequently reduces degradation of the pollutant (Pardeshi 
& Patil, 2008). Furthermore, the low percentage of degradation may due to the agglomeration of ZnO/γ-Fe2O3 
which causes a reduction in catalyst surface area available for light and pollutant adsorption and suppresses the 
generation of hydroxyl radicals (Daneshvar et al., 2004). 

 

 

Figure 5. Effect of ZnO/γ-Fe2O3 dosage on the degradation percentage of chlorophenoxyacetic acids 
 

3.2.3 Effect of Substrate Concentration 

The influence of pollutant concentration on the degradation rate of the chlorophenoxyacetic acids was studied in 
the range of 10 to 50 mg L-1 at their respective optimum catalyst dosages. The rate of reaction is given by: 

r1=-dC/dt=k1C                                      (1) 

where r1, C and k1 are the rate of reaction, the concentration of chlorophenoxyacetic acids and the first-order rate 
constant, respectively. Integration of Equation 1 gives: 
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ln(C0/C)=k1t                                       (2) 

where Co is the initial concentration of the chlorophenoxyacetic acids and t is irradiation time. 

The first-order rate constant (k1) is determined from the slope of the linear plots of ln (C0/C) versus irradiation 
time, t. The first-order rate constant, k1 and correlation factor, R2 values are shown in Table 2. The high value of 
R2 indicates the degradation of chlorophenoxyacetic acids follow first-order kinetics. The rate of reaction 
increased with increasing chlorophenoxyacetic acid concentration up to the optimum concentration and then 
decreased at higher concentrations (Figure 6). This may be due to the screening effect of the pollutant molecules, 
which reduced light penetration of the solution. Moreover, the generated intermediates may also compete with 
the pollutant molecules for the hydroxyl radicals. Thus, the photodegradation efficiency reduced as the substrate 
concentration increased (Khataee & Zarei, 2011). Additionally, the active sites are also covered by adsorbed 
pollutant molecules and intermediates that can reduce hydroxyl radical generation (Konstantinou & Albanis, 
2004). Therefore, the concentration of hydroxyl radicals is insufficient to photodegrade the pollutants at higher 
concentrations. Another possibility is that the catalyst dosage, light intensity and irradiation period are constant 
as the initial concentrations of pollutants increases. Thus, the number of hydroxyl radicals formed on the catalyst 
surface is also constant. Hence, the hydroxyl radicals available to degrade substrate molecules would decrease at 
higher pollutant concentrations leading to a decrease in degradation. Another possible factor that could lead to 
the above phenomena is the competition between adsorbed pollutant molecules and water molecules for the 
photogenerated holes (Gaya & Abdullah, 2008). 

 

Table 2. First-order rate constant, k1 and R2 values of various initial chlorophenoxyacetic acids concentrations 

Concentration 

(mg L-1) 

2,4-D 2,4,5-T PAA 4CA 

k1 R2 k1 R2 k1 R2 k1 R2 

10 6.5 0.9896 8.0 0.9684 7.3 0.9960 10.1 0.9959 

20 4.5 0.9861 4.6 0.9881 3.8 0.9907 5.6 0.9968 

30 2.5 0.9831 2.7 0.9811 2.6 0.9942 4.5 0.9837 

40 1.8 0.9834 2.1 0.9983 1.9 0.9962 3.7 0.9966 

50 1.5 0.9866 1.7 0.9940 1.5 0.9922 2.8 0.9860 

 

 

Figure 6. First-order rate of chlorophenoxyacetic acids at different concentrations 
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3.2.4 Effect of Initial pH 

The influence of initial pH levels on the degradation performance of chlorophenoxyacetic acids was investigated 
at pH 5 to 10 (Figure 7). The results indicated that the photodecomposition rates of the chlorophenoxyacetic 
acids were low at pH 5 due to a substantial loss of ZnO.  A maximum degradation rate was observed at pH 7 
and further increases in pH resulted in a lower removal efficiency. The pKa of 2,4-D, 2,4,5-T, PAA and 4CA is 
2.64, 2.88, 3.12 and 3.56, respectively. Therefore, the chlorophenoxyacetic acids are negatively charged above 
their respective pKa values. As expected, the pH that shows optimal degradation must fall in between pKa < pH < 
pHzpc, due to the enhanced electrostatic interaction among the anions of the chlorophenoxyacetic acids and the 
positively charged catalyst surface (Daneshvar, Aber, Seyed-Dorraji, & Khataee, 2007). Above pH 7, the 
repulsive force between the negatively charged catalyst surface and the hydroxyl ions reduces the formation of 
hydroxyl radicals and consequently decreases the degradation rate (Qamar, Muneer, & Bahnemann, 2006). Is it 
notable that the hydroxyl radicals might act as a scavenging agent at high pH levels, which inhibits its reaction 
with the pollutant substrate (Davis & Huang, 1989). Hence, low removal percentage was observed at pH 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Effect of initial solution pH on the degradation rate of chlorophenoxyacetic acids 

 

3.2.5 Degradation of Chlorophenoxyacetic Acids: A Comparison Study 

Figure 8 shows the chemical structures of PAA, 2,4-D, 2,4,5-T and 4CA. Among the parameters studied, the 
percentage of photodegradation is in the following order: 4CA > 2,4,5-T ≈ 2,4-D > PAA. All chlorinated 
phenoxyacetic acids were degraded more than PAA. The corresponding byproducts of the reaction detected by 
UPLC were 4-chlorophenol, 2,4,5-trichlorophenol, 2,4-dichlorophenol and phenol, respectively. This indicates 
that the degradation process is driven by hydroxyl radicals. The attack of •OH on the CO position at the aromatic 
ring of PAA is not favorable, due to the stability of the benzene ring hence resulting in a low percentage of 
degradation. The present of chlorine, an ortho- and para- directing deactivators, will cause the •OH to attack the 
CO position of benzene ring, which is at the para position of the molecule in the case of 4CA. Conversely, 4CA 
was found to be the most degraded molecule among the studied chlorinated phenoxyacetic acids. Therefore the 
hydroxylation is the first elementary step which precedes the dissociation of chlorine atoms which is in 
agreement with Tang and Huang (1996). The increase in the number of chlorine atoms in the aromatic ring 
resulted in decreased degradation due to the steric effect. Additionally, the symmetrical and non existence of 
steric effect of 4CA may also contribute to the higher percentage of degradation (Kluson et al., 2008). 
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Figure 8. Chemical structure of (a) PAA, (b) 2,4-D, (c) 2,4,5-T and (d) 4CA 

 

4. Conclusion 

The highly photoactive ZnO/γ-Fe2O3 catalyst was successfully synthesized via precipitation followed by 
calcination at 450 °C for an hour. The photocatalyst produced was nearly spherical, has a surface area of 20 m2 

g-1
, an average particle size of 11 nm and a point of zero charge at pH 7.3. The efficiency of the synthesized 

ZnO/γ-Fe2O3 as a photocatalyst in photodegrading chlorophenoxy herbicides from aqueous solutions under UV 
irradiation increased with increasing mass of ZnO/γ-Fe2O3 up to an optimum loading but decreased at higher 
initial concentrations of the herbicides. The highest degradation percentage of chlorophenoxyacetic acids was 
achieved at pH 7. The ease of degradation of chlorophenoxyacetic acids was in the following order: 4CA > 
2,4,5-T ≈ 2,4-D > PAA. Therefore, ZnO/γ-Fe2O3 nanocomposites have potential use in removing 
organic-polluted wastewater. 
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