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Abstract 

Iron depositions, one of the non-transferrin-bound iron (NTBI), are frequently observed for the patients with 
thalassemia, hemochromatosis and other iron-overloading disorders. In this article, we have pointed out that 
zinc(II) ion and hydrogen peroxide play a critical role in the formation of the iron deposition, and that the 
formation of iron deposition by zinc(II) ion should be one of the important method to protect the oxidative stress 
by water-soluble NTBI. This implies that the zinc(II) ions contribute to depress the oxidative stress by NTBI. 

Keywords: iron deposition, NTBI, Zinc(II) ion, hydrogen peroxide, antioxidant 

1. NTBI and Iron Deposition 

Plasma iron is normally bound to the iron transport protein transferrin. When excess chelates (amino acids 
derivatives, small peptides or citrate, etc.) are present in the plasma, the water-insoluble hemosiderin which 
contains polymeric iron(III) ions with oxo-bridges may dissolve with forming the water-soluble iron(III) chelates 
with amino-acids or citrates. These iron ions not associated with transferrin is generally termed as 
non-transferrin-bound iron (NTBI). NTBI is detected in the plasma of patients with thalassemia, 
hemochromatosis and other iron-overloading disorders, and is present at concentration up to 10 M (Dresow, 
Peterson, Fischer, & Nielsen, 2008; Fernaeus & Land, 2005; Gaeta & Hider, 2005). It should be noted here that 
NTBI has been thought to play an important role in iron induced cell damage with resultant peroxidation of cell 
membrane lipids and other biomolecules, and such oxidative damage is implicated as an important contributor in 
the pathogenesis of cancer, cardiovascular disease, aging and neurodegenerative diseases. 

Despite numerous studies over the last 30 years since plasma NTBI was first postulated to exist, it is still poorly 
characterized. The inability thus far to characterize NTBI most likely reflects both its heterogeneous nature and 
the likelihood that the different forms will exist and vary with the concentration of the chelates such as 
amino-acids, peptides, and citrate, etc. At present, one of the most definitely definable NTBI should be iron 
deposition, which is frequently observed for patients of hemochromatosis and other iron-overloading disorders, 
and aceruplasminemia (Yoshida et al., 2000). The structure and role of the iron deposition is not known at 
present, which at present is only considered to be a signal to tell that the human body is iron-overlord state. In 
this article, we will demonstrate the several chemical models for NTBI and for the iron deposition, and propose 
the important role of zinc(II) ions to give iron deposition. 

2. Formation and Structural Properties of Iron Deposition 

As demonstrated above, the structure of the iron deposition is not clear at present. Here, I would like to propose 
that structure of the iron deposition should be similar to those of the models for hemosiderin, the structure of one 
of the hemosiderin models being illustrated in Figure 1 (Hearth & Powell, 1992). 

Above compound is the water-insoluble iron(III) complex with H3(hida) (for the structure of this chelate, see 
Figure 2), and it should be noted here that 1) central seven iron(III) ions are surrounded by ten oxo anions (O2

2-), 
2) six oxo anions among the ten are coordinated to three iron atoms, and 3) the central part of this compound is 
the aggregation of eight di--oxo-diiron(III) species. These are implying that the oxo anions play an important 
role for the formation of the model of hemosiderin, and also for the formation of iron deposition. When excess 
H3(hida) was added to the solution containing above water-insoluble compound, the solid dissolved to form a 
clear solution, and from the solution the following compound, [Fe2(hida)2(H2O2)2] was obtained (Hearth & 
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Powell, 1992), the structure of this complex being illustrated in Figure 3. 

 

 
Figure 1. Structure of model compound of hemosiderin with H3(hida). In the center circle (Fe, black: oxygen, 

red), seven iron(III) ions are surrounded by ten oxo anions forming the aggregation of eight di--oxo-diiron(III) 
species 

 

 

Figure 2. The structures of the ligands cited in this paper 

 
Figure 3 clearly indicates that the exclusion of the oxo anions around the iron(III) ion leads to the formation of 
water-soluble species, which again supports that oxo anions are closely related with the formation of iron 
deposition. Similar facts are also observed for the case of H2(ida) chelate (see Figure 2). These facts are 
demonstrating that there is an equilibrium between the water-insoluble and water-soluble iron(III) species in the 
solution (see Scheme I), which is controlled by the concentrations of oxo-anion and chelates. Both the 
water-insoluble and water-soluble species are called as NTBI, but NTBI that play an important role in iron 
induced oxidative stress should be water-soluble ones (Nishida, 2009). 

 

 
                                      Scheme I 
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Scheme II 

 
3.2 Zinc(II) Species Act as OH－-Transporter to Give Iron Deposition 

We have found that deposition of the iron(III) hydroxide occurs readily on the aggregates of amyloid 
beta-peptide (A (1-40)) when zinc(II) chloride solution is added to the solution (pH=7.4) containing iron(III) 
compounds with (nta), (edda), and other amino acid derivatives, and A(1-40) (Okawamukai, Sutoh, & Nishida, 
2006). We have observed that the similar iron deposition has occurred on several proteins such as albumin or 
transferrin, indicating that iron deposition by zinc(II) ions are not specific for the amyloid proteins. 

It seems quite likely that the formation of iron deposition observed above proceeds according to the Scheme III: 
zinc(II) complex which contains hydroxide ion (OH－) (Nishino et al., 2006) approaches to the protein, where the 
iron(III) complexes bind with the protein through two-point interaction (Scheme III) (Nishida, Itoh, & Satoh, 
2007), and then the transfer of the hydroxide ion from the zinc(II) to the iron(III) ion occurs, to lead to the 
formation of di--oxo-iron(III) species, and finally to iron deposition as illustrated in Scheme II. In this reaction 
the zinc(II) ions are operating as OH－-transporter to give di--oxo-iron(III) species on the protein. Since the 
total zinc(II) concentration is relatively reduced compared with that of normal cases, and massive iron deposition 
are observed in the brain and on several organs such as kidney or spleen of the aceruplasminemia patients 
(Yoshida et al., 2000), it seems reasonable to assume that zinc(II) ions play an important role on the formation of 
the iron deposition in the aceruplasminemia patients. Since the formation of the iron deposition means the 
deletion of toxic NTBI from the plasma, we can consider that zinc(II) ions act as an antioxidant in the patients of 
several neurodegenerative disorders. Thus, the amyloid deposition which frequently observed for the 
Alzheimer’s patients, may be due to one of the antioxidative function by zinc(II) ion, which is consistent with 
the fact that amyloid deposits generally contain much quantities of iron(III) and zinc(II) ions (Bush, 2003). 

 
Scheme III 

 

4. Transferrin Rigorously Distinguishes and Recognizes the Structure of the Iorn(III) Chelates 

Transferrins are group of iron-binding proteins, that include serum transferrin, lactoferrin and ovotransferrin; 
they are all glycoproteins that have a molecular mass of about 80 kDa, and bind two Fe3+ per molecule with high 
affinity. Serum transferrin has a specific role as an iron transporter, delivering the bound iron to target cells via 
receptor-mediated endocytosis. But, the detailed mechanism of up-take of iron-ion from the solution by 
apo-transferrin remains unclear at present. 
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