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Abstract 
Reliability (or survival) functions based on the inverse Gaussian distribution are used to predict the probability 
of repair times expectable past a specified time period, and the probability of energy release past a stipulated 
magnitude, in two (separate) experimental chemical reactors. Such predictions serve for reaching decisions about 
future employ of the reaction system on a pilot or a commercial scale. The approach illustrates a cross 
fertilization of chemical reaction engineering/ technology and applied probability theory, and aims to increase 
appreciation of the latter among chemical scientists, engineers and technologists. 
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1. Introduction 
Since the description of the first- passage distribution of the Brownian motion (Tweedie, M. C. K., 1945, 1956), 
the inverse Gaussian (also called inverse normal or Wald) distribution was applied to widely different domains, 
e.g., life testing and product/device reliability studies, air born communication receiver performance, cardiology, 
hydrology, demography, linguistics, employment service, labour dispute resolution, and finance (Chhikara, R. S. 
& Folks, L. J., 1989a). Shown to serve as an approximate sample size distribution in sequential probability ratio 
tests (Wald, A., 1947), and with its statistical properties throroughly investigated (Tweedie, M. C. K., 1957a, 
1957b), the IGD has become a useful tool in describing distributions ranging from almost Gaussian to highly 
skewed. Its name has been stated (Wikipedia) to be misleading in the sense that, in contrast to the Gaussian 
distribution describing Brownian motion at a fixed time, IGD describes the time-distribution of a Brownian 
motion with positive drift until a fixed positive level is reached.  

To the author’s knowledge, applications of IGD have not hitherto been indicated in the chemical reactor 
engineering (research) literature. Motivation for the current paper stems partially from reliability studies 
mentioned above, and partially from wind speed and energy studies (Chhikara, R. S. & Folks, L. J., 1989b; 
Bardsley, W. E., 1980), as a “philosophical” foundation for Illustration No.1(Section 3) and Illustration No. 2 
(Section 4), respectively. Due to the stated lack of direct experimental information, the numerical data employed 
in the two illustrations are posited for the sole purpose of showing the potential scope of IGD in the areas of 
interest, to raise the level of awareness of the subject matter, and to indicate the nature of experimental 
information required for the use of the described methods (the data were generated by careful consideration of 
quantitative examples in some of the cited references, e.g., Chhikara, R. S. & Folks, L. J., 1989). 

2. Theoretical Foundations 

In this section the mathematical apparatus for handling the two illustrations is briefly presented on the basis of 
pertinent literature on probability theory (e.g., Chhikara, R. S. & Folks, L. J., 1989c, 1989d; Weisstein, E. W., no 
date; Seshari, V., 1993; Evans, M. et al., 2000). Detailed derivations and proof of theorems, available in the cited 
sources, are omitted. 

2.1 The Reliability Function of the IGD 

In elementary terms, the reliability function R(x) = 1 - F(x) expresses the probability that a continuous 
time-elapsed-until-failure random variable X exceeds a specific value x: P[X ≥ x; x > 0]; F(x), the cumulative 
distribution function of X is the probability that failure will not occur up to time X = x. In general, R(x) can be 
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taken as a measure of survival of a random existence - variable X, hence R(x) is also called the survival function 
in the risk theory literature. In the specific case of IGD, it may be written as 

)()/2exp()()( 21 zzxR                             (1) 

where Φ is the standard Gaussian (normal) cumulative distribution function carrying location parameter (or 
mean) μ and scale parameter λ by its standard normal variables 
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2.2 Determination /Estimation of the Scale and Location Parameters 

In practical situations, the true (population) parameters μ and λ can only be approximately determined as μs and 
λs from sets of experimental observations called samples. The approximations considered here are the maximum 
likelihood estimate MLE, and the maximum variance unbiased estimate MVUE. 

2.2.1 The ML Estimates μs, λs and Rs(x) 

Given the experimental sample x1, x2, … xn, the parameter estimates are obtained as 
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Rs(x) is given by Eqs.(1), and (2) with μ and λ replaced by μs and λs, respectively. 

2.2.2 The MVU Estimate Rs(s) 

Following Chhikara, R. S. & Folks, L. J. (1989d) with some modification of symbols,  

);2,(]
)1(4

1[
2

);2;()(

;1)(

;0)(

x
s

xs

s

s

bntG
vn

n

n

n
antGxR

LxxR

UxxR














                 (5) 

where ν is a fixed value of random variable V ≡ (n-1)/λs denoting the sums in subsection 2.2.1 and G is the right 
tail area under the curve of Student’s t-distribution with degree of freedom (n-2). The x-dependent arguments in 
Eq.(5) are obtained as 
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The 0-1 limits are given by 
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2.3 Determining the Admissibility of the IGD for Fitting Experimental Data 

In applying the widely known Kolmogorov-Smirnov (K-S) test (e.g., Manukian, E. B., 1986; Blank, L., 1980; 
Lapin, L. L., 1990; Porkess, R., 21005a; Miller, L. H., 1956) the goodness of fit is determined by comparing the 
largest magnitude of difference between the reliability function and the cumulative staircase function arising 
from experimental data sets, to critical D*(n; α) values of the K-S statistic 
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at α level of significance. If Dmax > D*(n; α) the (null) hypothesis of good fit is rejected. Tables of the critical 
D-value are available in numerous literature sources, e.g., Porkess, R., 2005b; Miller, L. H., 1956; Lindley, D. V. 
& Scott, W.F., 1984; Powell, F. C., 1982; Beyer, W. H., 1966, 1968. The significant level α = 0.05 and the 
highly significant level α = 0.01 used routinely in conventional statistical testing of hypotheses has been 
progressively complemented (if not yet replaced) by the so-called P – value, i.e. the particular value of α at 
which Dmax computed in Eq.(9) becomes significant; rejection of the hypothesis of good fit thus requires 
essentially the (subjective) decision of the (presumably knowledgeable) experimenter. 

3. Ilustration No.1: Repair logistics for an Experimental Chemical Reactor 

An experimental reactor for studying the viability of a novel (proprietary) process is envisaged to have 
undergone a series of repairs, due to numerous temporary breakdowns caused by improper operating conditions, 
and various malfunctioning events. The condition for commissioning the reactor for further operation after 
twenty breakdowns shown in Table 1 in terms of normalized repair time units RTU ranging from 0.38 to 18.79 is 
stated as follows: if the probability of an RTU exceeding 25.00 is only 0.5 % (or less), further experiments 
would be carried out in the same reactor, otherwise further experimental work would be suspended. 

A preliminary (and somewhat superficial) evaluation of the observed RTU set, disregarding its 
skewed-to-the-right nature posits a normal distribution-based reliability function with sample mean 3.4475 and 
sample variance 17.3955 as population parameter estimates. The resulting probability of repair time units larger 
than 25 being about two in ten million (Rs = 2.3701 x 10-7), continued reactor operation was recommended. The 
experimental team questions the wisdom of ignoring skew, hence the validity of the decision, and upon an 
in-depth literature search, proposes the inverse Gaussian distribution to deal with the available experimental data, 
and proceeds with the required calculations as shown below. 

Since the true parameters are not known, they are replaced by parameters based on two powerful estimation 
methods: maximum likelihood, and minimum variance (Section 2.2). 

3.1 Maximum Likelihood-based Analysis 

The MLE are obtained via Eq.(3) and Eq.(4), respectively, and from Table 1, as μs = (60.17 + 7.68 + 1.14)/20 = 
3.4495; since summation in Eq.(4) yields 18.62112 – 20/3.4495 = 12.8232, it follows that λs = 19/12.8232 = 
1.4817. Combining Eqs.(1) and (2), the reliability function estimate can be written as 
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with values at the experimentally observed RTU shown in the third column of Table 2. The fourth column 
carrying corresponding values of the K-S statistic yields Dmax = 0.1430 which is considerably less than even 
D*(20, 0.20) = 0.2310. Hence, the hypothesis of the data coming from an inverse Gaussian population could be 
rejected only at an error larger than 20 %, and Eq.(10) can be admitted as a reliability function for reactor repair 
times. Its numerical value, Rs(25) ≈ 0.019, almost four times the stipulated 0.5 % probability limit, warrants 
against further use of the reactor. 

3.2 MVUE-based Analysis 

In accordance with Section 2.2.2, and since V = 12.8232, the Rs = 1 and Rs = 0 tresholds are computed as L = 
0.075 and U = 51.11, indicating “ab ovo” that the reliability function related to the observed data fall fully 
between the thresholds. Eqs.(6) and (7) yield consequently 

22 )4495.3(20)99.68(2336.44

)4495.3(9737.18






xxx

x
ax

                       (11) 

and 

22 )4495.3(20)99.68(2336.44

)9.04495.3(9737.18






xxx

x
bx

                      (12) 

leading, via Eq.(5) to the reliability function estimate 
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whose variation with the RTU is presented in Table 3. The K-S test similarly fails to reject the hypothesis of its 
admissibility with Dmax = 0.1482. The 0.6 % probability yielded by Rs(25) = 0.0060 indicates borderline lack of 
compliance with the 0.5 % criterion; if the criterion is to be strictly obeyed, the decision is the same as in the 
MLE-based analysis. 

4. Illustration No.2: Energy Distribution in an Experimental Chemical Reactor 

In a preliminary study of a chemical reaction system, where multiple processes occur simultaneously in the 
experimental reactor, the distribution pattern of energy released is believed by the experimenters to approximate 
closely an IGD. Prior theoretical considerations seem to point to location parameter (distribution mean) 3.5 and 
scale parameter 1.3, normalized with respect to a certain reference state. The (stipulated) reliability function in 
terms of the normalized (random) energy variable X = x: 

)]5.3/1(/3.1[1020.2)]5.3/1(/3.1[)( xxxxxR                  (14) 

satisfies a prior requirement that the probability of X ≥ 3.0 be at least 25 %, inasmuch as R(3) ≈ 0.302. 

Experimental verification is sought via four independent observation sets of energy releases measured in a group 
of ten identical reactors run under identical experimental conditions (e.g., initial temperature, run time, initial 
reactant composition and pressure); the ten reactors were operated during four equal but separate randomly 
chosen time periods. The observations, assembled in Table 4 in increasing order of the energy levels, are 
subjected to a modified conventional analysis of variance (ANOVA), called “analysis of reciprocals” (ANORE; 
Chhikara, R. S., & Folks, L. J., 1989f; Tweedie, M. C. K., 1957); with (null) hypothesis of the four populations 
having the same mean, given that they all have the same location parameter. The test statistic 
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is distributed approximately as the conventional Fisher-Snedecor F-statistic with degrees of freedom (k-1) and 
(n-k), respectively. The sample parameters in Eq.(15) are computed as 
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where n = n1 + n2 +…+nk is the total number of observations, and xij are the individual observations, i = 1,…,k; j 
= 1,…ni. The scale parameter estimate is obtained via Eq.(18): 
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With reference to Table 4, ni = 10; k = 4; n = 40; μs = 3.589, W = 4.3801/47.5549 = 1.1054, λs = 1.0341. Since 
the critical F-statistic with degrees of freedom k – 1 = 3, and n – k = 36: F(3;36) ≈ 1.432 at a 0.25 level of 
significance, rejecting the equality of the four means would carry at least a 25 % error. Divergence of the 
resulting reliability function estimate 
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from the a-priori stipulate R(x) is minimal. The theoretically posited μ = 3.5 and λ = 1.3 appear to be on solid 
grounds, at least in accordance with the available experimental observations. 

5. Discussion 

5.1 The Experimental Reactor in Section 3 

Although the MLE and MVUE approach produce, in general, very similar reliability functions with small 
divergence in predicting probabilities, weak inferences on either side of the criterion can ensue. Under less 
stringent performance criteria, however, identical conclusions would be reached. If, for instance, the 25-RTU 
threshold were set to 2 % or higher, both the MLE and MVUE method would favour continuation with the 
reactor of interest. Such calculations are necessary for setting thresholds by engineers, scientists and managers 
utilizing also their personal experience and professional judgment.  
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Admissibility of the inverse Gaussian distribution does not, in principle, exclude other distributions known to the 
literature on reliability analysis (e.g. Weibull, lognormal, exponential). Related to the more general field of 
model discrimination, this topic is beyond the scope of the current paper. 

5.2 The Experimental Reactor in Section 4 

In addition to the satisfied prior requirement P[X ≥ 3.0] ≥ 1/4, the third quartile Q3 estimates (defined as P[X ≤ 
Q3] = 3/4]): 3.74 via Eq.(14), and 3.55 via Eq.(19) are found to be slightly different. In a more advanced 
application of hypothesis testing, ANORE can also be applied to test the (null) hypothesis that the four 
population location parameters are equal. The test (Chhikara, R. S. & Folks, J. L., 1989g) is reminiscent of the 
conventional Bartlett test of homogeneity associated with ANOVA for the equality of population variances. 
Recalling Eq.(4), and defining and generalizing parameters 
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and V = v1 + v2 +…+vk, the modified Bartlett parameters are computed in the equal-size case n1 = n2 =…=nk = n; 
N = kn, as 
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if n1 = n2 =…= nk = n, thus N = kn. Since n = 10, k = 4, v1 = 7.2612, v2 = 15.4001, v3 = 6.8053, v4 = 4.1144; V = 
33.5810, Eqs.(21) and (22) yield M = 4.1537 and C = 1.0463, respectively. The M/C ratio is distributed 
approximately as a conventional chi-square variable with (k-1) degree of freedom. M/C = 3.97 being somewhat 
lower than the critical value χ2(3) = 4.11 at a 0.25 level of significance, rejecting the hypothesis of the 
commonality of location parameters, of which λs = 1.0341 is a valid estimate, would carry an about 25 % error. 

It is instructive to consider the results of a conventional ANOVA, and a conventional Bartlett’s test on the data 
in Table 4, i.e. if they were assumed to come from Gaussian populations. Comparison of the computed F = 1.874 
to the critical values F(3; 36) = 2.243 at α = 0.1, and F(3; 36) = 1.432 at α = 0.25 indicates that the (null) 
hypothesis of equal population means can be rejected at an about 17 % error, but Bartlett’s test with M/C = 16.39 
evokes a sound rejection of homogeneity (i.e. the equality of the four population variances), on account of its 
negligible error at about 0.1 %. These tests are standard topics in statistics textbook, hence omitted here.  

6. Concluding Remarks 

The material presented above, applied to two representative cases, has a much wider potential scope for chemical 
process scenarios, in general. It also represents a pattern for the cross fertilization of two major disciplines, and 
indicates how basic methods of applied probability theory can be useful in technologically important areas. In 
this respect, the paper is intended to whet the appetite of motivated chemical scientists and engineers. 
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Table 1. The number of normalized repair-time units (RTU) observed while operating the experimental reactor 
in Illustration No. 1, arranged in increasing order and frequency 

Frequency of 
occurrence 

Normalized RTU length, X 

1 
0.54; 0.61; 0.97; 1.15; 2.07; 2.53; 3.60; 4.14; 5.37; 5.75; 6.75; 7.90; 18.79; sum of 

observations = 60.17 

2 0.77; 3.07; sum of observations = 2(0.77 + 3.07) = 7.68 

3 0.38; sum of observations = 3(0.38) = 1.14 
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Table 2. MLE-based values of the reliability function and the K-S statistic at observed RTU values in Illustration 
No. 1 

Observation index, i xi Rs(xi) Di 

1 0.38 0.9270 - 0.0730 

2 0.38 0.9270 - 0.0230 

3 0.38 0.9270 0.0700 

4 0.54 0.8534 - 0.0034 

5 0.61 0.8216 - 0.0016 

6 0.77 0.7533 - 0.0033 

7 0.77 0.7533 0.0533 

8 0.97 0.6792 0.0292 

9 1.15 0.6218 0.0018 

10 2.07 0.4248 - 0.0752 

11 2.53 0.3628 - 0.1372 

12 3.07 0.3070 - 0.1430 

13 3.07 0.3070 - 0.0930 

14 3.60 0.2629 - 0.0871 

15 4.14 0.2303 - 0.0697 

16 5.37 0.1734 - 0.0766 

17 5.75 0.1599 - 0.0401 

18 6.75 0.1312 - 0.0188 

19 7.90 0.1062 0.0062 

20 18.79 0.0229 - 0.0271 

Dmax = 0.1430    (i = 12) 
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Table 3. MVUE-based values of the reliability function and the K-S statistic at observed values of RTU in 
Illustration No. 1 

i xi ax bx G(ax) G(bx) Rs(xi) Di 

1 0.38 - 1.8750 2.2928 0.9614 0.0170 0.9305 - 0.0695 

2 0.38 - 1.8750 2.2928 0.9614 0.0170 0.9305 - 0.0195 

3 0.38 - 1.8750 2.2928 0.9614 0.0170 0.9305 0.0305 

4 0.54 - 1.4419 1.9237 0.9167 0.0352 0.8529 0.0029 

5 0.61 - 1.3129 1.8206 0.8972 0.0427 0.8198 0.0198 

6 0.77 - 1.0889 1.6521 0.8547 0.0579 0.7497 - 0.0003 

7 0.77 - 1.0889 1.6521 0.8547 0.0579 0.7497 0.0497 

8 0.97 - 0.8998 1.5163 0.8073 0.0734 0.6742 0.0242 

9 1.15 - 0.7544 1.4334 0.7698 0.0844 0.6167 0.0167 

10 2.07 - 0.3354 1.2414 0.6294 0.1152 0.4205 - 0.1295 

11 2.53 - 0.2025 1.2056 0.5791 0.1218 0.4085 - 0.0915 

12 3.07 - 0.0761 1.1845 0.5299 0.1258 0.3018 - 0.1482 

13 3.07 - 0.0761 1.1845 0.5299 0.1258 0.3018 - 0.0982 

14 3.60 0.0280 1.1769 0.4890 0.1273 0.2582 - 0.0918 

15 4.14 0.1203 1.1777 0.4528 0.1271 0.2223 - 0.0777 

16 5.37 0.2971 1.1984 0.3849 0.1231 0.1617 - 0.0883 

17 5.75 0.3453 1.2082 0.3669 0.1213 0.1469 - 0.0531 

18 6.75 0.4621 1.2390 0.3248 0.1156 0.1152 - 0.0348 

19 7.90 0.5834 1.2806 0.2834 0.1023 0.0870 - 0.0130 

20 18.79 1.5128 2.0079 0.0738 0.0300 0.0194 - 0.0306 

Dmax = 0.1482    (i = 12) 
Table 4. ANOVA array for the reactor in Illustration No. 2 

Reactor index, j 
Observation set index, i 

1                                      2                  
3                                      4 

1 0.30 0.09 0.29 0.61 

2 0.54 0.42 0.30 1.46 

3 0.65 0.52 0.49 2.03 

4 0.89 0.69 0.53 2.14 

5 2.09 0.82 0.76 2.15 

6 2.65 1.06 1.18 4.74 

7 3.26 1.20 1.24 5.08 

8 6.30 1.63 1.33 6.21 

9 13.20 1.87 2.63 11.00 

10 19.26 9.19 7.58 25.18 

Mean, μsi 4.914 1.749 1.6330 6.060 

Variance 40.7797 7.1319 4.8531 54.4954 

Overall mean = 3.5890 


