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Abstract 

This study was prepared for a leading company, Miele GmbH, the global premium brand of domestic appliances 
and commercial machines in the field of laundry care, dishwashing and disinfection in Germany. The production 
line of Miele GmbH in Bielefeld, Germany was analyzed to develop a model that can be used for all the firms in 
the group. 

Dynamic programming models are widely used by companies to efficiently meet the demand for a variety of 
products. In a flow shop, each product has to be processed by a number of machines in synchronized lines. The 
production smoothing problems under the presence of setup and processing times vary among the products. The 
master production-inventory problem of Miele GmbH was divided into two sub-problems which were concerned 
with determining the batch sizes and production sequences of products, respectively. A dynamic programming 
procedure was developed to solve the batching problem for the current problem. A dynamic computational study 
for the first case was conducted so that the solution method is effective in meeting the goals of the firm and 
efficient in its computational requirements. 

Scientific problem –the firm has a problem of high logistics. Moreover, they want to decrease the cost of 
production in order to compete with their competitors. Their competitors start to make some of their production 
in low labour countries such as China. Miele is a special brand for upper level. However, they now have a more 
strict competition with new global players and one way to stay competitive in the market is to decrease the costs 
and find new market segments. 

The aim of the research –The dynamic programming algorithm is suggested to them to decrease the costs. The 
numbers of products are decreased to explain the algorithm. An example with calculations of this algorithm was 
explained in this study. The number of variables and constraints can be increased. After the logic of algorithm is 
understood, it can be applied many similar problems. The algorithm can be developed by using different 
software such as Java. Then, the variables and values of algorithm can be input for the algorithm and the results 
can be gotten in a short time.  

The object of the research – Inventory and Production mix projects.  

The methods of the research –Dynamic Programming 

Keywords: Dynamic programming, Batch size, JIT, Inventory, Production, Operation research 

1. Introduction 

With concept of globalization, trade barriers have been decreased, however the cost of different businesses 
increases. As a result, firms try to decrease the costs of material storage, warehouses, production and product 
distribution (Rimienė, 2007) Manufacturing industry is in transforming from the traditional high volume 
low-mix production to low volume high-mix production. The equipment used in the processes are worth millions 
of dollars, thus dedicating separate production lines to different products is not profitable. Therefore, the lines 
are operated as mixed-model production lines. The production runs are short enough to require several 
changeovers in a period of time. Different machines have different setup and processing times for different 
products.  

Rau et al, (2008) recently, numerous valuable studies have been devoted to the integrated production–inventory 
problem for supply chains. Most of them have considered the situation of constant demand; few have studied 
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other demand patterns. However, the demand rate with a time-varying pattern reflects the actual environment. 
Over the past two and a half decades, due to the phenomenon of product life cycle or boom-and-bust seasons, the 
demand pattern has been plausibly assumed to be a linear in production or inventory problems. In addition, a 
number of studies for a linear trend in demand have focused on replenishment or production policies for 
manufacturing systems; but, few have considered for supply chain application.  

The optimization programming models contain several hundreds of variables and constraints. After deciding 
which product and how many of them will be produced. The sensitivity analysis can be carried out and the 
variables range can be found or changed. (Kurlavicius, 2009) Optimization means flexibility and this flexibility 
can be provided with linear or dynamic optimization programming. We have used dynamic programming logic 
to find a solution for the problem.  

Finished and semi-finished products are stored in warehouse and it has no direct impact on production, but long 
time storing and not providing semi-finished products on time result in extra costs. (Rimienė, 2007) Storing 
semi-finished products in huge among machines and lines causes waiting and not using space well during 
production. The best way is to produce and send the semi-finished products to assembly lines in the firm. 
However, the firm has assembly lines in different firms for different products. They buy some parts from 
different suppliers in Germany and other countries. Moreover, they provide support for their suppliers. As a 
result, they need to control all steps of Supply Chain in a proper way. Dynamic Programming allows adding 
many constraints and this cannot be provided with existing model that they had used. They have used Economic 
Order Quantity with some changes to find batch-size in their production for each machine. 

Moreover, Miele GmbH wants to sustain its high quality brand image in the market, but cost is the main source 
of competition now. Consumers mainly prefer products with lower costs.  In the battle field of cost reduction, 
the firm is to decrease its all costs.  

2. Theoretical Background 

A literature review regarding the integrated production–inventory policy and linear trend in demand is as 
follows: 

Ghare and Schrader (1963) were the first to consider ongoing deterioration of inventory with constant demand. 
Banerjee (1986) developed a joint economic lot size model for a single-buyer, single-vendor system. Goyal 
(1988) generalized Banerjee’s model by relaxing the assumption of the lot-for-lot policy of the vendor. Hill 
(1989) derived a central-warehouse, multi-retailer model with shortage by using simulation. Lu and Posner 
(1994) introduced two heuristic procedures for the one-warehouse multi-retailer system. Ha and Kim (1997) 
made the analysis of integration between a buyer and a supplier by setting up the mathematical model in which 
the inventory cost of vendor is derived through a discontinuous saw-tooth inventory-level function. Wee and 
Jong (1998) studied the producer’s integration between multipart and finished product with multi-lot-size for 
deteriorating items. Rau et al. (2008) provided an integrated inventory model for a deteriorating item in a 
three-echelon supply chain environment. Rosenblatt and Lee (1986) and Porteus (1986) developed EMQ 
(Economic Manufacturing Quantity) models. They assumed that the process is an in-control state at the 
beginning of the production run and it may shift to an out-of-control state after a certain time. Only good-quality 
products are manufactured in the in-control state and defective items are produced at the out-of-control state. 
These defective items are reworked at a cost. Khouja and Mehrez (1994) extended a classical inventory model to 
the cases where production rate is a variable under managerial control and production cost becomes a function of 
production rate. They showed that the optimal production rate is smaller than the production rate which 
minimized unit production cost. In their model, the process might shift to an out-of-control state after a certain 
time that follows exponential distribution. In out-of-control state, a certain percentage of total products are 
defective items which are reworked at a cost. Recently, Sana et al. (2010) developed the EMQ model in an 
imperfect production system where the defective items are sold at a reduced price. As a result, the demand 
function of defective items without reworking is a non-linear function of reduction rate. Wagner and Whitin 
(1958) discussed the discrete version of this problem, applying the dynamic programming approach. Khanra and 
Chaudhuri (2003) extended an EOQ (Economic Order Quantity) model of perishable items over a finite-time 
horizon, considering quadratic time-varying demand Adkins argued that the ‘‘True’’ value of the holding cost is 
not necessarily the best one to use in the EOQ equation. Instead, he suggested that the proper question to ask 
when seeking the parameters for the EOQ equation is: ‘‘what values will provide the proper lot size to meet 
aggregate inventory investment objectives?’’ Brown et al. showed that, under certain conditions, even relatively 
small lot-size errors could be extremely costly to a firm. They claimed that their result is important to 
theoreticians and practitioners due to the importance of lot sizing in computer-based production and inventory 
control systems. Jones cautioned that most manufacturers, who use the EOQ formula to minimize relevant 
annual costs, end up over estimating their lot sizes.  This was attributed to the fact that most accountants fail to 
identify which costs are relevant.  

According to Stivalla et al. (2010), Dynamic Programming (DP) is a powerful technique for solving any 
optimization problem for which an optimal solution can be efficiently computed from optimal solutions to its sub 
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problems. The idea is to avoid re-computing the optimal solution to these sub problems by reusing previously 
computed values. Thus, for dynamic programming to be useful, the same sub problems must be encountered 
often enough while solving the original problem. Dynamic programming can be easily implemented by using 
either a ``bottom-up'' or ``top-down'' approach. In the ``bottom-up'' approach, the solution to every single sub 
problem is computed and stored in the dynamic programming matrix, starting from the smallest sub problems 
until the solution to the entire problem is finally computed. 

Dynamic Programming (DP) represents a united framework for solving stochastic, multistage control problems 
found in process industries and other application areas. (Wong, 2009)  Central to DP is the cost-to-go function 
(which scores the desirability of any arbitrary state) which can be theoretically obtained by solving (usually 
off-line) for the fixed-point of Bellman's optimality equations. Optimal control is achieved through the on-line 
solution of a single stage problem which reflects the trade-off between immediate costs (manifested through a 
single-stage term) and future costs reflected by the value function of a candidate next state). Systems with large 
state and action spaces suffer from a `curse of dimensionality’; where representing and obtaining the cost-to-go 
compactly and efficiently becomes highly nontrivial. To circumvent this, the authors proposed an Approximate 
Dynamic Programming (ADP) method for solving process control problems, which suffer all the more from the 
said curse due to the presence of continuous state and action spaces. 

The basic idea is to use carefully-designed simulations to uncover a control-relevant part of the state space 
(which is a finite-sized subset of the original state space) and employ an appropriate function approximated 
generalization. The focus was mainly on the control of deterministic, nonlinear systems. For stochastic systems, 
however, the off-line and on-line computations involving Bellman's equations require a minimization over the 
sum of a single-stage cost and the expected value function of a candidate next state. Since an analytical 
expression for the expectation is usually unknown, solving such a problem may be cumbersome. 

Höfferl (2009), the type of the dynamic problem considered is even more challenging in terms of its complexity. 
We do not have only one fixed person, who has to run through exactly one state of the stages from the starting 
point to the final destination. We have more optional entities at the starting point, which change their personality 
through the stages and all the decisions are interrelated. We do not even know which entities are used at what 
time at the starting state in the literature. It was first studied by Kosten (1967) & (Kosten, 1973), who described a 
custodian who dispatches trucks whenever the number of waiting passengers exceeds a certain threshold. Deb 
and Serfozo (1973) were the first to prove that in steady state the optimal decision rule of this system was 
monotone and therefore had a control limit structure, thereby proving the optimality of Kosten’s custodian. They 
assume that the waiting cost per customer is an increasing function of the number of customers waiting in the 
queue. 

Once the structure of an optimal policy is known, the primary problem is one of determining the expected costs 
for a given control strategy, and then using this function to find the optimal control strategy. 

Powell (1985) was the first to introduce general holding and cancellation strategies, where a vehicle departure 
might be cancelled for a fixed period of time if a dispatch rule has not been satisfied within a period of time 
(reflecting, for example, the inability to keep a driver sitting and waiting). Powell and Humblet (1986) present a 
general, unified framework for the analysis of a broad class of (Markovian) dispatch policies, assuming 
stationary, stochastic demands. Reviews of this literature are contained in the Medhi (1984) study of the 
multiproduct single link problem by determining frequencies at which several products have to be shipped to 
minimize transportation and inventory costs. In Bertazzi et al. (2000) techniques of neuro-dynamic programming 
are implemented to approximate a stochastic, multiproduct version of the problem. Stivala et al (2010) 
implemented a method for parallelizing top-down dynamic programs in a straightforward way by a careful 
choice of a lock-free shared hash table implementation and randomization of the order in which the dynamic 
program computes its sub problems. 

3. The Existing Production-Inventory Model of Miele GmbH  

To solve the production-inventory cost problem of Miele GmbH, the production and inventory of firm of the 
group in Bielefeld was analyzed. Based on this analysis, a model was prepared.  To explain the model, five 
different machines (M1-M5) of the firm were chosen as shown in Figure 1. There are small boxes between 
machines to store the parts if they cannot be sent to the next machine or they can be stored in the big warehouse 
as shown in Figure 1 of the firm in order to be reprocessed. Freight carriers are used between storage boxes and 
warehouse. The customers of the firm are either from the firm itself or from other firms. To determine the batch 
of each product and the order of production over a time period, this method was developed. Four different 
products (A, B, C and D) are selected to explain the system and calculations.  

Parameters of Algorithm: 

Machines: 

 Number of different machines (M1-M5) 

Others: 
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 Setup time for each machine is different 

 Cycle time for each A, B, C and D parts 

 Capacity of each machine 

 Waiting times between machines (can be assumed zero) 

 Storage between machines is limitless 

 Batch size for each product 

 Machine cost (€/h) (can be added to the whole cost) 

 Stock cost 

 Stock out cost resulted in penalty cost 

 Staff cost (can be considered in production cost) 

 Average setup cost for each machine related to each product 

Decisions can be static. In a static model, it is assumed that all decisions are made at a single point of time. In 
our case, it will be shown how to use dynamic models to determine optimal decisions in multi-periods. Dynamic 
models arise when the decision maker makes decisions at more than one point in time. In a dynamic model, 
decisions made during the current period influence decisions made during future periods. For example, the firm 
wants to learn how many parts for each product to produce during each month. If it produces a large number of 
units during the current month, this would reduce the number of units that should be produced during future 
months. Two situations were developed to find an optimal inventory-production solution.  

3.1 Alternative Production Methods  

Two alternative production methods were suggested for the system. Both have some advantages and 
disadvantages. The second one is more complex but after the program is prepared, the calculations will be easier. 
A sample for the first situation of dynamic backward programming for a product was calculated and calculations 
are shown at the end of article. 

In the first situation: 

In the first situation, firm can produce the whole amounts of parts for each product demanded during the 
planning period in one setup. In this case, it is expected that the inventory costs will increase while the setup 
costs will decrease as shown in Table 1. 

In the second situation: 

In this case as shown in Table 2, four products are produced daily, but as seen, there are so many setups of 
machines leading to high setup costs. However, it is expected that the inventory cost will be less as compared 
with the first situation. The batch size for each case will be found and costs for each case will be compared. The 
differences between the first situation and the second situation are production costs, time spent for setup of 
machines, inventory costs, amount produced daily, machine working hours etc. The amount of demand plays an 
important role for each time period. In this case, fewer products can be produced while setups cause losing time. 
Changing the dies of a machine can take even hours. As seen from the table, four times the dies each day or 
period. The strategy of the firm plays an important role for the selection of production method. The strategy can 
change from time to time and the demand will be the main source of criteria. When there is a high demand for 
different products in a short time period. Then, the second situation can be used. The period of production can be 
even a week or month and in this case the second situation will be more advantageous.  

How many parts for each case will be produced? 

Which case should be selected for production? 

Minimum cost found by each case will be the base for decisions. 

The firm must determine which products (A, B, C and D) should be produced during each of the next four 
quarters (Periods or times). At the beginning of each period, the firm must decide how many parts should be 
produced during that period. For simplicity, it is assumed that parts manufactured during a period can be used to 
meet demand for that period.  

4. An application of Inventory-Production Dynamic model at Miele GmbH 

A solution of a production-inventory problem of the dynamic programming model is constructed. After that the 
application of the dynamic programming model is realized on the production-inventory problem at Miele GmbH. 
Following this, the results taken by application of the model are explained. In this research, the deterministic 
dynamic programming model is used. Because the deterministic dynamic programming model solves problems 
directly, not by estimating, it is selected for the model to find the batch size. On the other hand, while dynamic 
programming is an optimization technique a technique that parts the problems into series of such problems. This 
model will be constructed on a production-inventory problem. And then, application of this model will be 
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realized using data belonging to four periods. Following these, the results determined by the application of 
model will be exalted. Then, an algorithm for four products will be given. 

Production planning is a study that is used to take a series of decisions belonging to future parts of time in 
factories. One of the problems which are necessary for production planning is to balance the inventories. 
Developed Decision Models (DDM) related to production planning can be solved by special techniques of 
variables and functions. A DP approach is an effective method. In this situation, four different products during 
periods will be produced. Basic parameters Miele GmbH production-inventory model: 

n : 1,2,3, and 4 planning period of time, 

k: A, B, C, and D products 

Dkn : Demand values of every n period of time, 

Lkn : Inventory level of beginning of nth period, 

Xkn : Production values in nth period, 

hk : Holding cost of a unit property, 

L(Xkn) : h.Lkn holding cost, 

f(Xkn) : Production cost 

C(n) : Total cost. 

Steps of Model: 

1. Decision step: Every period is considered as a decision step (n=1, 2, 3, and 4) and k =A, B, C, and D 

2. State variable: Inventory value at the beginning (Lkn). 

The inventory-value in a period of time is related to inventory, production and demand value in other periods. 

Lk(n+1)= Lkn + Xkn - Dkn 

3. Decision variable: Production value related to every period of time (Xkn). 

4. Optimum Decision Rule: Optimal production which has the expression of Xkn*(Lkn) will be determined as the 
function beginning inventory value for every period of time. 

5. Total cost function related to every period of time is equal to sum of production and holding costs: 

C(n)= f(Xkn) + L(Xkn) = a + b Xkn + c X2
kn +h.Lkn 

6. Objective function related to every period of time f (n): 

fkn*(Lkn)= min( Ckn ((Xkn,Lkn) + fk(n+1)* Lkn +Xkn - Dkn) ), 

0  ≤ Xkn ≤  K 

Xkn + Lkn ≥  Dkn 

Limitations of the model taken from the firm: 

 Production capacity of Miele is 15.000 units for a period of time for product A. 

 Function of production cost is f(Xn)= a + b Xn + c X2
n 

 Maximum inventory unit should not pass more than 4.000 units in every period.  

 Production amount Xn* (Ln) which minimizes the total cost for every value of Ln named condition 
variable is determined in every decision step. An optimal decision rule that minimizes the total cost 
was developed for every beginning inventory starting from last to first periods of time. In application, 
data belongs to four periods of time. Amounts of demand, in four periods of time for product A by 
Miele GmbH are estimated as given below in Table 3:  

Function of production cost: 

f(Xn)=325 + 9 Xn + (1/500.000) Xn
2  (€) 

For simplification, (1/500.000) Xn
2  (€) part will not be added to the function. The aim is to show that the cost 

function can be parabolic or other kinds.  

f(Xn)=325 + 9 Xn 

a=325 is setup cost of production 

Cost of keeping a unit in inventory is h = 1 € 

Decision model of problem under these situations is: 

Ln+1= Ln + Xn - Dn            (n= 1, 2, 3, 4) 

Ln + Xn ≥ Dn 

Ln ≤ 4.000 

Xn ≤15.000 
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Sn, Xn and Dn ≥ 0 and Integer 

Objective:  

Min Cn = C1 + C2 + C3 + C4 

Or 

Min Cn = f(X1) + h.L1 + f (x2) + h.L2 + f (x3) +h.L3 + f(x4) 

It was started to find a solution the problem from fourth period of time (Backward solution of DP). See tables 
5-8 for each period of time. 

Due to high inventory costs, the firm should not keep inventory during 2, 3 and 4 periods as shown in Table 4. 
But if we decrease inventory cost and use our real production cost functions, what will happen? 

If function of production cost: 

f(Xn)=325 + 9 Xn + (1/500.000) Xn
2  (€) and Cost of keeping a unit in inventory is h = 0,6 €. It is suggested that 

the inventory should be carried out during the first three periods as shown in Table 4. These calculations are 
done for just one product. The same calculations should be carried out for each product. The length of period is 
defined according to time that demand is to be met.   

The capacity of each machine for a product should be also considered. In this model, to avoid complexity, 
calculations for four products for the second situation are not calculated. For that purpose, dynamic programs 
such as java-based ones or solvers can be developed by considering firm specific requests. In this model for the 
first period, 11.000 A products will be produced with one setup. An assembly line was chosen for that product. 
The number of lines for different products can be increased. Now high setup costs prevent multi-product 
production for a period. A simulation model of the problem can be employed to test the sensitivity of the 
production. The range of resources consumed can be determined. Having applied a set of production rules to the 
given facts and modelling results within the module of decision analysis and inference, conclusions and 
suggestions are made.  

5. Discussion and Conclusion 

In today’s global competition, none company has a secure place at the market. Everyone can fall down from the 
market segments. China, India and other low labour countries are searching for new markets and costumers. 
Especially, China has a huge amount of production potential and they make really cheap production. Miele 
GmbH has noticed that threat and wants to decrease the costs to gain competition position against it in its 
internal and external markets with high quality products. Optimization is a beneficial way to decrease costs. 
Thus, the dynamic programming was suggested and it was found that costs can be decreased in a flexible manner. 
A linear algorithm for the same problem was also developed.  

The deterministic dynamic programming that applied in Miele GmbH is more appropriate model than dynamic 
linear programming. 4 periods deterministic dynamic programming calculations for A product was prepared to 
show how the model works. As seen from the model, the program searches for the optimal solution or the best 
alternative. When we consider 4 time periods, the production of A seems beneficial according to the model in 
first situation. In the same line, 4 different products can be produced but it is not seen as profitable. If the number 
of machines decreases, then in one period, four different products can be profitable with low setup costs. There is 
a high demand for each product when compared with the full capacity. But when the amount of demand for each 
product decreases, the multi-product production can be more profitable.  

The firm decided to develop a program based on that model by using Java Programming. When the huge 
production amount of the firm is considered, this model provides very beneficial results. The second situation is 
a more complex model. The number of parameters and calculations increases but with suitable software, the 
calculations can be carried out in short times. A simulation program could be a helpful tool to illustrate the 
model. Following this, in order to approach zero inventories in every period of time, the firm should decrease the 
costs of production and holding. But, the quality of product should stay the same, when Miele GmbH reaches its 
purposes, Just-In-Time (JIT) production can be adopted by the firm. The firm has very long experience in 
production of high quality products and high value markets. It should enter in middle value markets. 
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Table 1. One product production per day and one setup case 

Time / Period Period1 Period2 Period3 Period4 
Time1 Setup for A and Production of A parts 
Time2 Setup for B and Production of B parts 
Time3 Setup for C and Production of C parts 
Time4 Setup for D and Production of D parts 
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Table 2. Many products manufactured per time with many setups  

Time / 
Period 

Period1 Period2 Period3 Period4 

Time1 Setup 
for A 

 A 
parts 

 A 
parts 

Setup 
for B

 B 
parts

 B 
parts

Setup 
for C

 C 
parts

 C 
parts 

Setup 
for D 

 D 
parts 

 
Time2 

Setup 
for A 

 A 
parts 

 A 
parts 

Setup 
for B

 B 
parts

 B 
parts

Setup 
for C

 C 
parts

 C 
parts 

Setup 
for D 

 D 
parts 

 
Time3 

Setup 
for A 

 A 
parts 

 A 
parts 

Setup 
for B

 B 
parts

 B 
parts

Setup 
for C

 C 
parts

 C 
parts 

Setup 
for D 

 D 
parts 

 
Time4 

Setup 
for A 

 A 
parts 

 A 
parts 

Setup 
for B

 B 
parts

 B 
parts

Setup 
for C

 C 
parts

 C 
parts 

Setup 
for D 

 D 
parts 

 

Table 3. Amounts of demand according to periods 

Periods (n) Amounts of Demand (Dn) 
1 12.000 
2 13.500 
3 15.000 
4 10.000 

Table 4. Results of Model for a Product 

   End of period 
inventory 

COST 
Period Li xi Production Holding Total 

1 4000 8000 0 72.325,00 € 4.000,00 € 76.325,00 € 
2 0 12000 0 121.825,00 € 0,00 € 121.825,00 € 
3 0 15000 0 135.325,00 € 0,00 € 135.325,00 € 
4 0 10000 0 90.325,00 € 0,00 € 90.325,00 € 

Total Cost 419.800,00 € 4.000,00 € 423.800,00 € 

 
Figure 1. The design of system 
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Appendix 

Solution: 
Table 5. Fourth Period 

    Fourth Period   
    COST   

L4 X4 Production Holding c. Total 
End of Period 
Inventory(L5) 

0 

10000 90.325,00 € 0,00 € 90.325,00 € 0 
11000 99.325,00 € 0,00 € 99.325,00 € 1.000 
12000 108.325,00 € 0,00 € 108.325,00 € 2.000 
13000 117.325,00 € 0,00 € 117.325,00 € 3.000 
14000 126.325,00 € 0,00 € 126.325,00 € 4.000 

500 

9500 85.825,00 € 500,00 € 86.325,00 € 0 
10500 94.825,00 € 500,00 € 95.325,00 € 1000 
11500 103.825,00 € 500,00 € 104.325,00 € 2000 
12500 112.825,00 € 500,00 € 113.325,00 € 3000 
13500 121.825,00 € 500,00 € 122.325,00 € 4000 

1000 

9000 81.325,00 € 1.000,00 € 82.325,00 € 0 
10000 90.325,00 € 1.000,00 € 91.325,00 € 1000 
11000 99.325,00 € 1.000,00 € 100.325,00 € 2000 
12000 108.325,00 € 1.000,00 € 109.325,00 € 3000 
13000 117.325,00 € 1.000,00 € 118.325,00 € 4000 

1500 

8500 76.825,00 € 1.500,00 € 78.325,00 € 0 
9500 85.825,00 € 1.500,00 € 87.325,00 € 1000 

10500 94.825,00 € 1.500,00 € 96.325,00 € 2000 
11500 103.825,00 € 1.500,00 € 105.325,00 € 3000 
12500 112.825,00 € 1.500,00 € 114.325,00 € 4000 

2000 

8000 72.325,00 € 2.000,00 € 74.325,00 € 0 
9000 81.325,00 € 2.000,00 € 83.325,00 € 1000 

10000 90.325,00 € 2.000,00 € 92.325,00 € 2000 
11000 99.325,00 € 2.000,00 € 101.325,00 € 3000 
12000 108.325,00 € 2.000,00 € 110.325,00 € 4000 

2500 

7500 67.825,00 € 2.500,00 € 70.325,00 € 0 
8500 76.825,00 € 2.500,00 € 79.325,00 € 1000 
9500 85.825,00 € 2.500,00 € 88.325,00 € 2000 

10500 94.825,00 € 2.500,00 € 97.325,00 € 3000 
11500 103.825,00 € 2.500,00 € 106.325,00 € 4000 

3000 

7000 63.325,00 € 3.000,00 € 66.325,00 € 0 
8000 72.325,00 € 3.000,00 € 75.325,00 € 1000 
9000 81.325,00 € 3.000,00 € 84.325,00 € 2000 

10000 90.325,00 € 3.000,00 € 93.325,00 € 3000 
11000 99.325,00 € 3.000,00 € 102.325,00 € 4000 

3500 

6500 58.825,00 € 3.500,00 € 62.325,00 € 0 
7500 67.825,00 € 3.500,00 € 71.325,00 € 1000 
8500 76.825,00 € 3.500,00 € 80.325,00 € 2000 
9500 85.825,00 € 3.500,00 € 89.325,00 € 3000 

10500 94.825,00 € 3.500,00 € 98.325,00 € 4000 

4000 

6000 54.325,00 € 4.000,00 € 58.325,00 € 0 
7000 63.325,00 € 4.000,00 € 67.325,00 € 1000 
8000 72.325,00 € 4.000,00 € 76.325,00 € 2000 
9000 81.325,00 € 4.000,00 € 85.325,00 € 3000 

10000 90.325,00 € 4.000,00 € 94.325,00 € 4000 
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Table 6. Third Period 

  
  Third Period 

  
  

    COST Future Cost 

Total Cost L3 X4 Production 
Holding 

c. Total 

End of 
Period 

Invent(L5) F4(S4) 
0 15000 135.325,00 € 0,00 € 135.325,00 € 0 90.325,00 € 225.650,00 €

500 
14500 130.825,00 € 500,00 € 131.325,00 € 0 90.325,00 € 221.650,00 €
15000 135.325,00 € 500,00 € 135.825,00 € 500 85.825,00 € 221.650,00 €

1000 
14000 126.325,00 € 1.000,00 € 127.325,00 € 0 90.325,00 € 217.650,00 €
15000 135.325,00 € 1.000,00 € 136.325,00 € 1000 81.325,00 € 217.650,00 €

1500 

13500 121.825,00 € 1.500,00 € 123.325,00 € 0 90.325,00 € 213.650,00 €
14500 130.825,00 € 1.500,00 € 132.325,00 € 1000 81.325,00 € 213.650,00 €
15000 135.325,00 € 1.500,00 € 136.825,00 € 1500 78.325,00 € 215.150,00 €

2000 

13000 117.325,00 € 2.000,00 € 119.325,00 € 0 90.325,00 € 209.650,00 €
14000 126.325,00 € 2.000,00 € 128.325,00 € 1000 81.325,00 € 209.650,00 €
15000 135.325,00 € 2.000,00 € 137.325,00 € 2000 74.325,00 € 211.650,00 €

2500 

12500 112.825,00 € 2.500,00 € 115.325,00 € 0 90.325,00 € 205.650,00 €
13500 121.825,00 € 2.500,00 € 124.325,00 € 1000 81.325,00 € 205.650,00 €
14500 130.825,00 € 2.500,00 € 133.325,00 € 2000 74.325,00 € 207.650,00 €
15000 135.325,00 € 2.500,00 € 137.825,00 € 2500 70.325,00 € 208.150,00 €

3000 

12000 108.325,00 € 3.000,00 € 111.325,00 € 0 90.325,00 € 201.650,00 €
13000 117.325,00 € 3.000,00 € 120.325,00 € 1000 81.325,00 € 201.650,00 €
14000 126.325,00 € 3.000,00 € 129.325,00 € 2000 74.325,00 € 203.650,00 €
15000 135.325,00 € 3.000,00 € 138.325,00 € 3000 66.325,00 € 204.650,00 €

3500 

11500 103.825,00 € 3.500,00 € 107.325,00 € 0 90.325,00 € 197.650,00 €
12500 112.825,00 € 3.500,00 € 116.325,00 € 1000 81.325,00 € 197.650,00 €
13500 121.825,00 € 3.500,00 € 125.325,00 € 2000 74.325,00 € 199.650,00 €
14500 130.825,00 € 3.500,00 € 134.325,00 € 3000 66.325,00 € 200.650,00 €
15000 135.325,00 € 3.500,00 € 138.825,00 € 3500 62.325,00 € 201.150,00 €

4000 

11000 99.325,00 € 4.000,00 € 103.325,00 € 0 90.325,00 € 193.650,00 €
12000 108.325,00 € 4.000,00 € 112.325,00 € 1000 81.325,00 € 193.650,00 €
13000 117.325,00 € 4.000,00 € 121.325,00 € 2000 74.325,00 € 195.650,00 €
14000 126.325,00 € 4.000,00 € 130.325,00 € 3000 66.325,00 € 196.650,00 €
15000 135.325,00 € 4.000,00 € 139.325,00 € 4000 62.325,00 € 201.650,00 €
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Table 7. Second Period 

  Second Period    
  COST Future Cost 

Total Cost L2 X2 Production Holding c. Total 

End of 
Period 

Invent(L3) F3(S3) 

0 

13500 121.825,00 € 0,00 € 121.825,00 € 0 225.650,00 € 347.475,00 €
14500 130.825,00 € 0,00 € 130.825,00 € 1.000 217.650,00 € 348.475,00 €
15000 135.325,00 € 0,00 € 135.325,00 € 1.500 213.650,00 € 348.975,00 €

500 

13000 117.325,00 € 500,00 € 117.825,00 € 0 225.650,00 € 343.475,00 €
14000 126.325,00 € 500,00 € 126.825,00 € 1000 217.650,00 € 344.475,00 €
15000 135.325,00 € 500,00 € 135.825,00 € 2000 209.650,00 € 345.475,00 €

1000 

12500 112.825,00 € 1.000,00 € 113.825,00 € 0 225.650,00 € 339.475,00 €
13500 121.825,00 € 1.000,00 € 122.825,00 € 1000 217.650,00 € 340.475,00 €
14500 130.825,00 € 1.000,00 € 131.825,00 € 2000 209.650,00 € 341.475,00 €
15000 135.325,00 € 1.000,00 € 136.325,00 € 2500 205.650,00 € 341.975,00 €

1500 

12000 108.325,00 € 1.500,00 € 109.825,00 € 0 225.650,00 € 335.475,00 €
13000 117.325,00 € 1.500,00 € 118.825,00 € 1000 217.650,00 € 336.475,00 €
14000 126.325,00 € 1.500,00 € 127.825,00 € 2000 209.650,00 € 337.475,00 €
15000 135.325,00 € 1.500,00 € 136.825,00 € 3000 201.650,00 € 338.475,00 €

2000 

11500 103.825,00 € 2.000,00 € 105.825,00 € 0 225.650,00 € 331.475,00 €
12500 112.825,00 € 2.000,00 € 114.825,00 € 1000 217.650,00 € 332.475,00 €
13500 121.825,00 € 2.000,00 € 123.825,00 € 2000 209.650,00 € 333.475,00 €
14500 130.825,00 € 2.000,00 € 132.825,00 € 3000 201.650,00 € 334.475,00 €
15000 135.325,00 € 2.000,00 € 137.325,00 € 3500 197.650,00 € 334.975,00 €

2500 

11000 99.325,00 € 2.500,00 € 101.825,00 € 0 225.650,00 € 327.475,00 €
12000 108.325,00 € 2.500,00 € 110.825,00 € 1000 217.650,00 € 328.475,00 €
13000 117.325,00 € 2.500,00 € 119.825,00 € 2000 209.650,00 € 329.475,00 €
14000 126.325,00 € 2.500,00 € 128.825,00 € 3000 201.650,00 € 330.475,00 €
15000 135.325,00 € 2.500,00 € 137.825,00 € 3500 197.650,00 € 335.475,00 €

3000 

10500 94.825,00 € 3.000,00 € 97.825,00 € 0 225.650,00 € 323.475,00 €
11500 103.825,00 € 3.000,00 € 106.825,00 € 1000 217.650,00 € 324.475,00 €
12500 112.825,00 € 3.000,00 € 115.825,00 € 2000 209.650,00 € 325.475,00 €
13500 121.825,00 € 3.000,00 € 124.825,00 € 3000 201.650,00 € 326.475,00 €
14500 130.825,00 € 3.000,00 € 133.825,00 € 4000 193.650,00 € 327.475,00 €

3500 

10000 90.325,00 € 3.500,00 € 93.825,00 € 0 225.650,00 € 319.475,00 €
11000 99.325,00 € 3.500,00 € 102.825,00 € 1000 217.650,00 € 320.475,00 €
12000 108.325,00 € 3.500,00 € 111.825,00 € 2000 209.650,00 € 321.475,00 €
13000 117.325,00 € 3.500,00 € 120.825,00 € 3000 201.650,00 € 322.475,00 €
14000 126.325,00 € 3.500,00 € 129.825,00 € 4000 193.650,00 € 323.475,00 €

4000 

9500 85.825,00 € 4.000,00 € 89.825,00 € 0 225.650,00 € 315.475,00 €
10500 94.825,00 € 4.000,00 € 98.825,00 € 1000 217.650,00 € 316.475,00 €
11500 103.825,00 € 4.000,00 € 107.825,00 € 2000 209.650,00 € 317.475,00 €
12500 112.825,00 € 4.000,00 € 116.825,00 € 3000 201.650,00 € 318.475,00 €
13500 121.825,00 € 4.000,00 € 125.825,00 € 4000 193.650,00 € 319.475,00 €
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Table 8. First Period 
    First Period    
    COST Future Cost 

Total Cost L1 X1 Production Holding c. Total 

End of 
Period 
Invent 
(L2) F2(S2) 

0 

12000 108.325,00 € 0,00 € 108.325,00 € 0 347.475,00 € 455.800,00 €
13000 117.325,00 € 0,00 € 117.325,00 € 1.000 339.475,00 € 456.800,00 €
14000 126.325,00 € 0,00 € 126.325,00 € 2.000 331.475,00 € 457.800,00 €
15000 135.325,00 € 0,00 € 135.325,00 € 3.000 323.475,00 € 458.800,00 €

500 

11500 103.825,00 € 500,00 € 104.325,00 € 0 347.475,00 € 451.800,00 €
12500 112.825,00 € 500,00 € 113.325,00 € 1000 339.475,00 € 452.800,00 €
13500 121.825,00 € 500,00 € 122.325,00 € 2000 331.475,00 € 453.800,00 €
14500 130.825,00 € 500,00 € 131.325,00 € 3000 323.475,00 € 454.800,00 €
15500 139.825,00 € 500,00 € 140.325,00 € 4000 315.475,00 € 455.800,00 €

1000 

11000 99.325,00 € 1.000,00 € 100.325,00 € 0 347.475,00 € 447.800,00 €
12000 108.325,00 € 1.000,00 € 109.325,00 € 1000 339.475,00 € 448.800,00 €
13000 117.325,00 € 1.000,00 € 118.325,00 € 2000 331.475,00 € 449.800,00 €
14000 126.325,00 € 1.000,00 € 127.325,00 € 3000 323.475,00 € 450.800,00 €
15000 135.325,00 € 1.000,00 € 136.325,00 € 4000 315.475,00 € 451.800,00 €

1500 

10500 94.825,00 € 1.500,00 € 96.325,00 € 0 347.475,00 € 443.800,00 €
11500 103.825,00 € 1.500,00 € 105.325,00 € 1000 339.475,00 € 444.800,00 €
12500 112.825,00 € 1.500,00 € 114.325,00 € 2000 331.475,00 € 445.800,00 €
13500 121.825,00 € 1.500,00 € 123.325,00 € 3000 323.475,00 € 446.800,00 €
14500 130.825,00 € 1.500,00 € 132.325,00 € 4000 315.475,00 € 447.800,00 €

2000 

11000 99.325,00 € 2.000,00 € 101.325,00 € 0 347.475,00 € 448.800,00 €
12000 108.325,00 € 2.000,00 € 110.325,00 € 1000 339.475,00 € 449.800,00 €
13000 117.325,00 € 2.000,00 € 119.325,00 € 2000 331.475,00 € 450.800,00 €
14000 126.325,00 € 2.000,00 € 128.325,00 € 3000 323.475,00 € 451.800,00 €
15000 135.325,00 € 2.000,00 € 137.325,00 € 4000 315.475,00 € 452.800,00 €

2500 

9500 85.825,00 € 2.500,00 € 88.325,00 € 0 347.475,00 € 435.800,00 €
10500 94.825,00 € 2.500,00 € 97.325,00 € 1000 339.475,00 € 436.800,00 €
11500 103.825,00 € 2.500,00 € 106.325,00 € 2000 331.475,00 € 437.800,00 €
12500 112.825,00 € 2.500,00 € 115.325,00 € 3000 323.475,00 € 438.800,00 €
13500 121.825,00 € 2.500,00 € 124.325,00 € 4000 315.475,00 € 439.800,00 €

3000 

9000 81.325,00 € 3.000,00 € 84.325,00 € 0 347.475,00 € 431.800,00 €
10000 90.325,00 € 3.000,00 € 93.325,00 € 1000 339.475,00 € 432.800,00 €
11000 99.325,00 € 3.000,00 € 102.325,00 € 2000 331.475,00 € 433.800,00 €
12000 108.325,00 € 3.000,00 € 111.325,00 € 3000 323.475,00 € 434.800,00 €
13000 117.325,00 € 3.000,00 € 120.325,00 € 4000 315.475,00 € 435.800,00 €

3500 

8500 76.825,00 € 3.500,00 € 80.325,00 € 0 347.475,00 € 427.800,00 €
9500 85.825,00 € 3.500,00 € 89.325,00 € 1000 339.475,00 € 428.800,00 €

10500 94.825,00 € 3.500,00 € 98.325,00 € 2000 331.475,00 € 429.800,00 €
11500 103.825,00 € 3.500,00 € 107.325,00 € 3000 323.475,00 € 430.800,00 €
12500 112.825,00 € 3.500,00 € 116.325,00 € 4000 315.475,00 € 431.800,00 €

4000 

8000 72.325,00 € 4.000,00 € 76.325,00 € 0 347.475,00 € 423.800,00 €
9000 81.325,00 € 4.000,00 € 85.325,00 € 1000 339.475,00 € 424.800,00 €

10000 90.325,00 € 4.000,00 € 94.325,00 € 2000 331.475,00 € 425.800,00 €
11000 99.325,00 € 4.000,00 € 103.325,00 € 3000 323.475,00 € 426.800,00 €
12000 108.325,00 € 4.000,00 € 112.325,00 € 4000 315.475,00 € 427.800,00 €




