
International Journal of Business and Management August, 2009

11

Competence Set Expansion Strategy and Application

with General Connectivity Parameters

Jianxun Chen

School of Economics and Management, Nanjing University of Science and Technology

Nanjing 210094, China

E-mail: cjianxun@mail.njust.edu.cn

Junwen Feng

School of Economics and Management, Nanjing University of Science and Technology

Nanjing 210094, China

E-mail: Fengjunwen8@hotmail.com

Abstract

Each decision making problem can be satisfactorily solved by using the expanding technologies of the Competence Set

Analysis, where the competence set consists of the decision maker’s ideas, knowledge, information, experience, skills

and capacities, etc., directly or indirectly related to the decision making problem. This article proposes a heuristic

method to find the optimal competence set expansion strategy with the connectivity parameters being general, that is,

either symmetric or asymmetric. The optimality of the method is proven, and its applications in the personnel

recruitment and training planning problems are discussed. Some conclusions and suggestions to be developed in a

further work are included.

Keywords: Competence set expansion, Optimal strategy, Habitual domains

1. Introduction

Based on the decision maker’s acquired competence set and the truly needed competence set to solve the decision

making problems, the competence set expanding technology concentrates its study on the strategy of how and from

where to start to expand the acquired competence set to the needed competence set to enable the decision maker or

makers to confidently and successfully solve his, her or their decision making problems. Given the connectivity

parameters m(,) between the elements of the competence set (CS) on the habitual domains (HD), where CS HD, the

problem of how to expand from one CS to another CS is studied analytically and mathematically by Yu and Zhang

(1990) when m(,) is symmetric, and Shi and Yu (1996) when m(,) is asymmetric. Li and Yu (1994) did some

research work by means of deduction graphs without cycles when there are intermediate elements and multilevels.

Under risky and uncertainty cases, Feng (2001) discussed the competence expansion problems and given several

expansion strategies. Very Recently, Yu and Larbani (2009) discussed application of the competence set expansion in

the game theory and several new ideas are put forwards. But they all studied using mathematical programming

algorithms, especially, the integer programming algorithms, so even a simple problem often needed to be solved by

using some software package. Furthermore, even though all these papers theoretically deal with the general cases,

practically all can be only used to find the expanding process from a given skill, instead of a given set of skills.

In the article, as far as the general connectivity parameters m(,) (maybe negative or positive) are concerned, based

upon the digraphs, a heuristic method is given to find the optimal expansion strategy within a certain competence set or

habitual domain. This heuristic method can also be used to optimally expand the acquired competence set to the needed

competence set or habitual domain. The optimality and applications of the method are also discussed. This heuristic

method differs from the methods developed in papers [1,2,3] in the following aspects: (1) It can deal with the case that

there are cycles in the digraphs; (2) It can begin from any given acquired skills set; (3) It is a heuristic method rather

than a analytical method; (4) The expansion process obtained may be not in the form of sequences which are the

Vol. 4, No. 8 International Journal of Business and Management

12

arrangements of the required skills; (5) It can handle the case that there are multivalues between the skills; (6) It is some

kind of extension of the deduction graph method [3].

2. The Heuristic Method Development for Expansion Strategy

Suppose the discussed universal is some habitual domain HD which has a finite number (say n) of elements, that is,

HD={ x1 , x2 , ... , xn }, then connectivity parameters m(,) between the elements in HD can be represented by an n n

matrix M=(mij)n n where mij = m(xi ,xj). Based upon the set HD and matrix M, a digraph can be constructed with the

vertices corresponding to elements x1 , x2 , ... , xn , each arc representing the way a connectivity may be reached

between any two elements in {x1 , x2 , ... , xn }, and each arc weight being the corresponding connectivity parameter

between the two elements. Let the deducted digraph from the HD and M be denoted by DG(HD, M).

Definition 1. An arborescence is defined as a directed tree (there is only one directed path between any pair of vertices

or skills) in which no more than two arcs are directed into the same vertex. A branching is defined as a forest (a set of

unconnected trees) in which each tree is an arborescence. A spanning arborescence of the digraph is an arborescence

that is also a spanning tree. A spanning branching is any branching that includes every vertex in the digraph.

Definition 2. By an expansion strategy, we mean a spanning arborescence or spanning branching, that is, a directed

spanning tree or a set of unconnected directed spanning trees in each of which no more than two arcs are directed into

the same skill (vertex).

Definition 3. The connectivity of an arborescence (branching) is defined as the sum of the weights of the arcs in the

corresponding arborescence (branching). A maximum arborescence (branching) of a digraph is any arborescences

(branching) of the digraph with the largest possible weight sum.

Definition 4. An expansion strategy is optimal with respect to the sum operator among the connectivity parameters if

it is a maximum spanning arborescence (if one exists).

Definition 5. An expansion strategy from a specified skill (vertex) is a strategy with the root being the vertex, and is

optimal with respect to the sum operator if it is a maximum spanning arborescence rooted at the vertex.

Definition 6. An expansion strategy from a specified set of the skills (vertices) is a strategy with the root being within

the set, and it is optimal with respect to the sum operator if it is a spanning arborescence rooted at some vertex in the set

with the largest sum of the weights except the weights within the set.

From the above the definitions, we know that the concept of branching is more general than that of arborescences.

Given the DG(HD,M), if we can find the maximum branching, then according to the following observations, we can

easily find the maximum spanning arborescence (optimal expansion strategy) by adding to each arc a large enough

positive constant N.

Firstly, a spanning branching is a spanning arborescence if and only if it has exactly one less arc than vertices. No

branching has more arcs than this. Secondly, an optimum branching contains no arc with negative weight, and indeed

may be empty if all connectivity parameters are not positive, that is, all mij 0. And it is worth noting that even if all

parameters are positive and the digraph contains a spanning arborescence, an optimum branching need not be an

arborescence. Thirdly, a spanning arborescence which is optimum relative to weights mij is also optimum relative to

weights mij +k for any constant k, and mij k for any positive constant k(if all mij ‘s are not negative, since every

spanning arborescence has the same number of arcs. Fourthly, if there is a spanning arborescence in some digraph

DG(HD,M), then an optimum one, i.e., one which has a maximum total weight can be found as an optimum branching

in the digraph DG(HD,M+h) where M+h means the matrix (mij +h), and h mij . This is because the constant h is

larger than the difference in total weight (relative to weights mij) of any two branchings in the digraph, so an optimum

branching in the digraph, relative to weights mij =mij+h will be a branching with a maximum number of arcs, and in

particular, it will be a spanning arborescence if and only if the digraph contains a spanning arborescence.

The optimal expansion strategy from the specified skill, say x0 , can be obtained using the above method by adjoining a

new arc carrying arbitrary weight which is directed toward x0 and from a new vertex having no other incident arcs, and

letting the arcs directed toward x0 have zero weights.

The optimal expansion strategy from the specified skills set, say Sk, can be found using the above method by setting the

weights with the heads in the set be zero and adjoining a new arc carrying an arbitrary weight which is directed toward

some x0 Sk and from a new vertex having no other incident arcs. The selection of x0 Sk can be arbitrary. If the

optimum exists, then there must exist some x0 Sk such that the corresponding spanning arborescence is rooted at the

vertex x0 .

There may be many optimal strategies.

We shall now proceed to describe the heuristic method to find the maximum branching.

International Journal of Business and Management August, 2009

13

The maximum branching method uses two buckets, the vertex bucket and the arc bucket. The vertex bucket contains

only vertices that have been examined; the arc bucket contains arcs tentatively selected for the maximum branching.

The arcs in the arc bucket form a branching. Initially both buckets are empty.

The method successively examines the vertices in any arbitrary order. The examination of a vertex consists entirely of

selecting the arc with the greatest positive weight that is directed into the vertex under examination (if any). If the

addition of this arc to the arcs already selected for the arc bucket maintains a branching, then this arc is added to the arc

bucket. Otherwise, this arc would form a cycle with some arcs already in the arc bucket. If this happens, then a new,

smaller digraph is generated by “shrinking” the arcs and vertices in this cycle into a single vertex. Some of the arc costs

are judiciously altered in the new, smaller digraph. The vertex and arc buckets are redefined for the new digraph as

containing only their previous contents that appear in the new digraph. The examination of each vertex continues as

before. The process stops when all vertices have been examined.

Upon termination, the arc bucket contains a branching for the final digraph. The final digraph is expanded back to its

predecessor by expanding out its “artificial” vertex into a cycle. All but one of the arcs in this cycle is added to the arc

bucket. The arc that is not added to the arc bucket is carefully selected so that the contents of the arc bucket retain a

branching. This process is repeated until the original digraph is regenerated. The arcs in the arc bucket upon termination

turn out to be a maximum branching.

Denote the original digraph for which the maximum branching is sought by G0 , and denote each successive digraph

generated from G0 by G1 , G2 ,..... The vertex and arc buckets used for these digraphs will be denoted by V0 , V1 , ... and

A0 , A1 , ..., respectively. We are now ready to state the method formally.

Optimal (maximum) Expansion Strategy Method

Initially, all buckets V0 , V1 , ... and A0 , A1 , ... , are empty. Set I=0.

Step 1. If all vertices of Gi are in bucket Vi , go to step 3. Otherwise, select any vertex v in Gi that is not in bucket Vi .

Place vertex v into bucket Vi . Select an arc with the greatest positive weight that is directed into v. If no such arc

exists, repeat step 1; otherwise, place arc into bucket Ai . If the arcs in Ai still form a branching repeat step 1;

otherwise, go to step 2.

Step 2. Since the addition of arc to Ai no longer causes Ai to form a branching, arc forms a cycle with some of the

arcs in Ai . Call this cycle Ci . Shrink all the arcs and vertices in Ci into a single vertex called vi . Call this new digraph

Gi+1 . Thus, any arc in Gi that was incident to exactly one vertex in Ci will be incident to vertex vi in digraph Gi+1 . The

vertices of Gi+1 are vi and all the vertices of Gi not in Ci . Let the weight of each arc in Gi+1 be the same as its weight in

Gi except for the arcs in Gi+1 that are directed into vi . For each arc (x,y) in G i that transforms into an arc (x,vi) in Gi+1 ,

let

m(x,vi)=m(x,y)+m(r,s) -m(t,y) --------------transformation equation

where (r,s) is the minimum weight arc in cycle Ci , and where (t,y) is the unique arc in cycle Ci whose head is vertex y.

At this point, observe that m(r,s) 0, m(t,y) m(r,s) and m(t,y) m(x,y) since arc (t,y) was selected as the arc directed

into vertex y. Let Vi+1 contain all the vertices in Gi+1 that are in Vi , that is, Vi+1 =Gi+1 Vi . Thus, vi Vi+1. Let Ai+1

contain all the arcs in Gi+1 that are in Ai , i.e., Ai+1 =Gi+1 Ai. Thus, Ai+1 contains the arcs in Ai that are not in Ci .

Increase i by one, and return to step 1.

Step 3. This step is reached only when all vertices of Gi are in Vi and the arcs in Ai form a branching for Gi . If i=0,

stop because the arcs in A0 form a maximum branching for G0. If i 0, two cases are possible:

(a) Vertex vi-1 is the root of some arborescence in branching Ai.

(b) Vertex vi-1 is not the root of some arborescence in branching Ai.

If (a) occurs, then consider the arcs in Ai together with the arcs in cycle Ci-1 . These arcs contain exactly one cycle in

digraph Gi-1, namely Ci-1. Delete from this set of arcs the arc in Ci-1 that has the smallest weight. The resulting set of arcs

forms a branching for digraph Gi-1 . Redefine Ai-1 to be this set of arcs.

If (b) occurs, then there is a unique arc (x,vi-1) in Ai that is directed into vertex vi-1 . This arc (x,vi-1) corresponds in

digraph Gi-1 to another arc, say arc (x,y), where vertex y is one of the vertices in cycle Ci-1 that was shrunk to form

vertex vi-1 .

Consider the set of arcs in Ai together with the arcs in cycle Ci-1 . This set of arcs contains exactly one cycle in Gi-1,

namely Ci-1 , and exactly two arcs directed into vertex y, namely arc (x,y) and an arc in cycle Ci-1 . Delete the latter arc

from this set of arcs. The remaining arcs in this set form a branching in digraph Gi-1 . Redefine Ai-1 to be this set of arcs.

Having redefined Ai-1 , decrease i by one unit and repeat step 3.

Vol. 4, No. 8 International Journal of Business and Management

14

The above maximum branching method can also be used to find (1) a minimum branching, (2) a maximum spanning

arborescence (if one exists), (3) a minimum spanning arborescence (if one exists), (4) a maximum spanning

arborescence rooted at a specified vertex (if one exists), and (5) a minimum spanning arborescence rooted at a specified

vertex (if one exists), (6) a maximum spanning arborescence rooted at a specified vertices set (if one exists), (7) a

minimum spanning arborescence rooted at a specified vertices set (if one exists).

3. Proof of the Optimality of the Method

Consider any digraph Gt produced by the method and consider the branching At produced by step 3 for digraph Gt.

First, it will be shown that if At is a maximum branching for digraph Gt , then branching At-1 is a maximum branching

for digraph Gt-1.

To prove this, some definitions are needed. Let G denote the subdigraph consisting of all arcs in Gt-1 not directed into a

vertex in cycle Ct-1 . Let G denote the subdigraph consisting of all the arcs in Gt-1 not in G . Thus, every arc of Gt-1 is

present in exactly one of these subdigraphs G and G . Let A t-1 denote the arcs in At-1 that are in G ,and let A t-1

denote the arcs of At-1 that are in G . Clearly, A t-1 and A t-1 are branchings in G and G , respectively.

If branching At-1 is not a maximum branching for digraph Gt-1 , then there exists some branching B with greater total

weight. Let B denote the arcs in B that are in G , and let B denote the arcs of B that are in G . Since B is a maximum

branching, it follows that either B weighs more than A t-1 or B weighs more than A t-1.

Claim 1: A t-1 is a maximum-weight branching for G .

Claim 2: A t-1 weighs as much as B .

If both claims 1 and 2 are true, it follows that At-1 must be a maximum branching for digraph Gt-1.

Note that the branching Ai produced by the method for the terminal digraph Gi is a maximum branching since it

contains a maximum positively weighted arc directed into each vertex in Gi if such an arc exists. Since the method

produces a maximum branching for the terminal digraph Gi, then if both claims 1 and 2 are true, then the method must

produce a maximum branching Ai-1 for Gi-1. By repeating this reasoning, we can conclude that if claims 1 and 2 are true,

then the branching A0 produced by the method is a maximum branching for the original digraph G0.

Hence, it remains only to show that claims 1 and 2 are valid.

Proof of claim 1. Suppose that cycle Ct-1 contains n vertices. There is one arc with positive weight directed into each of

these n vertices in digraph G (otherwise, the method would not have formed cycle Ct-1). Since there are only n vertices

in G that have arcs directed into themselves, a maximum branching for G cannot contain more than n arcs. Moreover,

no branching in G can have weight exceeding the weight of cycle Ct-1, which consists of the maximum positive-weight

arc directed into each of the n vertices in cycle Ct-1. However, at least one of the arcs in Ct-1 must be absent from any

maximum branching for G since a branching cannot contain a cycle. Thus, at least one of these n vertices, say vertex

y Ct-1, must either have no branching arc directed into it or else have an arc (x,y), x Ct-1 , directed into it.

For each vertex z Ct-1, construct a branching Bz in G as follows:

(a) Include all arcs in cycle Ct-1 except the arc in cycle Ct-1 that is directed into vertex z.

(b) Include any maximum positive-weight arc (x, z), where x Ct-1 .

Select the branching Bz* with the greatest weight. From the transformation equation , branching Bz* is the branching

A t-1 generated by the method.

Consider any branching B1 in G that is not of the form Bz. If only one of the arcs of Ct-1 is not in B1, it follows that B1

cannot be a maximum branching for G since it is not of the form Bz. If two or more arcs of Ct-1 are not in B1, then

either (1) each of these arcs is replaced by an arc of smaller weight directed into the same vertex or (2) no arc is directed

into this vertex. In either case, this results in the decrease of the weight sum of arcs in the branching directed into the

vertex. Hence, B1 cannot be a maximum branching for G . Thus, A t-1 is a maximum branching for G , and we can

assume, without loss of generality, that A t-1 is identical to B . This concludes the proof of claim 1.

Proof of Claim 2. Two cases are possible:

(a) Branching At contains an arc (x, vt-1) directed into vertex vt-1.

(b) Branching At does not contain an arc directed into vertex vt-1.

Case (a): By hypothesis, At is a maximum branching for Gt and contains an arc (x,vt-1) directed into vt-1 . From claim 1,

B is identical to A t-1 and hence B contains an arc (x,y), where x Ct-1 and y Ct-1. Since B is a branching in Gt-1, it

follows that B cannot contain a path of arcs from a vertex in Ct-1 to vertex x. Thus, B must be a maximum branching

for G that does not contain a path of arcs from a vertex in Ct-1 to vertex x.

International Journal of Business and Management August, 2009

15

Each arc in G corresponds to an arc with identical weight in Gt. Moreover, each branching in G corresponds to a

branching in Gt with identical weight. Consequently, if A t-1 is not a maximum branching in G that contains no path of

arcs from a vertex in Ct-1 to a vertex x, then At is not a maximum branching in Gt that contains arc (x, vt-1), which is

impossible. Hence, A t-1 has the same weight as B , which proves the claim for case (a).

Case (b): Each arc in G corresponds to an arc with identical weight in Gt. By hypothesis At is a maximum branching

for Gt. Since no arc in At is directed into vt-1, it follows that every arc in At corresponds to an arc in A t-1 . Moreover,

any branching in G corresponds to a branching in Gt with the same weight. Hence, if A t-1 were not a maximum

branching in G , then At would not be a maximum branching in Gt, which is a contradiction.

Thus, A t-1 must be a maximum branching in G and have the same weight as B , which completes the proof of claim 2.

#

4. Applications in Personnel Recruiting and Training Program

Consider an available position which needs several skills, say 4, x1, x2, x3, x4, the connectivity parameters among the

skills are represented by the following matrix:

Insert Table 1 here

The Research Committee’s task is (1) if there is no candidate who has all of the four skills, how to select one of the

candidates; (2) if each candidate only has one skill (whether different or same) and the number of the candidates is

equal to or greater than that of the needed skills, how to select; (3) if the Committee prefers some candidate, how to

expand his or her acquired skills so that he or she can be qualified for the position.

Suppose the only criterion to be considered is the connectivity parameters among the skills. Problem (1) is a compound

problem for problems (2) and (3), so the basic problems are (2) and (3). Furthermore, problem (2) is a problem to find

the optimal expansion strategy, problem (3) is a problem to find the optimal expansion strategy from some specified

skill or skills set.

mij =4.1, so let h=5, and m ij=mij+h. The adding results form the following matrix:

Insert Table 2 here

The process of finding the optimal expansion strategy is as follows.

The method will arbitrarily examine the skills or vertices in the subscript numerical order. The result of the examination

of the first two skills is shown as follows:

Insert Table 3 here

After the skill x3 has been examined, the arcs in bucket A0 no longer form a branching since they contain a cycle (x2,x3),

(x3,x2). At this point, the method shrinks this cycle into a vertex (or skill) v0. A new matrix or digraph resulting from

this shrinking is following:

Insert Table 4 here

The result of the examination of the skills for the above matrix or digraph is following:

Insert Table 5 here

At this point, the method has generated a maximum branching for the above matrix consisting of arcs (x4,v0), (x4,x1).

Using this branching, step 3 expands v0 back into its original cycle and adds arcs (x3,x2), (x2,x3) to the arcs (x4,v0),

(x4,x1) already in the branching. Next, arc (x3,x2) with the smaller weight is deleted from the branching so that only one

branching arc, namely (x2,x3) is directed into x3. The resulting branching consists of arcs (x4,x2), (x2,x3), (x4,x1). The

total weight of this branching equals 5.5+5.4+5.6= 16.5, which is the maximum possible weight.

So, the committee should select the candidate who has the skill x4. If no candidate has the skill x4, the problem becomes

problem (3).

Now suppose the committee prefers the candidate who only has the skill x2, then how does the committee expand his or

her skills so as to fit the position?

By adding a “skill” x0, the following matrix is formed:

Insert Table 6 here

By adding the constant h=6, the following matrix is formed:

Insert Table 7 here

The following result is reached:

Insert Table 8 here

Vol. 4, No. 8 International Journal of Business and Management

16

The shrinking process is performed because of the cycle (x4, x1), (x1, x4), and the corresponding result is as follows:

Insert Table 9 here

The next examination result is as follows:

Insert Table 10 here

The maximum branching is obtained which consists of the arcs (x2, v0), (x0,x2) , (x2,x3). Eliminating the (x1,x4) from

cycle (x1,x4) , (x4,x1) , finally, we get the optimal expansion strategy: (x0,x2) , (x2,x3), (x2,x4) , (x4,x1) with a maximum

weight 7.0+6.4+6.4+6.6=26.4. So the optimal expansion strategy is x2 x3, x2 x4 , x4 x1.

Furthermore, suppose the candidate the committee preferred has the skills x1 and x2, then how could the candidate

expand his or her skills so as to fit the position?

Add a new vertex x0 and arc (x0, x1) to the original digraph, and form a new matrix as follows:

Insert Table 11 here

The examination result is as follows:

Insert Table 12 here

The optimal expansion strategy has been obtained: x0 x1, x2 x3, x1 x4, i.e., x2 x3, x1 x4 with the total weight

6.4+6.5=12.9.

5. Conclusions

A heuristic method to find the optimal expansion strategy has been provided based on the digraphic concept with the

expansion parameters being general (symmetric or asymmetric, having cycles or no cycles). The optimality of the

method has been proven, and its applications in the personnel recruiting and training program is demonstrated step by

step. Some research problems are still open. For example, if the parameters are multidimensional or fuzzy, how can we

construct the corresponding method? And if the parameters are not additive, how can we define and design the

expansion strategy? Especially, if the information between the skills is provided in the form of the activation propensity

function, what do we do? Furthermore, if the skills are fuzzy, possibilistic or probabilistic, what do we do?

References

Feng J.W. (2001). Competence Set Expansion under Risk and Uncertainty. Journal of Systems Engineering and

Electronics, Vol.11, No.2, 655-679.

Larbani M. and Yu P.L. (2009). Two-Person Second-Order Games, Part2: Restructuring Operations to Reach a

Win-Win Profile. Journal of Optimization Theory and Application, January, 2009 online.

Li, H.L., and Yu, P.L. (1994). Optimal Competence Set Expansion Using Deduction Graphs. Journal of Optimization

Theory and Applications, Vol. 80, No.1, 75-91.

Shi, D.S. and Yu, P.L. (1996). Optimal Expansion and Design of Competence Set with Asymmetric Acquiring Costs.

Journal of Optimization Theory and Applications, Vol.88, No. 3, 643-658.

Yu P.L. and Larbani M. (2009). Two-Person Second-Order Games, Part1: Formulation and Transition Anatomy.

Journal of Optimization Theory and Application, January, 2009 online.

Yu, P.L., and Zhang, D. (1990). A Foundation for Competence Set Analysis. Mathematical Social Sciences, Vol.20,

251-299.

International Journal of Business and Management August, 2009

17

Table 1. The skill matrix

m(xi ,xj) x1 x2 x3 x4

x1 / 0.1 0.2 0.5

x2 0.2 / 0.4 0.4

x3 0.3 0.5 / 0.2

x4 0.6 0.5 0.3 /

Table 2. The adjusted skill matrix

m (xi ,xj) x1 x2 x3 x4

x1 / 5.1 5.2 5.5

x2 5.2 / 5.4 5.4

x3 5.3 5.5 / 5.2

x4 5.6 5.5 5.3 /

Table 3. The first two skills examination result

vertex examined V0 A0

 x1 x1 (x4,x1)

 x2 x1, x2 (x4,x1), (x3,x2)

 x3 x1, x2 , x3 (x4,x1), (x3,x2),(x2,x3)

Table 4. The new skill matrix after first shrinking process

 v0

x1 x4

 v0

/ / /

 x1 (5.2,
0.0) / 5.5

 x4 (5.4,
5.3) 5.6 /

Table 5. The examination for the new skill matrix

vertex examined V0 A0

 v0 v0 (x4,v0)

 x1 v0, x1 (x4,v0), (x4,x1)

 x4 v0, x1 , x4 (x4,v0), (x4,x1)

Vol. 4, No. 8 International Journal of Business and Management

18

Table 6. The skill matrix for new problem

m(xi,xj)

x0

 x1

x2

x3

x4

 x0 / /

1

/

/

 x1 / /

0.1

0.2

0.5

 x2 /

0.2

/

0.4

0.4

 x3 /

0.3

0.5

/

0.2

 x4 /

0.6

0.5

0.3

/

Table 7. The skill matrix after adding

m (xi,xj)

x0

 x1

x2

x3

x4

 x0 / /

7

/

/

 x1 / /

6.1

6.2

6.5

 x2 /

6.2

/

6.4

6.4

 x3 /

6.3

6.5

/

6.2

 x4 /

6.6

6.5

6.3

/

Table 8. The vertex examination

vertex examined V0 A0

 x0 x0

 x1 x0, x1 (x4,x1)

 x2 x0, x1, x2 (x4,x1), (x0,x2)

 x3 x0, x1, x2 , x3 (x4,x1), (x0,x2),(x2,x3)

 x4 x0, x1, x2 , x3 , x4 (x4,x1), (x0,x2),(x2,x3), (x1, x4)

Table 9. The vertex shrinking

 v0 x0 x2 x3

 v0

/

 / / /

 x0 0 / 7

 x1 (6.1, 6.4) / / 6.4

 x4 (6.2, 6.2) / 6.5 /

International Journal of Business and Management August, 2009

19

Table 10. The 2nd vertex examination

vertex examined V0 A0

 v0 v0 (x2,v0)

 x0 v0, x0 (x2,v0)

 x2 v0, x0 , x2 (x2,v0), (x0,x2)

 x3 v0, x0 , x2 ,x3 (x2,v0), (x0,x2) , (x2,x3)

Table 11. The 2nd vertex adding

m (xi,xj)

x0

X1

x2

x3

x4

 x0 /

7

/

/

/

 x1 / /

0

6.2

6.5

 x2 / 0

/

6.4

6.4

 x3 / 0

0

/

6.2

 x4 / 0

0

6.3

/

Table 12. The 3rd vertex examination

 vertex examined V0 A0

 x0 x0

 x1 x0, x1 (x0,x1)

 x2 x0, x1, x2 (x0,x1)

 x3 x0, x1, x2 , x3 (x0,x1), (x2,x3)

 x4 x0, x1, x2 , x3 , x4 (x0,x1), (x2,x3), (x1, x4)

