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Abstract 
The aim of this study was to formulate and analyse a model of ontogenetic growth cessation in pigs. The cessation 
of growth when an animal reaches its species-specific size in ontogeny is still a problem. Systemic factors that 
contribute to this process are unknown. The focus of the research is an analysis of the growth dynamic that 
explains some aspects of the problem. 
The method applied to meet the purpose of the study was mathematical modelling. To enhance the understanding 
of the growth trajectory in ontogeny an analytical model of growth in pigs was built. The model was formulated as 
a hybrid dynamic system with discrete-time, and continuum equations. The novelty of the study is a concept of 
ontogenetic growth in the pig. Both a new modelling technique, and new variables are introduced. A central theme 
of the study is an analysis of the growth trajectory bifurcation, and a description of the two emerged growth 
trajectories. A reading of a normal form of bifurcation applied to the growth trajectory bifurcation has been 
offered. 
The results suggest that ontogenetic growth in pigs is not continuous. The growth trajectory has bifurcation at the 
point the animals attain their individual maximum weight. At this point, two new growth trajectories emerge. On 
one trajectory, animals continue to grow till a species maximum weight is reached. On other trajectory, animals 
continue to live till obtainable life span is attained. The emerged trajectories are genetic channels that open the way 
to grow for the certain phenotypes. Ontogenetic growth stops when the feed conversion coefficient grows into 
infinity. 
Keywords: Ontogenetic Growth, Growth Trajectory, Maximum Weight, Feed Conversion, Hybrid Model, Order 
Parameter, Pitchfork Bifurcation 
1. Introduction 
The aim of this study is to investigate some aspects of ontogenetic growth in pigs by analysing dynamic of growth 
from 30 kg live weight up to the maximum weight. To meet the study purpose, a hybrid mathematical model was 
built. The model concerns the nutritional aspects of growth. It was formulated by combining standard continuum 
methods, and discrete-time difference equations techniques. In the model, the following two focal variables are 
explicitly included in the formulation, an invariant of growth, and a feed conversion coefficient. In the study, 
functional relations between relevant variables found in the experiments and field observations have been analysed. 
It is shown that growth dynamic is neither smooth nor continuous; there is bifurcation of the initial growth 
trajectory that causes two new growth trajectories to emerge. The novelty of the study is an innovative concept of 
the growth dynamic, and an approach to analysing bifurcation of the growth trajectory in pigs' ontogeny. 
1.1 Growth in Animals 
In this study, ontogenetic growth in animals has been analysed. Age and size at maturity are arguably the two most 
important life history traits of animals. Variation in both traits has severe effects on fitness. Genetic, 
developmental, and physiological mechanisms that control age and size at maturity are for the most part unknown. 
Nutrition and hormones play obvious and well-established roles in growth, but the natural mechanisms that cause 
the cessation of growth when an animal reaches a species-specific size remain among the great puzzles in biology 
(Nijhout, 2015). Growth dynamic analyses of animals such as the pig, provides a biological model for an 
understanding of growth in mammals including humans. The pig is an excellent biomedical model for humans. 
The swine has been used as a major mammalian model for studies because of the similarity in size and physiology, 
in organ development and disease progression (Lunney, 2007). Understanding how growth in animal is controlled 
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is a major goal of biological research for two reasons. First, from a medical perspective, it is important to 
understand what goes wrong in the numerous diseases that involve the loss of growth control. Second, from a 
wider biological viewpoint, it is important to understand how genes control animal size (Weinkove & Leevers, 
2000). 
1.2 Modelling Biological Processes 
Biological processes differ considerably from those that study physics. If physical science has well-established 
laws of inanimate nature then the life sciences have few, if any, recognized universal laws (Coveney et al., 2016). 
However, biological processes, while founded entirely upon physical laws, are not modelled in terms of them. Still, 
the both sciences develop by applying the same strategy: knowledge in the fields has been acquired by a means of 
experiments and models. Models or theories are needed to convert experimental data to knowledge (Brenner, 
2010). It is well-recognised that in biology and medicine, data do not translate readily into understanding, let alone 
treatments (Coveney et al., 2016). Moreover, much of the logic of the interactions in living systems is implicit. It 
follows that beyond a certain degree of complexity, armchair (qualitative) thinking is not only inadequate for 
understanding such systems, it can even be misleading (Noble, 2002). 
The typical reasons for constructing mathematical models are the following. The models enable predictions, act as 
guides for future experimentation, aid knowledge synthesis, and increase scientific understanding (Aumann, 2006). 
As pigs are well-known model animals in human physiology and medicine, the results of growth modelling in pigs 
can be useful to research on cancer, development, and longevity. 
1.3 Nonlinear Processes 
The physical world is mostly nonlinear. This observation is the warning to us not to make assumptions based on 
the traditional linear thinking (Stewart, 2011). In biological systems, interactions and processes are often nonlinear. 
In these cases, intuitive, verbal reasoning may be misleading; whereas mathematical techniques allow us to 
analyse the effects of many interacting biological processes (Schumacher et al., 2016). In biological systems, the 
nonlinearities enter through feedback mechanisms (Coveney & Fowler, 2005). The growth in animals is reportedly 
driven by such mechanisms. Evidence suggests that progressive decline in growth results from a genetic 
programme that occurs in multiple organs and involves the down-regulation of a large set of growth-promoting 
genes. This genetic programme does not appear to be driven simply by time, but rather depends on growth itself, 
suggesting that the limit on adult body size is imposed by a negative feedback loop. Current findings suggest that 
in mammals, body growth is limited, at least in part, by a negative feedback loop (Lui & Baron, 2011). 
In biology and medicine, models have typically been constructed by applying differential equations technique. 
While the continuum models are quicker and easier to implement, it can be difficult to relate system parameters to 
measurable biophysical quantities (Osborne et al., 2010). A major difficulty with this approach is that all the 
parameters within these equations are not usually known. Assuming unknown parameters continue to exist, one 
empirical option is to ‘tune’ them to reproduce biologically reasonable behaviour, although such an ad hoc 
procedure is clearly unsatisfactory (Coveney & Fowler, 2005). While modelling growth in animals, there is one 
more aspect to consider, namely a spatial heterogeneity of biological objects. Living organisms are heterogeneous 
systems, and this fact causes additional difficulty for modelling such objects. Moreover, growth has been 
identified as an important factor in the production of spatial heterogeneity since it can fundamentally change the 
observed dynamics of patterning mechanisms (Maini et al., 2012). It is essential to point out that differential 
equations fail to account for the emergence of large-scale inhomogeneities, and for the influence of inhomogeneity 
on the overall dynamic of biological systems; the problem is that the differential equation is not a convenient tool 
for this task (Louzoun et al., 2001). 
2. Materials and Methods 
The data set was obtained from experiments on growing domestic pigs, fed from 30 ± 6 kg up to 96 ±4 kg live 
weight. The pigs were housed and fed under non-industrial conditions, either in a pig testing station or in 
research facilities. The animals were kept loose in groups of up to four to a pen, or individually in pens, fed a dry 
balanced feed with unlimited access to water contingent on the experiment design, ad libitum, or a constrained 
diet, in accordance with the current body weight, adjusting the feed quantity once a week. The experiments were 
performed in compliance with Declaration of Helsinki, National legislation, and institutional rules. 
2.1 The Model's Variables 
Let M denote an individual animal current live weight, measured in kilograms. 
M = {M∈ ℝ + | 30 ≤ M ≤ 600}, an animal individual maximum weight, Mx = 600 kg. 
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'm' is an animal initial considered weight, measured in kilograms, m ≤ M, mo = 30 kg. 
Let t denote the chronological discrete current time, measured in days from animals' birth. 
t = {t∈ ℕ | 0 ≤ t < ∞}, ∆t = 1, 2, 3, ..., n. n∈ ℕ. 
'to' is time related to mo, to = 90 days. 
Let K denote the invariant of growth, nondimensional. 
K= {K∈ ℝ +| 1≤ K < 11}, Ko =1. 
Let Z denote the current feed conversion coefficient, nondimensional. 
Z= {Z∈ ℝ +| Zo ≤ Z ≤ ∞}, (Z = ∞) → (M = Mx)˅(M = Mxx). 
2.2 Hybrid Model 
In this study, two aspects of animal growth modelling have been taken into consideration: nonlinearity of the 
growth process, and heterogeneity of growing organisms. To address these aspects in the best possible way, a 
hybrid dynamic model was built. In broad, informal terms, a dynamic system is any collection of mathematical 
rules that determines the future behaviour of some system in terms of its state at any instant. More specifically, we 
consider two basic types of dynamic system: discrete, and continuous. In other words, a discrete dynamical system 
is a difference equation, and a continuous dynamic system is a differential equation, both kinds are deterministic 
(Stewart, 2011). Hybrid models have been built for systems with a mixture of continuous, and discrete-time 
dynamic. The models have often been used to capture the behaviour of systems that contain some sort of 
discontinuous events (Di Bernardo & Hogan, 2010). Mathematically, these systems entail continuous, and 
discrete-state or discrete-time variables. Mathematical modelling by hybrid dynamical systems is particularly 
important for understanding the nonlinear dynamic of biological and medical systems (Aihara & Suzuki, 2010). 
This reasoning suggests a possible explanation for the efficiency of discrete-time modelling technique. If we are to 
have chance to build an analytical model of ontogenetic growth, we need to consider diverse options; one option is 
a hybrid, discrete-time model that can outline the coarse dynamics of the same process without taking into 
consideration some implicit events that take place in the chosen discrete time unit. When the coarse outlines of the 
growth are clarified, a more detailed analyses could be applied. An advantage of this modelling technique is that 
this kind of models have no requirements as to the structure of the object or process. 
The model does not entail unknown, speculative parameters. In the model, only functional relations between 
variables that follow from the analyses of the data set have been considered. Some relevant aspects are addressed 
by applying the modelling technique. 
3. Results 
A detailed analysis of the data set has revealed the following mathematical relations between variables. The 
growth invariant 'K' has the following form: 

 𝐾 = ( ) (1) 

Parameter K is the same for the same weight animals regardless of their daily gain. In general form, the functional 
relations between variables are given by system (2). 

 
= 2𝐾 − 1 + ( )

( ) = ( )( )  (2) 

Equation (1) and system (2) are mathematical functions that follow from the analyses of the data set. 
3.1 Growth up to Individual Maximum Weight, Mx 
From equation (1) and system (2) the following two growth equations have been derived. 

 ∙ ∆∆ = ∙ ( )( )  ,  m ≤ M ≤ M  (3) 

 ∙ ∆∆ = ∙ ( )( )  , m ≤ M ≤ M  , (4) 
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where Mx denote an animal's individual maximum weight. Under the model conditions, this weight is 600 kg. To 
find out the corresponding Kx let us consider the following limit. 

 lim→ = √3  , 𝑤ℎ𝑒𝑟𝑒 (𝐾 → 𝐾 )| →   (5) 

From (5) it follows that numerically, 𝐾 = 5 + 3√3  = 10,19615 . Kx corresponds to Mx, and tx = 6,408 years 
(Stass, 2019). The next task is to find Zx that corresponds to Kx and Mx. From system (2) one can derive the 
following equation 

 ∙ ∆∆ = −  , 𝑚 ≤ 𝑀 ≤ 𝑀  (6) 

Substituting Mx and Kx into (6) we have Zx = 62,51. 
When individual maximum weight, Mx is attained, animals' growth stops. As a result, the feed conversion 
coefficient, Zx grows into infinity (Zx→∞). We can find growth rate under this condition. Let us consider equation 
(3). Taking limit (Zx→∞) in (3) we have  

 lim→ ( ∆∆ ) = ∙ ( ) , 𝑤ℎ𝑒𝑟𝑒 (𝐾 = 𝐾 )| →  (7) 

In a more convenient form, limit (7) is given by 

 ∙ ∆∆ = ∙ ( ) (7.1) 

In equation (7.1) M = Mx, K = Kx, and Z = ∞. Equation (7.1) describes growth rate in the animals, which have not 
only reached their maximum individual weight, Mx but have also passed through the bifurcation point and took on 
the growth trajectory 𝑀 | →  𝑀 | , where K1 = 10,04975. K1 corresponds to t1, the species obtainable life 
span, t1= 24,90 years (Stass, 2019). 

3.2 Growth Trajectory Bifurcation 

The normal form of this bifurcation is known as supercritical pitchfork bifurcation. Bifurcation takes place in the 
point (Mx, Kx, Zx). The initial stable trajectory (mo→M→Mx) at the point M = Mx loses its stability as the feed 
conversion coefficient, Zx grows into infinity (Zx → ∞). As a result, bifurcation shows up and the following two 
new growth trajectories emerge (Fig.1). One emerged trajectory is 𝑀 | →  𝑀 | . Second emerged 
trajectory is Mx →Mxx, where Mxx denote the species maximum weight, and the corresponding variables, Kxx, txx, 
and Zxx (Stass, 2019) will be used. 

In this section, we analyse bifurcation process and trajectory Mx →Mxx in detail. It should be noticed that during 
bifurcation, the feed conversion coefficient changes in the following mode Zx→ ∞ →Zxv, where Zxv denote the 
feed conversion coefficient on growth trajectory Mx →Mxx an instant after bifurcation. As a result, the initial point 
on the growth trajectory Mx →Mxx is (Mx, Kx, Zxv). There are two options to show this development. We start with 
the intuitively more obvious. Let us consider system (8). 

 ⎩⎨
⎧𝑍 = 𝑍 ∙ 𝐾  𝑍 = ( ) 𝐾 − 𝐾 =   (8) 

From the system (8), one can derive two necessary equations. The first one to consider is equation (9). 

 ∆∆ = 1 −  (9) 

Taking limit (Zx → ∞) in (9) we have 
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 lim→ ∆∆ = 1 (10) 

We can write this result, (10) in the following form 

 (𝑍 → ∞) ↔ ∆∆ = 1  (11) 

Second equation to consider is (12). 

 ∆∆ = −  (12) 

Equation (12) under condition (11) takes the following form 

 1 = −  (13) 

The change from Zx to Zxv in (13) is due to the development Zx→ ∞ →Zxv. From (13) it follows 

 𝑍 =  (14) 

Numerically, Zxv = 69,30 for a 600 kg heavy boar. 
There is an obvious explanation of this result. Limit (10) has revealed the condition under which ∆𝐾 = ∆𝐾  . 
This condition means that the point where trajectory (K→ Kx) finishes, is the same point where trajectory (Kx→ 
Kxx) starts. And this is the bifurcation point. In this point the development Zx→ ∞ →Zxv takes place. 
Second option to show the same result is the following. Let us consider equation (15). 

 ∆∆ = ( ) −  ,  𝑍 =  (15) 

Passage to the limit (𝑍 → ∞) in (15) gives 

 lim→ ∆∆ = ( ) (16) 

From (16) it follows 

 ∆∆ = ( ) ,  𝑍 =  (17) 

Numerically, Zxv in (17) is 69,30 the same result as in (14). 
We can summarise this section as follows. 

 𝑍 − 𝑍 =  𝐾 − 𝐾 = 0 

Biologically this means that the phenotypes that have passed through the bifurcation point and took on the growth 
trajectory Mx →Mxx start the trajectory with Z = Zxv. The transition from Zx to Zxv occurs during bifurcation. The 
transition is a discrete, qualitative process that defies estimation of its time frame. 
3.3 Growth between the Bifurcation Point, and the Inflection Point 
On the growth trajectory Mx→ Mxx after bifurcation, the next point to consider is an inflection point (IP). To find 
out the inflection point the two equations (18) and (19) have been analysed. 

 K − K ∙ − 2 = 0 (18) 

 Z = ( ) (19) 
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There is a standard method to find out an inflection point in equation (18). Let MxxIP denote the inflection point. 
MxxIP = 2moKx. Numerically, MxxIP = 611,769 kg. Substituting MxxIP into (18) we have KxxIP that corresponds to 
MxxIP. KxxIP = 10,38866. And, we can find out ZxxIP substituting KxxIP into (19). As a result, ZxxIP that corresponds to 
MxxIP numerically is ZxxIP = 65,02. Let txxIP denote the age that corresponds to MxxIP. One can find it from the 
following condition (K= KxxIP)˄(M= MxxIP). It follows txxIP = 6,652 years. As age tx that corresponds to Mx is tx = 
6,408 years, then for 600 kg heavy animals, time span between the bifurcation point, and the inflection point is 89 
days. In the animals, weight difference between the bifurcation point, and the inflection point is 11,769 kg. At this 
IP growth rate starts to increase suggesting that between the bifurcation point, and IP growth has complicated 
features, since at Mx growth has stopped. From the analyses it is reasonable to infer that during this time span 
changes in the growth regulation occur. Growth rate between the bifurcation point Mx, and IP, MxxIP is given by 
equation (20). 

 ∙ ∆ \∆ \ = ∙ ∙( ) (20) 

Growth rate between IP, MxxIP, and the species maximum weight, Mxx is given by equation (21). 

 ∙ ∆ \∆ \ = ∙ ∙∙  (21) 

3.4 Feed Conversion Coefficient, Z 
Let us consider equation (4). Equation (4) describes ontogenetic growth rate in the weight range mo ≤ M ≤ Mx. 
There is no growth if 

 ∆∆ = 0  

This is possible under condition 

 𝑍(2𝐾 + 1) − 2𝐾 = 0 (22) 

From (22) follows that Z|K=Ko = Zo. Numerically, Zo = 2/3. It follows that under optimal environmental and 
nutritional conditions animals can grow under condition that Zo > 2/3. This result has been used in the model. 
4. Discussion 
Our findings support the opinion that animals have systemic size regulating mechanisms, which impose a certain 
limit on growth, that results in a species-specific size. However, the opinion that these mechanisms are 
independent of growth rate and development time (Nijhout, 2015) the model does not support. Indirectly, both 
growth rate and development time in growth regulation are involved. This subtle, implicit involvement of the traits 
is due to dynamic of the feed conversion coefficient. 
4.1 Ontogenetic Growth Trajectory in Pigs 
While there has been much research on growth in pigs, bifurcation of the growth trajectory was not noticed. 
Bifurcation is a sudden, qualitative, discrete change in the course of the growth trajectory that causes some 
different trajectories to emerge. This process is inherently, in this case physiologically, conditioned. The animals 
that can pass through the bifurcation point take on one of some emerged growth trajectories. The ability to pass 
through the bifurcation point possess a limited number of animals; evidently, this quality is genetically mediated. 
Physiologically, this bifurcation is possible describe as the initiation of changes in the growth regulation, which 
concern the whole organism. In this case we can speak about the changes in which the systemic growth regulating 
factors are involved. 
4.2 Growth Trajectory Bifurcation 
In this section I concentrate on bifurcation details, as I believe them to be the least intuitively obvious, and for 
growth dynamic the most important. It should be noticed that only the animals that can attain their individual 
maximum weight can pass through bifurcation. It is thought that this constraint is an indication that the phenotypes 
are conditioned to continue to grow on the emerged trajectories. However, it is understood that the animals cannot 
take on one of the emerged trajectories at random; rather, this process has contingent nature. For the phenotypes, 
the process of taking on the right trajectory is likely genetically mediated. Bifurcation occurs when the animals 
attain their individual maximum weight. There is a development that causes bifurcation to show up, and that 
indicates that bifurcation has occurred. This development is Zx→ ∞, during which the feed conversion coefficient 
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grows into infinity. Mathematically, this is passage to the limit. An instant later, two new growth trajectories 
emerge. 
On one trajectory 𝑀 | →  𝑀 | animals continue to live but they do not grow, so that the maximum weight 
remain unaffected for years (Fig.1). On this trajectory, a critical precondition of long living is the capacity to 
maintain individual maximum weight constant. Other relevant feature of the trajectory is that the feed conversion 
coefficient for all animals is equal to infinity. The two above mentioned traits, namely the capacity to maintain 
weight constant for years while the feed conversion coefficient is equal to infinity, are intrinsically related. This 
trajectory determines dynamic of growth for a set with certain phenotypes in the life stage after bifurcation. As 
long as the phenotypes comply with the trajectory, they can enjoy a stable and predictable life stage till the 
obtainable life span is attained. 

 
Figure 1. Pitchfork bifurcation of the growth trajectory. 

• Bifurcation point (Mx, tx). Bifurcation is a sudden, qualitative, discrete change in the course of the growth 
trajectory that causes two different trajectories to emerge. 
♦ Inflection point (MxxIP, txxIP). At this IP growth rate starts to increase. 
Mx - individual animal's maximum weight, tx - corresponding age. Mxx - the species maximum weight, txx - 
corresponding age, txx = 12,69 years. t1 - the obtainable life span, t1= 24,90 years. 

 
On second trajectory Mx →Mxx, animals continue to grow till a species maximum weight is attained (Fig.1). This 
trajectory is much more complicated than the first one. On this trajectory, the growth in animals starts again and 
can continue till the species maximum weight is reached. The phenotypes that take on this trajectory resume the 
growth that has stopped at the bifurcation point. It is important to notice that the growth dynamic is completely 
different compared to that before bifurcation. The main point to notice is that the feed conversion coefficient, Zx 
has changed during bifurcation. Mathematically, it is one instant that separates Zx = 62,51 and Zxv = 69,30. This 
change in the growth rate is a shift towards a lower rate of growth at the point the growth is due to resume. It is 
important to notice how this change takes place. The sequence of events is the following: (Zx→ ∞ →Zxv). In other 
words, the feed conversion coefficient at first grows into infinity and only then takes its initial value, Zxv on this 
trajectory. 
After bifurcation, the initial point on this trajectory is as follows (Mx, Kx, Zxv). The only visible change that has 
happened during bifurcation was substitution of Zx for Zxv. Under the model conditions, it is enough for the 
trajectory to set on, and for the growth to resume. The next stage of growth is from this point (Mx, Kx, Zxv) up to an 
inflection point (MxxIP). The inflection point on the growth trajectory is the point at which the trajectory's dynamic 
changes. At this inflection point, growth rate starts to increase (Fig.1). Before the inflection point, it is from an 
instant after bifurcation up to the inflection point the growth rate seems does not increase. This period of growth 
for 600 kg heavy boar takes 89 days. The growth during this time span has an unusual feature. In this growth stage, 
the rate of growth seems has tendency to decrease. This growth dynamic looks like an impetus, which was received 
at the bifurcation point and that gradually dissipates towards the inflection point. It is feasible that during this time 
span the physiological changes that concern growth regulation to comply with the trajectory take place. At the 
inflexion point, the growth rate starts to increase, and the animals continue to grow up to the species maximum 
weight, Mxx is attained. 
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When the species maximum weight, Mxx has been attained, animals' ontogenetic growth stops. As a result, the feed 
conversion coefficient, Zxx grows into infinity (Zxx → ∞). This development takes place at M = Mxx, K= Kxx, and 
age txx = 12, 69 years (Stass, 2017). These phenotypes can continue to live till obtainable life span is attained, 
provided their individual maximum weight remain constant. In this relevant aspect, the two trajectories (𝑀 →𝑀 | → 𝑀 | ) and (𝑀 → 𝑀 | → 𝑀 | ) have nontrivial similarities (Fig.1). It follows that the 
option to attain the obtainable life span is to maintain the individual maximum weight or the species maximum 
weight constant for years. Under the model conditions, stability of the weight is an essential trait related to 
longevity. It is reasonable to infer that in the animals, there is a trade-off between live weight, life span, and feed 
conversion. 
In general terms, this bifurcation is possible describe as follows. Before bifurcation, animals grow on a continuous, 
phenotype-dependent trajectory. The phenotypes that cannot reach their maximum weight (Stass, 2019) cannot 
enter this bifurcation. At the point the animals attain their individual maximum weight, initial trajectory loses its 
stability as Zx grows into infinity (Zx→ ∞). As a result, bifurcation shows up and two new growth trajectories 
emerge. In terms of systems theory, this is supercritical pitchfork bifurcation. The emerged trajectories are 
asymptotically, but not globally, stable. This means that as long as phenotypes can comply with the trajectory, they 
can enjoy a predictable life stage. In other words, the emerged trajectories are genetic channels that open the way to 
grow for the phenotypes that can comply with the conditions. These channels lead to the obtainable life span. 
Under the model conditions this is the advance that enables the phenotypes to attain the species obtainable life span. 
In this study, we talk about animals and it is feasible that the animals take on one of the emerged trajectories 
contingent on phenotype, and not at random. Similar analyses of growth in humans would be of big advantage for 
research on senescence and life span. 
4.3 Feed Conversion Coefficient, Z 
The feed conversion coefficient is an intricate trait. It was not accounted for in many studies. The trait is also 
highly complex in nature, because it is affected by much more than diet composition (Patience et al. 2015). While 
there has been extensive research on the trait, the trait's dynamic in animals' ontogeny is poorly understood. An 
important aspect of feed conversion coefficient is that this trait is not functional throughout all life span in animals. 
Many animals, after attainment of maximum individual weight can live for years with the feed conversion 
coefficient equal to infinity. Besides, in systems dynamic terms, the feed conversion coefficient Z, is the order 
parameter; it causes the growth trajectory to bifurcate at Z=Zx, and Z=Zxx. Z is always positive, and may be less 
than or greater than 1 contingent on growth phenotype and growth conditions. Animals can grow if Z ˃ 2/3 and Z 
≠ ∞. 
This study offers a reading of the dynamic of the feed conversion coefficient in pigs' ontogeny. In animals, live 
weight increase (mo→M→Mx) corresponds to (Zo→Z→Zx→ ∞), and (mo→M→Mx→Mxx) corresponds to 
(Zo→Z→Zx→∞→Zxv→ZxxIP→Zxx→ ∞). This dynamic is nonlinear and as yet poorly understood. 
It should be noticed that Zx is unstable and exists only one instant, the bifurcation instant. This means that Zx is not 
observable and can only be calculated. The relation between Zx and Zxv is the following 

 𝑍 − 𝑍 =  (23) 

4.4 Invariant of Growth, Parameter K 
Growth modelling depends critically on the variables that have been applied for the task to complete. In this 
respect, parameter K is a focal variable introduced to model growth in animals. Parameter K is the growth invariant, 
it is the same for the same weight animals. Parameter K is a function of the current weight, M that is a continuous 
variable, and current time, t which is a discrete variable. Both hybrid quality of the parameter K and hybrid 
formulations of the weight dynamic make the model an appropriate tool for studying growth in animals. As a result, 
it imposes constraints on functional relations between the variables that are used in the model. Parameter K is 
species-specific; it serves to model ontogenetic growth in domestic pigs. The fact that parameter K is 
species-specific, makes the whole model species-specific. This results from the constraints that parameter K 
imposes on other variables. It has the consequence that parameter K is a relevant variable in the model. In the 
animals' ontogeny, the dynamic of parameter K is as follows. On one trajectory (Ko→K→ Kx →K1), on other 
trajectory (Ko→K→ Kx → KxxIP → Kxx →K1). 
 
5. Conclusions 
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o In the course of the ontogenetic growth, bifurcation of the growth trajectory is a regular process. As a result, two 
new growth trajectories emerge. Bifurcation initiates changes in the growth regulation that concern the whole 
organism. The changes in the growth regulation occur in 89 days while animals grow between the bifurcation point, 
and the inflection point. 
o During bifurcation, a change from Zx to Zxv occurs in the following mode Zx→ ∞ →Zxv. This change in the feed 
conversion coefficient is a discrete, intrinsically determined switch in the course of the growth trajectory. 
o Zx is unstable and exists only one instant, the bifurcation instant. This means that Zx is not observable in 
experiments; it can only be calculated, and analysed in mathematical models. 
o In animals' ontogeny, the feed conversion coefficient, Z is the order parameter; it causes the growth trajectory to 
bifurcate, and it modulates growth rate and the rate of ontogeny. Animals can grow if Z ˃ 2/3 and Z ≠ ∞. 
Ontogenetic growth stops when the feed conversion coefficient grows into infinity. 
o Through the bifurcation point can pass only some phenotypes. These phenotypes are conditioned to take on one 
of the emerged trajectories. The phenotypes are thought take on the trajectories in close accordance with their 
genetic determinants. 
o After bifurcation, as long as the phenotypes can comply with their trajectory, they can enjoy a stable and 
predictable life stage. 
o The emerged trajectories are genetic channels that open the way to grow for the certain phenotypes. Under the 
model conditions, these trajectories are the channels that enable the phenotypes to attain the species life span. 
o In animals' ontogeny, three sets with growth phenotypes are observed. One set with phenotypes that cannot 
reach their individual maximum weight. One set with phenotypes that grow on trajectory 𝑀 → 𝑀 | → 𝑀 | . And one set with phenotypes that grow on trajectory M →Mx →Mxx. 
o In ontogeny, the stability of weight is an essential trait related to longevity. The condition to attain obtainable life 
span is to maintain maximum weight constant for years. Research suggests that in pigs there is a trade-off between 
live weight, life span, and feed conversion. 
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