DNA Barcoding of Cyprinid Fish *Chagunius chagunio* Hamilton, 1822 from Phewa Lake, Nepal

Bhaba Amatya

1 Prithvi Narayan Campus, Pokhara, Tribhuvan University, Nepal

Correspondence: Bhaba Amatya, Prithvi Narayan Campus, Pokhara, Tribhuvan University, Nepal. Tel: 98-0-654-4253. E-mail: bhabaamatya@yahoo.com

Received: September 1, 2019 Accepted: September 22, 2019 Online Published: September 28, 2019
doi:10.5539/ijb.v11n4p88 URL: https://doi.org/10.5539/ijb.v11n4p88

Abstract

The present study is the first of its type that uses a technique of DNA barcoding to determine identification and relationship of a species of fish from Phewa lake, Nepal. The mitochondrial DNA from two ethanol-preserved samples of fish, randomly collected from Phewa lake, was extracted using Gene AllExgene™ tissue extraction kit. 650 base pair of mitochondrial cytochrome c oxidase subunit 1 (CO1) was amplified using a cocktail of four primers and was sequenced bidirectionally using Sanger sequence method. The DNA sequences were edited using AliView software. The sequences confirmed *Chagunius chagunio* as their alignment with 16 reference sequences belonging to *Chagunius chagunio* in the NCBI GenBank, scored highest percentage of Query Cover (75% to 100%) and Percentage Identity (97.29% to 100%). The MEGA software analysed the DNA sequences to obtain their corresponding protein sequences. The DNA sequences were submitted to the GenBank and accession numbers (MN087472 and MN087473) were obtained. Clustal Omega software analysed multiple sequence alignment among 19 homologous DNA sequences of *Chagunius chagunio* from India, Bangladesh and Phewa lake, Nepal. The percentage of similarity among the aligned sequences was calculated as 39.3%. Based on the neighbour joining tree, the *Chagunius chagunio* of Phewa lake is found closely related with *Chagunius chagunio* of Bangladesh.

Keywords: DNA Barcode, *Chagunius Chagunio*, Cyprinid Fish, CO1

1. Introduction

The cyprinid, *Chagunius chagunio*, commonly called ‘rewa’ in Nepal, is distributed in India, Bangladesh, Pakistan, Thailand, Myanmar and Nepal. It is a least concerned species in IUCN red list status (2014). In Nepal, it is a vulnerable species of fish and is distributed in different rivers of the country, including Phewa lake, Bagmati, Trishuli, Gandaki, Bheri, Karnali and Mahakali rivers of Nepal.

In Phewa lake, the cyprinid fishes are facing steep competition with the invasive species, mainly tilapia (*Oreochromis niloticus* and *O. mossambicus*). Therefore, conservation of the cyprinid species is a special concern in the recent years. One of the best ways to protect a species is to preserve its genetic resources and genetic diversity besides the preservation of the ecosystem (Hedrick, 2001). As there is complete lack of information on genetic analysis of fish species in the lake, I have barcoded a single species of cyprinid fish from the lake using partial sequence of mitochondrial CO1 gene. The reasons for the selection of mitochondrial gene are: it is a haploid genome; it shows high copy number and lacks introns; it exhibits low recombination and is maternally inherited.

Species identification through genetic analysis is almost always efficiently solved by the use of a standardized molecular approach, such as, the DNA barcoding, using CO1 gene (Hebert et al., 2003; Hjibabei et al., 2007). The most commonly used gene that is used as the barcoding marker, is protein coding gene cytochrome-c oxidase 1 with base length of 648 bp (Zhang & Hewitt, 1997).

The sequence of 648 base pair of mitochondrial cytochrome c oxidase 1 gene (CO1) is used as the DNA barcode, which is highly reliable in identifying most of all animal groups. The advantage of using CO1 is that it is short enough to be sequenced quickly and cheaply yet long enough to identify variations among species. The suitability of CO1 gene for species identification is due to the fact that its mutation rate is often fast enough to distinguish closely related species and also because its sequences are conserved among conspecifics. High mutation rate in CO1 causes intraspecific variation which leads to species delimitation/identification (Hlaing et al., 2009; Wheat & Watt, 2008; Williams & Knowlton, 2001). Congeneric species of animals show more than 2% sequence
divergence (Hebert et al., 2003). Intraspecific divergences in mitochondrial genes in animal species are rarely higher than 2% and most are less than 1% (Avise, 2000). The higher divergence occurs when the species are geographically isolated. Many causes of high divergences are due to unclear status and taxonomic uncertainty (Avise & Walker, 1999).

Mitochondrial genomes are small (usually less than 20,000 bp), circular and maternally inherited (Boor, 1999). These genes are preferably used as universal markers in animal DNA barcoding as they are being maternal (Birky, 2001). The DNA genome is high in number per cell and are useful for population genetic and phylogenetic studies (Hu et al., 2004; McManus et al., 2004). Mitochondrial DNA is regarded as an important tool in the study of evolutionary relationships among various taxa owing to its conserved protein coding regions, high variability in non-coding sequences, and lack of recombination (Oliver et al., 1983; Ingman et al., 2000). Sequence divergence accumulates more rapidly in mitochondrial DNA than in nuclear DNA owing to a faster mutation rate and lack of repair system, meaning that it often contains high levels of informative variation (Khan et al., 2008). The mitochondrial CO1 gene offers different observations in environmental science and systematic of fishes (Hubert et al., 2008) and permits researchers to receive ambiguous species to accomplish data practically and rapidly (Cowan et al., 2006).

The DNA barcodes are stored in an open-access digital library (Barcode of Life Data Systems and GenBank/National Center for Biotechnology Information) that can be used to compare the DNA barcode sequences of unidentified samples from the field by matching them to known sequences with associated species names in the database, so that users can recognize species and retrieve information about them quickly and cheaply.

The DNA barcoding of organism is effective in species identification at all stages of life, differentiating among phenotypically alike species (cryptic species) and identifying products in commerce, e.g. herbal supplements, wood, skin, bone and other animal parts. Based on the advantages of DNA barcoding, scientists all over the world have established the database and repositories of mitochondrial DNA sequences for all animals, including fish, and is adopted as a global bio-identifying system for animals in recent years.

2. Methods and Methodology

2.1 Study Area

Phewa lake is located at the southern part of kaski district about 200km west from Kathmandu Valley. The lake is at an altitude of 742m (2,434ft) and covers an area of about 4.43km² (1.7sq m) (Rai, 2000). It has an average depth of about 8.6 m (28ft) and a maximum depth of 24m (79ft) (Shrestha, 2003). The maximum water capacity of the lake is approximately 43,000,000 cubic meters (35,000 acre ft) (Pokharel, 2003). Cyprinid is the dominant fish species in Phewa lake in terms of species richness and abundance (Giri, 2013). DNA extraction, polymerase chain reaction and gel electrophoresis was carried out at the Centre for Molecular Dynamics Nepal (CMDN) in Kathmandu, Nepal.

2.2 Sample Collection

The fish specimens were caught in the wild and morphologically identified in situ by visual inspection. Two samples, each of approximately 100 mg of white muscle tissue, and fin clip from two individual fish from the lake were collected and preserved in 95% ethanol.

2.3 Mitochondrial DNA Extraction

The DNA was extracted by using Gene AllExgene™tissue extraction kit. The following steps were involved in the purification of DNA:

1. 20mg of tissue was minced with a sharp scalpel as small as possible and put in a 2ml tube and mixed with 200ul of TL buffer and vortexed for 15 seconds. (This step was for lysis of cell of the sample).
2. 20ul of proteinase K solution was added to it and mixed by vortexing. Incubation was done at 56°C for overnight for complete lysis. (This step was for breaking down of cell protein).
3. 400ul of buffer TB was added and mixed by vortexing. The tube was spun down briefly to remove any drops from inside of the lid.
4. The mixture was transferred into the spin column for centrifugation for 1min at 6000xg and replaced the collection tube with new one.
5. 600ul of Buffer BW was added and centrifuged for 30sec at 6000xg above and replaced the collection tube with a new one.
6. 700ul of buffer TW was added and centrifuged for 30 sec at 6000xg above. The filtrate was discarded and the SV column was reinserted back into the collection tube.

7. The mixture was centrifuged at full speed (above 13000xg) for 1min to remove residual wash buffer and placed the SV column in a fresh 1.5ml tube.

8. 100ul of buffer AE was added and incubated for 2min at room temperature and centrifuged at full speed (>13000xg) for 1min. and stored at -20°C.

2.4 Amplification and Sequencing of CO1 Fragment

The partial CO1 segment of mitochondrial DNA was targeted for DNA barcoding using cocktail of four fish specific primers (Table 1) which amplified 650 bp region of the gene (Ivanova et al., 2007).

<table>
<thead>
<tr>
<th>Target gene</th>
<th>Primer ID</th>
<th>Sequence 5'-3'</th>
<th>Band size (bp)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>VF2_t1</td>
<td>TGTAAAACGACGGCCAGTCAACCAACCACAAAGACATTGGCAC</td>
<td>650</td>
<td>Ivanova et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>FishF2_t1</td>
<td>TGTAAAACGACGGCCAGTCTAATTCATCAGGATATCCGGGCAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FishR2_t1</td>
<td>CAGGAAACAGCTATGACACTTCAGGGTGACCCGAAGAATCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FR1d_t1</td>
<td>CAGGAAACAGCTATGACACCTCAGGGTGTCGCAARAA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A total of 25µl PCR final reaction was prepared containing 12.5µl of 2× Qiagen multiplex master mixes, 2.5µl of 5× Q-solution, 0.25µl 10pMol/µl fish CO1 cocktail primer sets and 2µl of extracted DNA. The thermocycling (MJ research Tetrad PTC-225 Thermal cycler, USA) condition was 95°C for 15 min followed by touch down PCR of 5 cycles at 94°C for 60 secs, 48°C for 50 sec and 72°C for 50 sec followed by 35 cycles at 94°C for 60 secs, 50°C for 50 sec and 72°C for 50 sec with the final extension at 72°C for 5 min. The amplified 650 bp target PCR product was visualized in Gel-Doc, (Maor Scientific TM) under 2% agarose gel electrophoresis. Both the samples amplified positive.

![Figure 1. Cytochrome Oxidase-1 PCR run on 1.5% agarose gel with bands appearing at approximately 650bp](Fish sample codes: W-BA-F01, W-BA-F02)

The amplified PCR products were purified using enzymatic clean up (ExoSAP-IT) removing unconsumed dNTPs and primers and sequencing reactions were performed in a MJ Research PTC-225 Peltier Thermal Cycler using an ABI PRISM® BigDyeTM Terminator Cycle Sequencing kits with AmpliTaq®DNA polymerase (FS enzyme) (Applied Biosystems), following the protocols supplied by the manufacturer. Single-pass sequencing was performed on each template using species specific both forward and reverse primers. The fluorescent-labeled fragments were purified from the unincorporated terminators with BigDye®XTerminator™ purification protocol. The samples were re-suspended in distilled water and subjected to electrophoresis in an ABI 3730xl sequencer (Applied Biosystems).

2.5 Data Analysis

The two sequence reads of each sample were processed for trimming followed by assembling via AliView software (Larsson, 2014). The conversion website Endmemo was used to calculate GC- content and the length of the sequences. To confirm the identity of the amplified sequences, I conducted BLAST (Basic Local Alignment Search Tool) searches by inputting the FASTA format of the sequences using the megablast search for highly
similar sequences in the GenBank (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The DNA sequences were submitted to GenBank to obtain accession numbers. A software program MEGA 3.1 (Molecular Evolutionary Genetics Analysis, MEGA Inc., Englewood, NJ) was used to obtain protein sequence. A new multiple sequence alignment program called Clustal Omega (EMBL-EBI, 2019) was used to align the DNA sequences of the samples with the reference sequences of the GenBank.

3. Result

3.1 DNA Barcode

FASTA format of the DNA barcodes of the fish samples from Phewa lake are given below:

```
>MN087472
Chagunius chagunio cytochrome oxidase subunit 1 (CO1) gene, partial cds; mitochondrial
AGAATCGAAGATGTTGTATATGAAAAATTTGGATCCCCACCCCCTGCCGGGTCGAAGAATGTGGTGTTGAGGTTACG
ATCTGTTAGAAGATATTGTAATTCCTGCGGCTAAAACTGGAAGGGATAAAGAAGCAGCACGGCAGTTACAAGCACA
GATCACACAAAATTGGATCCCCACCCCCTGCCGGGTCGAAGAATGTGGTGTTGAGGTTACG
TTGCTGCCAATGTTAGAAACACCCAGCTATGATGAAAGGGGGAAGCATATATATATATATGAGGATGAGGATGGAAT
AGTACACAAATTTGGATCCCCACCCCCTGCCGGGTCGAAGAATGTGGTGTTGAGGTTACG

[GC- content: 44%, DNA sequence length: 666bp]
```

```
>MN087473
Chagunius chagunio cytochrome oxidase subunit 1 (CO1) gene, partial cds; mitochondrial
CGAAGAATCAGAACAGGTGTTGATATAAAATTGGATCCCCACCCCCTGCCGGGTCGAAGAATGTGGTGTTGAGGTT
ACGATCTGTTAGAAGTATTGTAATTCCTGCGGCTAAAACTGGAAGGGATAAAGAAGCAGCACGGCAGTTACAAGC
ACAGATCACACAAAATTGGATCCCCACCCCCTGCCGGGTCGAAGAATGTGGTGTTGAGGTTACG
TTAATTGCTGCCAATGTTAGAAACACCCAGCTATGATGAAAGGGGGAAGCATATATATATATATGAGGATGAGGATGGAAT
AGTACACAAATTTGGATCCCCACCCCCTGCCGGGTCGAAGAATGTGGTGTTGAGGTTACG

[GC- content: 44%, DNA sequence length: 669bp]
```

The BLAST result showed significant alignment of the DNA sequence of the fish samples from Phewa lake with the 16 reference sequences of Chagunius chagunio from GenBank belonging to accession numbers: AP011373.1, JX066746.1, KF742437.1, KJ476811.1, KJ476810.1, KJ476809.1, KJ476808.1, KU667387.1, MK029815.1, KY853031.1, MG604366.1, KY290058.1, MH545566.1, MG736389.1, MH102304.1 and JN965199.1. (Table 2)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Query cover</th>
<th>E-value</th>
<th>Percent Identity</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>75 % to 100%</td>
<td>0.0</td>
<td>97.29% to 100%</td>
<td>Chagunius chagunio</td>
</tr>
</tbody>
</table>

3.2 Multiple Sequence Alignment of DNA Sequences

Multiple Sequence Alignment among 19 homologous DNA sequences of Chagunius chagunio was carried out, among which two sequences belonging to MN087473 and MN087472 are from Phewa lake, four sequences belonging to MK572094, MH102304, MK572092 and MK572093 are from Bangladesh and the remaining are from India.

```
MG604366.1
-----------------------------

KY853031.1
-----------------------------CCG-----------------------3

MK029815.1
-------------ATTGGCACCTTTTTAATCTTGATATTGTTGCGCTGAGC-----CGG----------38

KY290058.1
-----------------------------

JX066746.1
-------------AAAGACATTGGCCTTTTTAATCTTGATATTGTTGCGCTGAGC-----CGG----------44
```
KJ476811.1 ----------------TCTTTATCTTGTATTTGGTGCCTGAGC-----CGG--------- 30
KJ476810.1 ----------------TCTTTATCTTGTATTTGGTGCCTGAGC-----CGG--------- 30
MK572094.1 ----------------TCTTTATCTTGTATTTGGTGCCTGAGC-----CGG--------- 30
KU667387.1 ----------------TCTTTATCTTGTATTTGGCCTGAGC-----CGG--------- 30
MG736398.1 ----------------TCTTTATCTTGTATTTGGTGCCTGAGC----- CGG--------- 4
KJ476808.1 ----------------TCTTTATCTTGTATTTGGTGCCTGAGC-----CGG--------- 30
MK572092.1 ----------------TCTTTATCTTGTATTTGGTGCCTGAGC-----CGG--------- 30
MK572093.1 ----------------TCTTTATCTTGTATTTGGTGCCTGAGC-----CGG--------- 30
KF742437.1 ----------------TCTTTATCTTGTATTTGGTGCCTGAGC-----CGG--------- 30
JN965199.1 --- 0
MH545566.1 --- 0
MN087472.1 --AGAATCAGAACAGGTGTTGATATAAAATTGGATCCACCCACCCCCCTGCGGTTGAAGAA 58
MN087473.1 GAAGAATCAGAACAGGTGTTGATATAAAATTGGATCCACCCACCCCCCTGCGGTTGAAGAA 60
MH102304.1 ---CCCCTGCCGCGTCAAAAAA 20

MG604366.1 -----------------ATAGTAGGAACCTGCTTTAAGTCTCCTCATTCGAGCGAAC- 40
KY853031.1 -----------------ATAGTAGGAACCTGCTTTAAGTCTCCTCATTCGAGCGAAC- 44
MK029815.1 -----------------ATAGTAGGAACCTGCTTTAAGTCTCCTCATTCGAGCGAAC- 79
KY290058.1 -----------------ATAGTAGGAACCTGCTTTAAGTCTCCTCATTCGAGCGAAC- 39
JX066746.1 -----------------ATAGTAGGAACCTGCTTTAAGTCTCCTCATTCGAGCGAAC- 85
KJ476811.1 -----------------ATAGTAGGAACCTGCTTTAAGTCTCCTCATTCGAGCGAAC- 71
KJ476810.1 -----------------ATAGTAGGAACCTGCTTTAAGTCTCCTCATTCGAGCGAAC- 71
MK572094.1 -----------------ATAGTAGGAACCTGCTTTAAGTCTCCTCATTCGAGCGAAC- 71
KU667387.1 -----------------ATAGTAGGAACCTGCTTTAAGTCTCCTCATTCGAGCGAAC- 71
MG736398.1 -----------------ATAGTAGGAACCTGCTTTAAGTCTCCTCATTCGAGCGAAC- 45
KJ476808.1 -----------------ATAGTAGGAACCTGCTTTAAGTCTCCTCATTCGAGCGAAC- 71
MK572092.1 -----------------ATAGTAGGAACCTGCTTTAAGTCTCCTCATTCGAGCGAAC- 71
MK572093.1 -----------------ATAGTAGGAACCTGCTTTAAGTCTCCTCATTCGAGCGAAC- 71
KF742437.1 -----------------ATAGTAGGAACCTGCTTTAAGTCTCCTCATTCGAGCGAAC- 71
JN965199.1 -----------------ATAGTAGGAACCTGCTTTAAGTCTCCTCATTCGAGCGAAC- 13
MH545566.1 -----------------ATAGTAGGAACCTGCTTTAAGTCTCCTCATTCGAGCGAAC- 40
MN087472.1 TGTTGGTTGAGGTTAGTTAGATATTTGTAATTCCTGGCTAAACACTGGAAG 118
MN087473.1 TGTTGGTTGAGGTTAGTTAGATATTTGTAATTCCTGGCTAAACACTGGAAG 120
MH102304.1 TGTTGGTTGAGGTTAGTTAGATATTTGTAATTCCTGGCTAAACACTGGAAG 80

MG604366.1 TGAGCCAACCCGGATACCTTCTAGCCGACGATCAAATCTCAATGTTAATCGTTACCGCCC 100
KY853031.1 TGAGCCAACCCGGATACCTTCTAGCCGACGATCAAATCTCAATGTTAATCGTTACCGCCC 104
MK029815.1 TGAGCCAACCCGGATACCTTCTAGCCGACGATCAAATCTCAATGTTAATCGTTACCGCCC 139
KY290058.1 TGAGCCAACCCGGATACCTTCTAGCCGACGATCAAATCTCAATGTTAATCGTTACCGCCC 99
JX066746.1 TGAGCCAACCCGGATACCTTCTAGCCGACGATCAAATCTCAATGTTAATCGTTACCGCCC 145
KJ476811.1 TGAGCCAACCCGGATACCTTCTAGCCGACGATCAAATCTCAATGTTAATCGTTACCGCCC 131

**** ** **
<table>
<thead>
<tr>
<th>Accession</th>
<th>Sequence</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>KJ476810.1</td>
<td>TGAGCCAACCCGGATACCTTCTTAGGCCGACGATCAAATCTACAATGTAATCGTTACCGCCC 131</td>
<td></td>
</tr>
<tr>
<td>MK572094.1</td>
<td>TAAGCCAACCCGGATACCTTCTTAGGCCGACGATCAAATCTACAATGTAATCGTTACCGCCC 131</td>
<td></td>
</tr>
<tr>
<td>KU667387.1</td>
<td>TAAGCCAACCCGGATACCTTCTTAGGCCGACGATCAAATCTACAATGTAATCGTTACCGCCC 131</td>
<td></td>
</tr>
<tr>
<td>MG736389.1</td>
<td>TAAGCCAACCCGGATACCTTCTTAGGCCGACGATCAAATCTACAATGTAATCGTTACCGCCC 105</td>
<td></td>
</tr>
<tr>
<td>KJ476808.1</td>
<td>TAAGCCAACCCGGATACCTTCTAGGCCGACGATCAAATCTACAATGTAATCGTTACCGCCC 131</td>
<td></td>
</tr>
<tr>
<td>MK572092.1</td>
<td>TAAGCCAACCCGGATACCTTCTAGGCCGACGATCAAATCTACAATGTAATCGTTACCGCCC 131</td>
<td></td>
</tr>
<tr>
<td>MK572093.1</td>
<td>TAAGCCAACCCGGATACCTTCTAGGCCGACGATCAAATCTACAATGTAATCGTTACCGCCC 131</td>
<td></td>
</tr>
<tr>
<td>KF742437.1</td>
<td>TAAGCCAACCCGGATACCTTCTAGGCCGACGATCAAATCTACAATGTAATCGTTACCGCCC 131</td>
<td></td>
</tr>
<tr>
<td>JN965199.1</td>
<td>TAAGCCAACCCGGATACCTTCTAGGCCGACGATCAAATCTACAATGTAATCGTTACCGCCC 73</td>
<td></td>
</tr>
<tr>
<td>MH545566.1</td>
<td>TAAGCCAACCCGGATACCTTCTAGGCCGACGATCAAATCTACAATGTAATCGTTACCGCCC 100</td>
<td></td>
</tr>
<tr>
<td>MN087472.1</td>
<td>GGATAAAAGAAGCACGACGACGACGATCAAGCACAGATCAGAAGACATCAAAATAGGGTG-----------</td>
<td>171</td>
</tr>
<tr>
<td>MN087473.1</td>
<td>GGATAAAAGAAGCACGACGACGACGATCAAGCACAGATCAGAAGACATCAAAATAGGGTG-----------</td>
<td>173</td>
</tr>
<tr>
<td>MH102304.1</td>
<td>GGATAAAAGAAGCACGACGACGACGATCAAGCACAGATCAGAAGACATCAAAATAGGGTG-----------</td>
<td>133</td>
</tr>
<tr>
<td>KF742437.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTATTTGTTATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>159</td>
</tr>
<tr>
<td>KY853031.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>163</td>
</tr>
<tr>
<td>MK029815.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>198</td>
</tr>
<tr>
<td>KY290058.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>158</td>
</tr>
<tr>
<td>JX066746.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>204</td>
</tr>
<tr>
<td>KJ476811.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>190</td>
</tr>
<tr>
<td>KJ476810.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>190</td>
</tr>
<tr>
<td>MK572094.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>190</td>
</tr>
<tr>
<td>KU667387.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>190</td>
</tr>
<tr>
<td>MG736389.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>164</td>
</tr>
<tr>
<td>KJ476808.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>190</td>
</tr>
<tr>
<td>MK572092.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>190</td>
</tr>
<tr>
<td>MK572093.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>190</td>
</tr>
<tr>
<td>KF742437.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>190</td>
</tr>
<tr>
<td>JN965199.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>190</td>
</tr>
<tr>
<td>MH545566.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>132</td>
</tr>
<tr>
<td>MN087472.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>159</td>
</tr>
<tr>
<td>MN087473.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>221</td>
</tr>
<tr>
<td>MH102304.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>223</td>
</tr>
<tr>
<td>KF742437.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>183</td>
</tr>
<tr>
<td>JN965199.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>183</td>
</tr>
<tr>
<td>MG604366.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>159</td>
</tr>
<tr>
<td>KJ476811.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>190</td>
</tr>
<tr>
<td>KJ476810.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>190</td>
</tr>
<tr>
<td>MK572094.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>190</td>
</tr>
<tr>
<td>MK572092.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>190</td>
</tr>
<tr>
<td>MK572093.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>190</td>
</tr>
<tr>
<td>KF742437.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>190</td>
</tr>
<tr>
<td>JN965199.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>190</td>
</tr>
<tr>
<td>MG604366.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>219</td>
</tr>
<tr>
<td>KY853031.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>223</td>
</tr>
<tr>
<td>MK029815.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>223</td>
</tr>
<tr>
<td>KY290058.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>218</td>
</tr>
<tr>
<td>JX066746.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>264</td>
</tr>
<tr>
<td>KJ476811.1</td>
<td>ATGCTTTCGTAATAATTTTTCTTTTTATTTTTATATATATCCATTCTTTATTTGTTGAGGAC-TTTGGAAC</td>
<td>250</td>
</tr>
</tbody>
</table>
KU667387.1 TTCATCAATTCTGGGGGCAATTAATTTCATCACCACAATTATTAATATGAAACCTCCAGC 474
MG736389.1 TTCATCAATTCTGGGGGCAATTAATTTCATCACCACAATTATTAATATGAAACCTCCAGC 448
KJ476808.1 TTCATCAATTCTGGGGGCAATTAATTTCATCACCACAATTATTAATATGAAACCTCCAGC 474
MK572092.1 TTCATCAATTCTGGGGGCAATTAATTTCATCACCACAATTATTAATATGAAACCTCCAGC 474
MK572093.1 TTCATCAATTCTGGGGGCAATTAATTTCATCACCACAATTATTAATATGAAACCTCCAGC 474
KF742437.1 TTCATCAATTCTGGGGGCAATTAATTTCATCACCACAATTATTAATATGAAACCTCCAGC 474
JN965199.1 TTCATCAATTCTGGGGGCAATTAATTTCATCACCACAATTATTAATATGAAACCTCCAGC 474
MH545566.1 TTCATCAATTCTGGGGGCAATTAATTTCATCACCACAATTATTAATATGAAACCTCCAGC 443
MN087472.1 TTCATCAATTCTGGGGGCAATTAATTTCATCACCACAATTATTAATATGAAACCTCCAGC 505
MN087473.1 TTCATCAATTCTGGGGGCAATTAATTTCATCACCACAATTATTAATATGAAACCTCCAGC 507
MH102304.1 TTCATCAATTCTGGGGGCAATTAATTTCATCACCACAATTATTAATATGAAACCTCCAGC 518

* ***** ** * * * **** * * * * * * * * *

MG604366.1 TATCTCCCAATATCAAAC----------------ACCCTTATTTGTGTGATCTGTGCTTG 487
KY853031.1 TATCTCCCAATATCAAAC----------------ACCCTTATTTGTGTGATCTGTGCTTG 491
MK029815.1 TATCTCCCAATATCAAAC----------------ACCCTTATTTGTGTGATCTGTGCTTG 526
KY290058.1 TATCTCCCAATATCAAAC----------------ACCCTTATTTGTGTGATCTGTGCTTG 486
JX066746.1 TATCTCCCAATATCAAAC----------------ACCCTTATTTGTGTGATCTGTGCTTG 532
KJ476811.1 TATCTCCCAATATCAAAC----------------ACCCTTATTTGTGTGATCTGTGCTTG 518
KJ476810.1 TATCTCCCAATATCAAAC----------------ACCCTTATTTGTGTGATCTGTGCTTG 518
MK572094.1 TATCTCCCAATATCAAAC----------------ACCCTTATTTGTGTGATCTGTGCTTG 518
MU667381.1 TATCTCCCAATATCAAAC----------------ACCCTTATTTGTGTGATCTGTGCTTG 518
MG736389.1 TATCTCCCAATATCAAAC----------------ACCCTTATTTGTGTGATCTGTGCTTG 518
KJ476808.1 TATCTCCCAATATCAAAC----------------ACCCTTATTTGTGTGATCTGTGCTTG 518
MK572092.1 TATCTCCCAATATCAAAC----------------ACCCTTATTTGTGTGATCTGTGCTTG 518
MK572093.1 TATCTCCCAATATCAAAC----------------ACCCTTATTTGTGTGATCTGTGCTTG 518
KF742437.1 TATCTCCCAATATCAAAC----------------ACCCTTATTTGTGTGATCTGTGCTTG 518
JN965199.1 TATCTCCCAATATCAAAC----------------ACCCTTATTTGTGTGATCTGTGCTTG 518

* ***** ** * * * **** * * * * * * * * *

MH545566.1 TATAAAGAAAATTATTACGAAAGCATGGGCGGTAACGATTACATTGTAGATTTGATCGTC 565
MN087472.1 TATAAAGAAAATTATTACGAAAGCATGGGCGGTAACGATTACATTGTAGATTTGATCGTC 567
MN087473.1 TATAAAGAAAATTATTACGAAAGCATGGGCGGTAACGATTACATTGTAGATTTGATCGTC 567
MH102304.1 TATAAAGAAAATTATTACGAAAGCATGGGCGGTAACGATTACATTGTAGATTTGATCGTC 527

* ***** ** * * * **** * * * * * * * * *

MG604366.1 TAACTGCCGTACTGCTTCTTTTGTCCCTTCCAGTTTTAGCCGCAGGAATTACAATACTTC 547
KY853031.1 TAACTGCCGTACTGCTTCTTTTGTCCCTTCCAGTTTTAGCCGCAGGAATTACAATACTTC 551
MK029815.1 TAACTGCCGTACTGCTTCTTTTGTCCCTTCCAGTTTTAGCCGCAGGAATTACAATACTTC 586
KY290058.1 TAACTGCCGTACTGCTTCTTTTGTCCCTTCCAGTTTTAGCCGCAGGAATTACAATACTTC 546
JX066746.1 TAACTGCCGTACTGCTTCTTTTGTCCCTTCCAGTTTTAGCCGCAGGAATTACAATACTTC 592
KJ476811.1 TAACTGCCGTACTGCTTCTTTTGTCCCTTCCAGTTTTAGCCGCAGGAATTACAATACTTC 578
KJ476810.1 TAACTGCCGTACTGCTTCTTTTGTCCCTTCCAGTTTTAGCCGCAGGAATTACAATACTTC 578
MK572094.1 TAACTGCCGTACTGCTTCTTTTGTCCCTTCCAGTTTTAGCCGCAGGAATTACAATACTTC 578
KU667381.1 TAACTGCCGTACTGCTTCTTTTGTCCCTTCCAGTTTTAGCCGCAGGAATTACAATACTTC 578
Figure 2. Multiple sequence alignment of 19 homologous DNA sequences based on Clustal Omega. The stars show number of matches among the sequences

The percentage of similarity among the aligned sequences is calculated based on the following equation.

\[
\text{Percentage of similarity} = \left(\frac{\text{Number of matches}}{\text{Length of the shortest DNA sequence}} \right) \times 100
\]

\[
\text{Percentage of similarity} = \left(\frac{197}{501} \right) \times 100 = 39.3\%
\]

4. Discussion

The DNA sequence from the two samples of fish from Phewa lake scored the highest alignment scores against 16 reference sequences of *Chagunius chagunio* in BLAST result in terms of Query Cover (75% to 100%) and Percentage Identity (97.29% to 100%). The Expect Value (E-value) remained 0.0. This confirmed the identification of the samples as *Chagunius chagunio*. The two DNA sequences with the same percentage of GC-content and similar BLAST results provide strong evidence that the two samples of fish belong to the same species.

Sequence alignment or sequence comparison is a way of arranging biological sequences of DNA, RNA or proteins in order to distinguish regions of similarity which help us to determine how closely or distantly the organisms are related. Multiple sequence alignment is a sequence alignment of three or more biological sequences to find out their homology so that phylogenetic analysis can be obtained. In evolutionary biology, homology refers to any similarity between characters that is due to their shared ancestry. The homology among proteins and DNA is often concluded on the basis of sequence similarity.
Sequence similarity and sequence identity are synonymous for nucleotide sequences. An identity of 39.3% in the present multiple sequence alignment of nucleotide sequences is highly desirable and suggests similarity of function and structure among the aligned sequences. According to NEB (2019), an identity of 25% or higher suggests the potential for similarity of function or structure of the aligned DNA sequences.

The most widely used approach to multiple sequence alignment is progressive technique that builds a hierarchical or tree diagram showing relationship between the sequences based on neighbor-joining method or UPGMA. In the multiple sequence alignment, if the species are closely related or while comparing individuals of the same species, it is better to use the DNA sequences. This is because the protein sequences are too similar and only a few results would be obtained. Based on the Neighbour-Joining tree, MN087473 and MN087472 which includes the DNA sequences of Chagunius chagunio from Phewa lake are monophyletic and they show very close relationship with MH102304 that includes Chagunius chagunio from Bangladesh.

5. Conclusion
The main purpose of the present study is to give identification to Chagunius chagunio of Phewa lake by barcoding its mitochondrial DNA and depositing the barcode sequence in the GenBank. There is no availability of DNA sequence of Chagunius chagunio in the GenBank database from Nepal as the molecular study of fish of Nepal is still at preliminary stage. This is the first deposition of DNA sequence of Nepalese Chagunius chagunio in the GenBank database which can act as a reference sequence for future studies.

The multiple sequence alignment of the DNA sequences show that the Chagunius chagunio of Phewa lake has close relationship with Chagunius chagunio from Bangladesh.

The DNA barcoding is expensive and takes nearly three months for the completion of the process including submission to the GenBank. However, it is a useful tool to quickly and accurately identify species and has the potential to prompt the discovery of new species.

Acknowledgement
I would like to thank Mrs. Jyoti Joshi and Mrs. Hemanta Chaudhary Shrestha of Centre for Molecular Dynamics Nepal (CMDN) for helping me in carrying out the barcoding of fish.

Conflict of interests
The authors declare that there is no conflict of interests regarding the publication of this paper.

References

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).