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Abstract 
The application of CDMs to fraction subtraction data revealed problems on the classification of examinees, 
latent class sizes, and the use of higher-order models. Additionally, selecting the most appropriate model assumes 
critical importance if there are several appropriate models available for the data. In the present study, 
DINA–RDINA and HODINA–HORDINA models were compared under changing conditions (i.e., number of 
attributes, g and s item parameter values, and number of items) with simulated and real data. The results show 
that for conditions where the g–s parameter values and the number of attributes were low (0.1 and 3, 
respectively), the reparameterized models generated values that were virtually identical to those obtained using 
DINA models. However, when the g–s parameter values and the number of attributes were increased (0.5 and 5, 
respectively), the parameter estimations obtained from the models, latent class estimates, AIC, and BIC show 
differences through the values from the models.  

Keywords: DINA model, reparameterized DINA model, higher-order DINA model, higher-order 
reparameterized DINA model, latent class estimates 

1. Introduction 
Recently, there has been a growing interest in Cognitive Diagnosis Models (CDM), which are psychometric 
models used to determine the strengths and weaknesses of the candidates according to a certain set of attributes 
(Chen & de la Torre, 2013; Chiu, 2008; de la Torre 2008, 2009, 2011; de la Torre & Lee, 2010, 2013; Huebner & 
Wang, 2011; von Davier, 2005). CDMs are traditional extensions of traditional item response models (Embretson 
& Reise, 2000; van der Linden & Hambleton, 1997). CDM based on the multidimensional item response theory 
(MIRT) model proposed by Tatsuoka (1983) is an extended form of latent class analysis (LCA) that allows the 
classification of item response patterns and the analysis of more than one latent variable together (von Davier, 
2005). CDMs are also known as multiple classification models or multiple classification latent class models 
(Maris, 1999), restricted latent class models (Haertel, 1989), cognitive diagnosis models (Nichols, Chipman, & 
Brennan, 1995) or cognitive psychometric models (Rupp, 2007). In the present study, deterministic inputs, noisy, 
‘‘and’’ gate (DINA; Haertel, 1989; Junker & Sijtsma, 2001) model, higher-order DINA (HODINA; de la Torre & 
Douglas, 2004) model, reparameterized DINA (RDINA; DeCarlo, 2011) model, and higher-order RDINA 
(HORDINA; DeCarlo, 2011) model are discussed. 

1.1 The DINA and HODINA Models 

Although many CDMs are proposed in the literature, the DINA model is highly preferred by researchers because 
of its easy interpretation, good model-data fit, and as one of the simplest multiple classification models (DeCarlo, 
2011, 2012; de la Torre, 2009; de la Torre & Douglas, 2004, 2008; de la Torre & Lee, 2010; Henson, Templin, & 
Willse, 2009; Huebner & Wang, 2011; Rupp & Templin, 2008). 

Similar with most CDMs, the DINA model also requires a Q-matrix (Tatsuoka, 1983) configuration with j×k (j. 
column and k. row) dichotomous values. qjk specifies whether the k attribute is required for the correct answer of 
item j. In the DINA model the latent response equation ηij, which is exactly specified by αi, determines whether 
examinee i possesses the attributes required for the item j. 
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∏                                          (1) 

If an examinee possesses all the required attributes for item j, ηij = 1; and if at least one of the attributes required for 
the item is missing, ηij = 0 (de la Torre, 2009; de la Torre, Hong, & Deng, 2010; de la Torre & Lee, 2010). The 
parameters required for correct response to item j are expressed by gj (guess) and sj (slip) parameters. 

The gj parameter is the probability that an examinee who does not possess all the required attributes for item j will 
respond correctly to the item. The sj parameter is the probability that an examinee who possesses all the required 
attributes for item j will answer wrongly (de la Torre & Douglas, 2004, 2008; Huebner & Wang, 2011). The 
parameters sj and gj are defined as follows. 0| 1  ve 1| 0                             (2) 

The item response function for the item j can be written as 1 1 g                                           (3) 

The joint likelihood function of the DINA model can be expressed as follows. 

, ; 1 	 1  

de la Torre and Douglas (2004), by adding an IRT model for joint distribution of attributes, 

| |  

have obtained a HODINA model that assumes the dependence of cognitive attributes on one or more latent traits. 
Examinees with higher-order θ at this point are more likely to possess latent attributes in comparison the 
examinees with lower level θ (DeCarlo, 2011; de la Torre & Douglas, 2004). Thus, the HODINA model can be 
used to classify examinees over specific attributes and estimate their latent trait (Li, 2008). 

1.2 The RDINA and HORDINA Models 

DeCarlo (2011) obtained the following RDINA model by reparameterized the DINA model as a latent class 
logistic regression model. 

logit p(Yij= 1|ηij) = ƒj. + djηij.                               (6) 

In this equation, the items are used to determine the attribute sets. The fj parameter gives the logodds of the false 
alarm, which is the probability of correctly responding to examine j that does not have the required attributes. In 
addition, DeCarlo (2011) obtained the HORDINA model by including the latent continuous variable θ into the 
model for situations where the probability an examinee to possess the attributes is determined by the examinee's 
latent trait θ.  

Despite their potential benefits, there are some limitations to the practice of CDMs in education. These 
limitations include the complexities of the CDM and the choice of the wrong model (de la Torre & Douglas, 2004; 
de la Torre et al., 2010). Additionally, the application of CDM to fraction subtraction data of Tatsuoka (1990) 
reveals some problems on the classification of examinees, latent class estimations, and using higher-order models 
(DeCarlo, 2011). Majority of these problems involve misclassification of Q-matrix specifications and other 
specifications of the model, and examinees who get all of the items incorrect are classified as possessing most of 
the skills by some CDMs. Although the use of higher-order models has been shown to provide a limited 
ameliorated classification problem, it cannot be precisely specified that this may be due to the misspecification 
of the Q matrix (DeCarlo, 2011).  

Furthermore, the selection of the most appropriate model among the many appropriate models available in the 

(4) 

(5) 
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CDM literature is unclear. Consequently, if there are a few models that are fitted to the data, the most appropriate 
model selection becomes a critical issue (de la Torre & Lee, 2013). Simulation studies have shown that while 
wrong model selection leads to poor attribute classification, correct model selection leads to better estimations 
(e.g., higher correlation and lower root mean square error [RMSE]) and increase in the correct classification rates 
of attributes (de la Torre & Douglas, 2004). Therefore, the appropriate model selection, item parameter estimates, 
and correct classification of attributes in the education decisions to be taken based on the findings obtained from 
the CDM models have great importance (de la Torre et al., 2010). Another discussion topic that is increasingly 
important in CDM model literature is information criteria. The general approach in these discussions is that the 
tests modeled with the same Q matrices are evaluated under the same model fit statistics (de la Torre & Douglas, 
2008). 

In the context of these limitations expressed in relation to CDM, there is a need to investigate how the model 
parameters are affected by the characteristic variations underlying the attribute distribution, and that it is necessary 
to regularly write and analyze new items in real tests (DeCarlo, 2011; de la Torre et al., 2010; de la Torre & Lee, 
2010). Furthermore, it is stated that the effect of variables, such as the number of attributes, ideal test length, slip 
and guess parameter level, and the structure of attributes, needs to be examined in the classification of examinees 
(de la Torre et al., 2010; Huebner & Wang, 2011). Furthermore, DeCarlo (2011, 2012) stated that it is necessary to 
investigate different types of Q matrix, a large number of attributes, and the relationship between other 
higher-order factors. de la Torre (2011) stated that it would be useful to conduct studies that examine information 
criteria (e.g., Akaike's information criterion [AIC]) for multiple comparisons at the item and test levels and fit 
measures. 

For this purpose, in the scope of the research, DINA–RDINA and HODINA–HORDINA models were compared 
using simulated and real data under changing conditions, such as the number of attributes, g and s parameter 
values, and the number of items to provide more reliable and valid inferences to evaluate the parameters and help 
to select the most appropriate model. The comparison of the models is aimed at providing a better understanding of 
the extent to which some of the theoretical features of the model are realized in practice, what the missing aspects 
are, and how the parameters are affected by the characteristic changes. Although DINA and RDINA models have 
the same likelihood functions, it is desired to investigate whether models can provide the same estimates in 
practice. 

2. Method 
2.1 Simulation Study 

The simulation study, in the case of changes to the number of attributes (3, 4, 5), g-s parameter values (0.1-0.5), 
and item numbers (20, 30), aims to investigate whether the g and s parameter values, the AIC and BIC, and latent 
class estimates obtained from DINA-RDINA and HODINA-HORDINA models differ or not. For this purpose, 5 
different values were determined for each of the g and s parameter values from 0.1 to 0.5, with 0.1 increment. 
Then, 25 different g-s combinations meeting these values were obtained. Thus, 3 × 25 × 2 = 150 conditions (3 
attribute number ×25 g-s values ×2 item sets) were tested. The sample size was set to 2000 to obtain accurate 
parameter estimates from the models (de la Torre et al., 2010). Simulation data were obtained with Ox (Doornik, 
2002) based on DINA model and it was assumed that the attributes were independent. Additionally, DINA and 
HODINA models’ g-s parameter and latent class estimates, AIC and BIC information criteria were obtained with 
Ox. LatentGold (Vermunt & Magidson, 2005) was used for RDINA and HORDINA models analysis. However, 
latent class estimates are not obtained directly at the output of the LatentGold. Latent class estimates have been 
obtained using a macro written in Excel, which uses a posterior classification matrix obtained from the LatentGold 
output. If the posterior mean of an examinee (αik) is equal to or greater than 0.5, it assumed that examinee i 
possesses k attribute; if αik is lower than 0.5, than it is assumed that examinee i has not possessed the attribute k 
(DeCarlo 2011; de la Torre & Douglas, 2004; de la Torre et al., 2010). Thus, the percentage of examinee 
classification assigned to latent classes by the models for the same data set was compared. To evaluate the 
model-data fit, the two most frequently used information criteria in the statistical literature (Hagenaars & 
McCutcheon, 2002), AIC proposed by Akaike (1973) and BIC proposed by Schwarz (1978), were preferred. 
DeCarlo (2011) stated that the RDINA model provides virtually identical values to the item parameter values 
obtained using the DINA model (de la Torre & Douglas, 2004). Therefore, it is expected that the item parameter (g, 
s) estimation differences obtained from DINA-RDINA and HODINA-HORDINA models will be zero. Therefore, 
the differences of the parameter estimates obtained from the models are shown graphically. 

2.2 Real Data 

The real data set are obtained from the English grammar test applied to 565 examinees at Ege University, School of 



ies.ccsenet.

 

Foreign La
items that 

3. Results
3.1 Simula

3.1.1 Item 

Findings a
and s are c
represente
in Figure 1

 

The g para
sum of the
between th
(g4s5, g5
0.0472-0.0
models is 0

Similarly, 
virtually i
parameter 
When the 
g paramete
differences
models are

org 

anguages. The
were determin

 
ation Study Res

Parameters 

are given below
changed in 0.1 
d as g1s1. The
1, where they a

ameter estimat
e g and s param
he g paramete
s4, g5s4), th

0845. For the 
0.0123. 

when the g a
identical g par
differences w

sum of the g an
er estimates va
s obtained from
e given in Figu

e test was deve
ned by 3 exper

sults 

w when the num
and 0.5 range. 

e g parameter e
are shown poin

Figure 1. DI

es of the two m
meters is 0.4 o
r estimates va

he average of
25 data sets, t

and s paramete
rameter estim

when the g and
nd s parameter
aried from 0.03
m both models 
ure 2. 

Internation

eloped accordin
rts. 

mber of attribu
g and s param

estimated differ
ntwise on the a

INA and RDIN

models are virt
or less (g1s1, g
aries from 0.00
f the differen
the average of

ers in HODIN
mates (not show
d s parameters 
rs exceeds 0.8 
355 to 0.0528. 

is 0.0099. The

nal Education Stu

122 

ng to the CDM

utes is 3, the nu
meter values, for

rences obtaine
axis for 20 item

NA Models g p

 

tually identical
g1s2, g1s3, g2
001 to 0.0007.
nces between 
f the g parame

NA and HORD
wn here). For
are g1s1, g1s
(g4s5, g5s4, g
For the 25 data
e differences of

udies

M. The Q matri

umber of items
r example g = 

ed from the DIN
ms in each data

parameter diffe

l when the g an
2s1, g2s2, g3s1
. If the sum o

the g param
eter estimation

DINA models a
r example, the
2, g2s1, and g
5s5), the avera
a sets, the aver
f s parameters 

ix consisted of

s is 20, and the
0.1, s = 0.1, we
NA and RDIN
a set. 

erences 

nd s parameters
1), the average
f the g-s param

meter estimate
n differences o

are low, the tw
e average of 
g5s1 vary betw
age of the diffe
rage of the g pa
obtained from

Vol. 11, No. 6;

f 5 attributes an

e item paramet
ere abbreviated
A models are g

 

s are low. Whe
e of the differe
meters exceed
es varies betw
obtained from 

wo models yie
the estimates 

ween 0.0006-0
erences betwee
arameter estim

m DINA and RD

2018 

nd 24 

ters g 
d and 
given 

en the 
ences 

ds 0.8 
ween 
both 

elded 
of g 
.001. 

en the 
ation 

DINA 



ies.ccsenet.

 

 

Figure 2 sh
and s param
is equal 0.
parameter 
identical s 
of g and s 
0.0226 to 
both mode
estimates; 

3.1.2 Laten

Latent clas

org 

hows that the 
meters are low
4 or less varie
estimates obta
parameter esti
is equal to 0.8
0.0517. For th

els is 0.0131. C
when the valu

nt Class Estim

ss estimates ob

Figure 2. DI

item paramete
w. The average 
es in the range
ained from bo
imates (not sho

8 and higher, th
he 25 data sets
Consequently, 
ues of g and s i

mates 

btained from D

Internation

INA and RDIN

er estimates of
of the differen

e of 0.0002-0.0
oth models is 0
own here) whe
he average of t
, the average o
when the g an

increase, the pa

DINA-RDINA 

nal Education Stu

123 

NA Models s p

f the two mode
nce between th
0007. For the 2
0.0216. HODI
en the g and s p
the differences
of the differen
nd s values are
arameter value

models are giv

udies

parameter diffe

els are getting 
e s parameter e
25 data sets, th
NA and HOR
parameters are
 between the s

nces of the s pa
e low, the mod
es obtained fro

ven in Figure 3

erences 

closer to the c
estimates when
he average of t

RDINA models
e low (g1s1, g2
s parameter est
arameter estim
dels yielded ve
om the models 

3. 

Vol. 11, No. 6;

 

condition that 
n the sum of g
the differences
s provided virt
2s1). When the
timates varied 

mates obtained 
ery close param
also differenti

2018 

the g 
and s 
s of s 
ually 

e sum 
from 
from 

meter 
iated.  



ies.ccsenet.

 

Figure 3 s
pointwise 
the g-s par
when the
HODINA-
shown her
the latent c

3.1.3 AIC 

For the 25
(number o
model. In 
model in 2
3, number
HORDINA
DINA mod
when the n

 

org 

shows 8 laten
on the axis. T
rameters is equ
 sum of the
-HORDINA m
re). However, w
class estimates

and BIC  

5 data sets, AIC
f attribute 3, nu
higher-order 

21 of the 25 co
r of items 20),
A models, resp
del and the rep
number of attri

Figure 3. D

nt class estima
The latent clas
ual to 0.5 and 
e g-s parame

models vary by
when the sum o
s obtained from

C and BIC we
umber of item
models, the H

onditions. The r
, RDINA and 
pectively. Add
parameterized m
ibutes is increa

Internation

DINA and RDI

ates obtained f
s estimates of 
lower. Howev

eters is 0.8 
y 0.1-0.15 whe
of the g-s param
m higher-order

ere obtained fro
s 20), the RDIN

HODINA mode
results of BIC 
HODINA mo

ditionally, whil
models provid
ased.  

nal Education Stu

124 

INA Models la

 

from two mod
both models c
ver, the differe
and higher. 

en the sum of 
meters is 0.8 an
r models. 

om the models
NA model pro
el provided be
show that con

odels provide b
le the number 
e fairly close A

udies

atent class estim

dels in terms 
change in the ra
ences are obse

Latent class
the g-s param
nd higher, the 

s. According t
vided better fit
etter fit values
nsidering all th
better fit value
of attributes i

AIC and BIC, b

mates 

of 25 data se
ange of 0.1-0.1

erved in the lat
 estimates o
eters is 0.6 or 
differences are

to the AIC resu
t values compa
s compared w

he conditions (n
es compared w
n the simulati
but these value

Vol. 11, No. 6;

ets and 3 attrib
15 when the su
tent class estim

obtained from
lower in total

e observed betw

ults, in all data
ared with the D

with the HORD
number of attr
with the DINA
on studies is 3
es are different

2018 

butes 
um of 
mates 

m the 
l (not 
ween 

a sets 
DINA 
DINA 
ibute 

A and 
3, the 
tiated 



ies.ccsenet.

 

3.2 Real D

3.2.1 Item 

The g and 
are given b
in Figure 4

 

Figure 4 s
for items 1
items. The
differences
respectivel
items. The
s paramete

Figure 5 sh
item 14, 0.
other items
is 0.12. Th
and 0.025 

org 

Data Results 

Parameters 

s parameters a
below. The g p
4. 

shows that the 
18, and 22, re
e average of th
s obtained fro
ly (not shown 

e average of the
er estimates ob

hows that the s
.003 for item 1
s. For all items

he differences i
for items 4 an

and latent class
arameter estim

Figure 4. D

differences in
spectively. Th
he g paramete
om the HODI
here). There a

e g parameter e
btained from th

s parameter es
7, and 0.019 fo

s, the average o
in the s parame

nd 17, respectiv

Internation

 estimates and 
mates obtained 

DINA and RDIN

n the g paramet
here are differe
er estimation d
INA and HOR
are significant
estimation diff
he DINA and R

stimation differ
for item 20. Th
of the differenc
eter estimates o
vely. 

nal Education Stu

125 

the AIC and B
from the DINA

NA models g p

 

ter estimation 
ences between
differences for
RDINA mode
t differences b
ferences obtain
RDINA model

rence obtained
here are signific
ces of the s par
obtained from 

udies

BIC obtained fr
A and RDINA 

parameter estim

obtained from
n the g parame
r 24 items is 0
els are 0.024 
between the ite
ned with two m
s are given in F

d from both mo
cant difference
rameter estima
the HODINA 

rom the model
models for the

mates 

m both models a
eter values obt
0.19. The g pa
and 0.073 fo

em parameters
models from 24
Figure 5. 

odels is 0.023 
es in the s param
ates obtained fr
and HORDINA

Vol. 11, No. 6;

s in the real da
e 24 items are g

are 0.008 and 0
tained for the 
arameter estim
r items 4 and

s obtained for 
4 items is 0.34

for item 4, 0.0
meters obtaine
rom the two mo
A models are 0

2018 

ta set 
given 

 

0.011 
other 

mation 
d 18, 
other 
. The 

02 for 
ed for 
odels 
0.003 



ies.ccsenet.

 

There are 
the s param

3.2.2 Laten

Latent clas
obtained fr
that the siz
estimates o

 

 

The HORD
latent class

org 

also differenc
meter estimate

nt Class Estim

ss estimates of
from the two m
ze of 22 latent 
obtained by th

DINA model o
s estimates obt

Figure 5. D

es between th
s obtained from

mates 

f DINA-RDIN
models with res

classes by the 
e two models i

Figure 6

obtained 16 est
tained by the H

Internation

DINA and RDI

e s parameters
m the two mod

NA models are 
spect to the 5 a
RDINA mode
is changing be

. DINA-RDIN

timates of the l
HODINA and H

nal Education Stu

126 

INA models s p

 

s obtained for 
dels for all item

given in Figu
attributes in th
el is estimated 
etween 2-58%.

NA models late

latent class as 
HORDINA mo

udies

parameter estim

other items. T
ms is 0.25. 

ure 6, which sh
he Q matrix of 
as zero. The d
. 

ent class estima

zero (not show
odels range be

mates 

The average of

hows the 32 lat
f the real data s
difference betw

ates 

wn here). Diffe
etween 0.01 an

Vol. 11, No. 6;

 

f the differenc

tent class estim
set. Figure 6 sh

ween the latent 

erences betwee
nd 34%. 

2018 

es of 

mates 
hows 
class 

 

en the 



ies.ccsenet.org International Education Studies Vol. 11, No. 6; 2018 

127 
 

3.2.3 AIC and BIC  

The AIC results show that the RDINA (15,343) and HODINA models (15,220) provide better fit values compared 
with the DINA (15,631) and HORDINA models (15,251), respectively. The BIC results also show that the RDINA 
(15,573) and HODINA models (15,454) provide better fit values compared with the DINA (15,973) and the 
HORDINA models (15,502), respectively. 

4. Discussion 
4.1 g and s Parameter Estimates 

While the joint distribution of skills is based on a multinomial distribution in the DINA model, the HODINA model 
is based on a higher-order latent proficiency. The DINA model estimates are based on the mode (maximum), 
whereas the HODINA model estimates are based on the mean (expected value). While the HODINA model uses 
Markov Chain Monte Carlo (MCMC) algorithm for item parameter estimates, the DINA model uses the 
Expectation-Maximization (EM) algorithm. Parameter estimates for MCMC and standard errors are obtained by 
calculating posterior means and standard deviations. Although it is expected that algorithms may give different 
results due to these important differences, DINA and HODINA models provide considerably similar estimates, 
which indicate that EM and MCMC algorithms can be used to obtain accurate parameter estimates (de Torre & 
Douglas, 2004; de la Torre, 2009).  

In all analyses performed using the simulated data, the item parameter estimates obtained from the models 
provided virtually identical values when the number of attributes and the parameter values of g-s were low. The 
findings obtained with respect to the low g-s parameter values were consistent with the findings of de la Torre et al. 
(2010) and Huebner and Wang (2011). However, in conditions (g4s5, g5s4, g5s5) where the number of attributes 
and item parameter values (particularly sum of g and s parameters is equal or higher 0.8) were increased, g and s 
parameter estimates obtained from the models showed differences. Furthermore, in real data analysis, the 
differences between the item parameter estimates obtained from the DINA-RDINA and HODINA-HORDINA 
models were also remarkably high. Similarly, de la Torre and Lee (2010) stated that although the invariant property 
of the DINA model parameters is provided in the simulated data, there were inconsistencies in the item parameter 
estimates in the real data; therefore, this condition was not fully provided. However, this should not be seen as a 
reason to downplay the practical usefulness of the DINA model (de la Torre & Lee, 2010). 

4.2 Latent Class Estimates 

The attribute numbers in simulation data are 3, 4, and 5, and 5 in the real data set. In the simulated data, 50 data sets 
are analyzed for each attribute. The results show that the latent class estimates obtained from the DINA-RDINA 
and HODINA-HORDINA models are virtually identical when the sum of the g-s parameter values is equal 0.5 and 
lower, while significant differences are found when they were 0.8 and higher. There are also significant differences 
in latent class estimates obtained from the real data set. Similar classification problems are also expressed by 
DeCarlo (2011). In addition, de la Torre et al. (2010) and Huebner and Wang (2011) are also stated that the 
accuracy of the classification has increased with low level g and s parameters. Furthermore, many latent classes are 
estimated to be zero by the reparameterized models when the number of attributes and g-s parameter values 
increased. Consequently, for all conditions in the simulated data, the DINA models provided more consistent latent 
class estimates in comparison to the reparameterized models. In addition, many latent classes are estimated to be 
zero by the reparameterized models in the analysis results carried out with the real data set. 

4.3 AIC and BIC  

AIC and BIC fit statistics were used to evaluate the model data fit. de la Torre and Douglas (2004) stated that the 
choice of appropriate model becomes a critical issue when the number of attributes increased. While the number of 
attributes in the simulation studies is 3, the DINA model and the reparameterized models provide fairly close AIC 
and BIC, but the values are differentiated when the number of attributes is increased (despite very low g and s 
parameter values).  

When all the given conditions are considered for simulated data, the AIC results show that the RDINA model 
provided better fit values compared with the DINA model in 147 out of 150 conditions. The BIC results show that 
the RDINA model in all 150 conditions provided better fit values compared with the DINA model. The AIC and 
BIC in the real data analysis show that the RDINA model also provided better fit values compared with the DINA 
model. The results of AIC in higher-order models show that the HODINA model provided better fit values in 125 
out of 150 conditions than the HORDINA model. The BIC results show that the HODINA model provided better 
fit values in 149 of the 150 conditions than the HORDINA model. The results of AIC and BIC in the real data 
analysis show that the HODINA model provided better fit values than the HORDINA model. Furthermore, when 
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the models are handled according to their structure, the AIC and BIC values for all simulated conditions of the 
HODINA model provided better fit values compared with the DINA model. de la Torre and Douglas (2004) also 
stated that the higher-order model provides better fit values than the basic model. In reparameterized models, the 
results of BIC show that the RDINA model provided better fit values than the HORDINA model in all conditions. 
The results of AIC show that in 144 of the 150 conditions, the RDINA model provided better fit values than the 
HORDINA model. Similar results have been reported by DeCarlo (2011). When all conditions of the research are 
considered, the BIC provides more consistent results compared with the AIC. Although a large number of studies 
reporting the superiority of one another in both criteria are found in literature, the findings of the present research 
are consistent with those results reported by Jedidi et al. (1997), Kuha (2004), Li et al. (2009), McQuarrie and Tsai 
(1998), Nylund et al. (2007), Tofighi and Enders (2007), Yang (2006).  

The results of AIC and BIC determined the most parsimonious model. Nevertheless, the decisions to be made on 
the Q-matrix should not be given based only on the information criteria, but the fit statistics, validity studies, and 
other evidence are also needed (DeCarlo, 2011). The higher g and s parameters obtained from CDMs can be 
considered as empirical evidence of the misspecification of the Q matrix (Rupp & Templin, 2008). In addition, the 
Q matrix structure has a potential to influence item parameter estimates and misclassification (de la Torre et al., 
2010). de la Torre and Douglas (2004) stated that the appropriate model choice provides greater consistency in the 
correct classification rates of attributes and thus provides better estimates (e.g., higher correlation and lower 
RMSE). Consequently, attention should be given to the selection of the appropriate model and the correct 
determination of the Q matrix in the item parameter and latent class estimates obtained from the CDMs.  

The findings of the present research revealed that the model-data fit is highly related with the item and latent class 
estimates. In addition, the decrease of the model-data fit leads to the differentiation of all estimates independent of 
the preferred mode. This emphasizes the importance of a priori analysis (design of Q matrix, correct specification 
of item and attribute relation) for CDM studies (de la Torre et al., 2010; Huebner & Wang, 2011; DeCarlo, 2011, 
2012). The most important variables of model-data fit are Q matrix validity and item quality. In this case, the 
comparison studies for the models should be done considering the Q matrix compatibility. The work to be carried 
out for the situations provided by these conditions will give more realistic results for model comparisons. 
However, it is difficult to achieve a perfect match between the Q matrix properties and the latent class structure (de 
la Torre et al., 2010). 

4.4 Item and Attribute Numbers 

The number of items used in simulation data studies is 20 and 30. There are 75 different conditions for each item 
set. The increase in the number of items leads to an increase in the AIC and BIC values. This result is expected 
because of the increased number of estimated parameters. The increase in the number of items in terms of AIC 
causes a difference of 3 in 75 cases where the DINA-RINA models are compared and 4 cases in the 
HODINA-HORDINA model comparisons. The increase in the number of items in terms of BIC does not lead to 
any difference in the 75 conditions compared with the values obtained from the DINA-RINA models, whereas in 
the HODINA-HORDINA model comparisons, the result is different only in one condition. Consequently, there 
was no evidence of a significant effect of the increase in the number of items covered in the study on the conditions 
where the models were compared to the AIC and BIC. 

Similarly, when the number of items is fixed (e.g., 20 and 30), the AIC and BIC show no significant finding of the 
effect of the increase in attribute numbers (3, 4, 5) on the comparison of models. However, the increase in the 
number of attributes has led to an increase in the g and s parameter differences (DINA-RDINA, 
HODINA-HORDINA) obtained from the models and differentiation in latent class estimates. Similar results have 
been reported by Chiu (2008) and de la Torre et al. (2010).  

5. Conclusion 
Within the scope of the research, the DINA-RDINA and HODINA-HORDINA models were compared under 
varying conditions, such as the number of attributes in the Q matrix, g and s parameter values, and the number of 
items. In all analyses performed with the simulated data, the conditions where the number of attributes and g-s 
parameter values is low, the item parameter and latent class estimates obtained from the models are virtually 
identical. However, the g-s parameter and latent class estimates obtained from the models are differentiated by 
increasing the number of attributes and item parameter values. In addition, many latent classes are estimated to be 
zero by the reparameterized model under conditions of increasing attribute number and item parameter values. In 
all conditions of the simulated data and the real data set, the DINA models provided more consistent latent class 
estimation values compared with the reparameterized models. The AIC and BIC obtained from the simulated and 
the real data show that the RDINA and HODINA models provided better fit values compared with the DINA and 
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HORDINA models, respectively. When all conditions in the research are considered, the BIC provides more 
consistent results compared with the AIC. In cases where the models are compared based on the AIC and BIC, no 
significant effect is observed of the increase in item and attribute numbers. However, the increase in the number of 
attributes leads to an increase in the g and s parameter differences and differentiation in latent class sizes.  

Consequently, for the lower number of attributes and g-s parameter values for the simulated data in all conditions, 
the reparameterized models (RDINA, HORDINA) proposed by DeCarlo (2011), and DINA models (DINA, 
HODINA) yielded virtually identical g and s parameter estimates, latent class estimates, AIC and BIC; whereas, 
with the increase in the number of attributes and item parameter values, all parameters are differentiated. In the real 
data set, all values obtained are different. 
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