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Abstract 

The purpose of this paper is to present the mechanism for effective communication when the mathematical 
objects of learning are equations and functions. The presentation is based on data collected while the same object 
of learning is presented in two classes, and it includes two teachers and 45 students. Among other things, the 
data consists of video-recordings of lessons and tests. In the analysis, concepts relating to variation theory have 
been used as analytical tools. The results show that effective communication occurs in the classroom if it has the 
critical aspects in students learning as its starting point. The communication in the classroom succeeds or not if 
the aspects of the content supposed to be treated is the same as or different from the aspects of the content of the 
teacher’s representation, and if the aspects of the content of the teacher’s representation are the same as or 
different from the aspects discerned by the students. The results also show that the students cannot make sense of 
the difference between the highest/lowest value of a quadratic function and the maximum/minimum point; the 
difference between a quadratic equation and function; the students also have difficulties in solving a quadratic 
equation if it appears in a new context. The argument of the functions is identified as critical aspect in this study. 

Keywords: communication, equations, functions, teaching, learning, dimensions of variation 

1. Introduction  

1.1 The Specific Problem 

Mathematical knowledge is seen as an important requirement to develop society. Despite the increased interest 
in people with deeper mathematical knowledge, there is a constant stream of new articles which indicates that 
students have unsatisfactory knowledge in mathematics. Because equations and functions are often conveyed in 
symbols, oral and written communication about mathematical ideas is recognized as an important part of 
mathematics education. Students do not necessarily talk about mathematics naturally; teachers need to help them 
learn how to do so. The main questions in this paper are: How can theory help us to understand and support 
students’ developing mathematical learning? It is possible to understand the mechanism for an effective 
communication which may lead to students’ understanding pattern and structure, the logical analysis, and 
calculation with patterns and structures when working with algebra and functions during the classrooms lessons? 
My hypothesis is that through the communication that occurs in the classroom (e. g. listening, talking and 
writing), students are prompted to organize, re-organize and consolidate their mathematical understanding, as 
well as analyze, evaluate and build on the mathematical strategies of others. 

The basic idea of the mathematical theory of communication, as developed by Claude Shannon: 

The fundamental problem of communication is that of reproducing at one point either exactly or 
approximately a message that has been selected at another point. (Shannon, 1949, pp. 31) 

The success or failure of communication is a matter of the relation between thought contents of speaker and 
hearer (Frege, 1918). Research on effective communication primarily focuses on a process-oriented approach 
where the focus is on the transfer of messages, coding and analysis (e.g., Nilsson & Waldemarson, 1990). In 
addition, there is a semiotic line where discussions take place about how messages interact with humans to create 
meaning (e.g., Morgan, 2006; O’Halloran, 2005), as well as a socio-cultural approach in which communication 
is defined as an activity which attempts to get an interlocutor (possibly oneself) to act or feel in a certain way 
(Sfard, 2002). Sfard (2002) found that communication is effective if communicative aims are met and if the 
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discourse focus is clear. Sfard (2002) defined the concept discourse as a dynamic process denoting a specific act 
of communication, verbal or not, with others or with oneself, synchronic (e.g. communication face to face) or 
asynchronous (e.g. reading a book, writing). She also proposed the following definition of communication: 

Communication is a collectively performed patterned activity in which action A of an individual is followed by 
action B of another individual so that: 

1) A belongs to a certain well-defined repertoire of actions known as communicational 

2) Action B belongs to a repertoire of re-actions that fit A, that is, actions recurrently observed in conjunction 
with A. This latter repertoire is not exclusively a function of A, and it depends, among others, on factors 
such as the history of A (what happened prior to A), the situation in which A and B are performed, and the 
identities of the actor and re-actor. (Sfard, 2008, pp. 86-87) 

Pagin (2008) used the term communication as something that takes place in individual communicative events. 
The event is a process that starts with some inner state (the states must be mental, or private, or unobservable) of 
the sender and ends with some inner state of the receiver. A signal is transmitted between sender and receiver. 
The relevant inner state of the sender takes part in causing the signal, and the signal in turn takes part in causing 
the relevant inner state of the receiver. This is not sufficient for a definition of communication, but it indicates 
essential ingredients.  

1.2 Theoretical Assumptions  

The theoretical framework used in this study is the variation theory (Marton & Booth, 1997; Marton & Tsui, 
2004). There are several reasons for the choice of this theory. First, the object of learning is the focus on a 
teaching situation. The object of learning is formed of three components: the intended, the enacted and the lived 
object of learning. The intended object of learning refers to the part of the content that students should learn and 
which is supposed to be treated in the classroom. The enacted object of learning is what appears in the classroom 
and refers to what is possible for students to experience within a learning environment. The intended and enacted 
objects of learning can be compared to determine whether what is being taught matches what was intended to be 
taught. The students’ initial level of capability to the appropriate object of learning as well as the way in which 
students understand the object of learning is the lived object of learning. Second, the central idea in variation 
theory is that to discern certain aspects of the object of learning, a person needs to experience variation 
corresponding to those aspects (Marton et al., 2004). Some of those aspects are critical aspects in students’ 
learning. A critical aspect is the capability to discern aspects presented, for example in algebraic structures by 
experiencing them. To experience an equation or a function is to experience both its meaning, its structure 
(composition) and how these two mutually constitute each other. So neither structure nor meaning can be said to 
precede or succeed the other. If these aspects are not focused on in a teaching situation or in textbooks, they 
remain critical in the students' learning (C. Olteanu & L. Olteanu, 2010, 2011). In classroom situations, it is very 
important that the teacher is able to bring critical features of the object of learning into students’ focal awareness. 
Third, learning theory of variation serves as a useful theoretical framework to help teachers plan and structure 
their lessons. It guides them to decide what aspects to focus on, which ones to vary simultaneously, and which to 
keep invariant or constant. Furthermore, it guides teachers to consciously design patterns of variation to bring 
about the desired learning outcomes. Fourth, the student’s lived object of learning can be compared against 
categories of description as a means of assessing the level of learning achieved or against the enacted level of 
learning to determine whether the enacted object of learning is being transferred to the lived object of learning as 
expected.  

1.3 Dimensions of Variation 

Marton et al. (2004) argue that in order to discern different aspects of the object of learning, variation must be 
experienced in these aspects. An aspect is defined as the capability to discern the whole, the parts that form the 
whole, the relation between the parts, the transformation between the parts, and the relation part-whole for a 
mathematical concept or between different concepts (C. Olteanu & L. Olteanu, 2011). This category was 
empirically identified (C. Olteanu & L. Olteanu, 2010, 2011; Olteanu, 2012) and can be used to analyse the way 
in which the student can work out the meaning of the whole if s/he knows the meaning of the simple parts, the 
semantic significance of a finite number of syntactic modes of composition, and recognizes how it is built up out 
of simple parts. Marton, Runesson and Tsui (2004) have defined the patterns of variations which can facilitate 
students’ discernment of critical features or aspects of the object of learning: (1) contrast (C) means that to 
discern a quality X, a mutually exclusive quality non X needs to be experienced simultaneously; (2) the meaning 
of separation (S) refers to the other dimensions of variation that need to be kept invariant or varying at a different 
rate in order to discern a dimension of variation that can take on different values,; (3) generalisation (G) means 



www.ccsenet.org/ies International Education Studies Vol. 5, No. 5; 2012 

71 
 

that to discern a certain value, X1, in one of the dimensions of variation X from other values in other dimensions 
of the variation, X1 needs to remain invariant while the other dimensions vary; (4) fusion (F) is to experience the 
simultaneity of two dimensions of variation. C. Olteanu and L. Olteanu (2011) have found a new dimension of 
variations named similarity (SI) and it is defined as the property of two or more expressions to adapt the same 
meaning.  

Olteanu (2007) identified two ways to open up the dimensions of variation: convergent and divergent. With a 
convergent variation, different aspects are directed to the whole of the object of learning. These aspects consist 
of the objects’ parts and the relationships between them. It seems that this variation leads to a positive 
development in student learning. A divergent variation means that the whole of the object of learning is 
presented first and afterwards the parts that constitute it, without first discerning the parts in question. The ways 
in which teachers/students experience the object of learning they meet in their worlds is analysed and described 
in this article in terms of a small number of qualitatively different categories. Among these categories, teachers 
can identify the aspects that are important for current understanding, possibly not as comprehensive as the 
teacher’s own understanding but adequately powerful for current concerns.  

1.4 A New Way of Understanding Why Communication Succeeds 

In this article, the focus will be on explaining why communication succeeds, and how it succeeds, by having as 
basis variation theory (Marton et al., 1997; Marton et al., 2004). From a variation theoretical perspective, it is the 
object of learning that is the focus in a teaching situation. An object of learning has two constituent parts: the 
direct and indirect objects of learning. The former is defined in terms of content, that is, arithmetic, algebra, etc., 
and the latter refers to the specific capability that students are expected to develop, for example, being able to 
calculate, pronounce words, and discern the object of learning in novel situations. As mentioned above, the 
object of learning is formed of three components: the intended, the enacted and the lived object of learning. The 
intended object of learning becomes visible, for example, in the teachers finalised lesson plan. The enacted 
object of learning can be observed when the teacher carries out the lesson and it is later analyzed in terms of 
whether the object of learning was made attainable through actual patterns of variation and invariance, which 
were constituted by the teacher and the students. This is called the enacted object of learning, which is the object 
that has a real impact on student learning. The students’ initial level of capability to comprehend the object of 
learning as well as the object of learning that students experienced and understood after the lesson can be 
analysed, for example, based on the students reasoning when they write different tests. In this way, the object of 
learning can be seen as an event and the term communication as something that takes place in individual as well 
as collective communicative events. C. Olteanu and L. Olteanu (2010) defined effective communication as:  

A process by which the teacher assigns and conveys meaning in an attempt to create shared 
understanding, […] the process of meaningful interaction among the intended, enacted, and lived 
objects of learning. (pp. 385) 

The process of meaningful interaction among the intended, enacted and lived objects of learning is an indication 
of whether the communication in the classroom is successful or not (C. Olteanu & L. Olteanu, 2011). The 
general idea of success is this: a communicative event is successful just if the terminal state corresponds to the 
initial state (Pagin, 2008). This implies that, the communication in the classroom succeeds or not if the aspects of 
the content supposed to be treated in the classroom (the intended object of learning) are the same as or different 
from the aspects of the content of the teacher’s representation (the enacted object of learning), and if the aspects 
of the content of the teacher’s representation (the enacted object of learning) are the same as or different from the 
aspects discerned of students, i.e. the content of the student’s representation (the lived object of learning). This 
means that, if you understand a new concept, or a new theory, or a hint, you interpret it in accordance with how 
it was meant, and if the interpretation is not so in accordance, it has resulted in misunderstanding rather than in 
understanding it. In order for there to be such a difference between interpreting correctly and interpreting 
incorrectly, what is in or not in accordance with what was meant must be established independently of the 
interpretation (Olteanu, 2012).  

The study presented in this paper focuses on the same content, and the analysis of the data describes what the 
students discern, what are critical aspects and the communication that takes place in the classroom. 

2. Method  

The study was performed in two classes, selected from the Natural Science Program in upper secondary school, 
in Sweden. In both classes, the same textbook was used. A total of 45 students, 16 years old (25 males, 20 
females) and two teachers (Anna and Maria) took part in the study. The teachers’ taught the same course in 
mathematics. The data was collected in 10 steps (Figure 1). The students took a diagnostic test in the beginning 
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of the course (Step 1); the lessons were videotaped (Step 2); the students wrote two tests during course and a 
diagnostic test after the course (Step 3–5); 8 students (four students in each class) were selected (in co-operation 
with the teachers) for an individual session, a post-test (contained tasks dealing with concepts that the students 
needed to develop further) and an interview followed (Step 6–9); the teachers looked at the video sequences 
analysed the students test, and concluded what each student could improve in her or his knowledge (Step 10).  

 

Figure 1. Data collections 

 

By observing teaching in two classrooms in which they produced the same content and in a non-experimental 
situation, it becomes possible to analyze differences between the way in which they offer this content and 
student learning as a model of dimensions of variation. The tests took place on the same day and at the same 
time in the two classes and there were teachers who were guarding the students. The analysis, presented in this 
article, is based on video recorded lessons (12 lessons in each class) as well as the students’ performance in test 2. 
The empirical data which this result is based on is marked in Figure 1 with blue.  

3. Results  

3.1 The Intended Object of Learning 

The intended object of learning can be seen in the teachers’ planning of the course and contains the following 
items: 

 Graphs of quadratic functions (parabola) 

 Reflective properties of parabolas: symmetry axis, vertex, and the intersection with the x-axis 

 Solving of quadratic equations 

 Applications related to problems solving  

3.2 The Enacted and Lived Object of Learning 

3.2.1 Quadratic Functions  

Both teachers introduced the new contents on the basis of graph interpretations of quadratic functions with the 
help of handheld calculators with graphic tools. The foci concentrated on building the ways of making sense of 
vertices, symmetry axis and the intersection with x-axel. To do this, they varied the structures of functions using 
different coefficients e.g.:  

 y2 = x2 + 2x – 3 and y3 = – x2 – 6x + 2 (Maria)  (1) 
or   

  f(x) = x2 – 4 and f(x) = (x – 1)2 – 9 (Anna)  (2) 

With the selected functions, students in Maria’s class had the ability to distinguish two extreme points, namely 
the maximum and minimum points, but this was not possible for students in Anna’s class because she chose only 
functions that have a minimum point. The students in Anna’s class implicitly cannot make sense of which 
coefficient influences the function outcome. Despite the fact, teachers used different structures of functions they 
did not separate the aspect of the x2-coefficient in the interpretation of the symmetry axis when a function was 
represented in general or particular form. The fusion between the intersection of the function with the x-axis, the 

Test 2 

Diagnostics test 2 

lessons 

lessons 

lessons 

Selected students Diagnostics test 2

Individual session

Teachers’ reflection

Diagnostics test 1 

Test 1 
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x2- and x-coefficients was not realised. Also, the students did not have the possibility to distinguish the difference 
between the vertex and the highest respective, the lowest value of the quadratic functions in the beginning. These 
aspects were quickly pointed out later. The following extract from the video shows this. 

Maria wrote on the blackboard: y = x2 + 5x – 5 

Teacher: What is the lowest value of the function?  

The student does not answer. 

The teacher writes ”the lowest value of the function” on the blackboard. 

Teacher: What are we searching for? 

Pontus: The connection between x and y. 

Teacher: Yes, we can say it like this: we search the minimum point. 

The teacher writes ”minimum point” on the blackboard. 

Teacher: Where do we find it? Kurt? 

Kurt: When x is zero. 

Teacher: No, not when x is zero.  

Kurt: No, mh… 

Ulrika: When y is zero. 

Teacher: No, but the lowest value of the function is the minimum point. Here I have the minimum point 
(the teacher points at a graph).  

Anna shows the following picture on an overhead (Figure 2):  

Teacher: So the problem we have here is actually what the highest height is for this curve, the highest 
height? How high does it reach? 

Teacher: So, go in here (he points at the graph), x equals 5 and if I put together and read I get 4.8, or I 
calculate with this rule.  

 

 

 

 

 

 

 

Figure 2. Shot putting 

 

3.2.2 Quadratic Equations 

The second aspect of the object of learning was to solve quadratic equations. Maria introduced the solving of a 
quadratic equation successively. First, she solved the equations in a particular case (e.g. x2 = 144; (x + 1)(x – 3) = 
0) and after that she introduced the formula (simplified form) by completing the square. Maria’s communicative 
focus refers to the formula that was found and that it is only valid when the coefficient of x square is 1 and the 
equation is equal to zero. She practices the formula with the help of numerous examples e.g.  

x2 + 2x – 15 = 0                                     (3) 

or 

2x – 3x2 = - 1                                       (4) 

This practice opens up a rich dimension of variation characterised by separation, generalisation and fusion. This 
can be shown in the following sequence from the video. 

Maria solved the equation (4):  

f(x) = – 0.10x2 + x + 2.3 f(x) = 4.8 

  - 1.9                    5    

y

x
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Teacher: What do you say about this then? Is it ready for using the formula? Is it written in the form 
x2 + px + q = 0? 

Erik: No… 

Teacher: No, it is not. Firstly, this is the term x2. It must be positive (points at x2 in x2 + px + q = 0) and it 
is not. Then start by making it positive and then I move this across (points at – 3x2 on the right side) and 
so it becomes 3x2, and then you have to gather all on one side for it to be equal to zero, so then I continue 
to move across (points at 2x and the right side), then it becomes minus two x and what does minus 1 
become then? 

Ulrika: Plus one. 

Maria calculates on the blackboard. 

Teacher: Is it ready for the formula now? 

Ulrika: No 

Teacher: No, it is not, because 3 is not allowed to be in front of x2, there can only be x2 so what should I 
do with the 3? 

Amelie: divide 

Teacher: Yes, divide, and then I divide all terms.  

The communication is characterised by a strong focus on the critical aspects in students learning and this is 
reflected in students’ ways of making sense of how to solve a quadratic equation. In the test, only 4 of 19 
students could not give a correct answer to solve the equation:  

x2 + 6x + 5 = 0                                          (5) 

The 4 students had errors in their calculation and not in the interpretation of the formula. For example:  

593 x   43 x  or 593 x  

Even though Maria’s focus was clear, there were students who wondered “Do we have to know all these 
methods?” and this points out to the absence of fusion between different methods used to solve a quadratic 
equation. 

Anna introduced the same content by using particular cases (for example x2 = 4; (x + 2)(x – 4) = 0) and after this 
she wrote the formula (simplified form) on the blackboard and only practiced on one example. The 
communication is vague and the focus is on the procedure for applying the formula. The following sequence 
shows this.  

Teacher: Then, if you look in your formulae collection, and you don it?, not need to do that because I will 
write it for you, you will see that something like this is written… (the teacher writes the formula on the 
blackboard) 

Teacher: What is the coefficient for x, well it is p, what is half of p, well it is half p, with reversed sign 
minus half p (points at – p/2). 

Teacher: Yes, and it was actually it (points at 2) so I can take the one I got…I take the square of the 
symmetry axis, can’t I? The square of the symmetry axis and then (points at –5 on the blackboard)… 

That was received by the students with negative words. Anna’s communication of the object of learning could 
not give the possibility to distinguish the conditions in which the formula can be applied and neither the 
importance of the x- coefficient and the constant term in practicing the formula to the students. She pointed out 
these two conditions quickly in a review lesson before the test. Also, she pointed out “I take the square of the 
symmetry axis” and this led to serious confusions for the students in the future. The space of variation opened up 
was poor and lacked some patterns of variation. The students’ way of making sense of how to solve quadratic 
equations reflects in the way in which they wrote the solutions in the test. 9 of 18 students could not solve the 
equation (5) because they did not understand the formula, e.g.  

x(x + 6) + 5 = 0   x = 0 and x = -6. 

The students’ way of making sense of how to solve a quadratic equation reflects more in the students’ lived 
object of learning when they use the formula to solve an equation. One of the problems in the test was as 
follows: 
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A rectangular garden has an area of 825 m2. The longer side of the garden is 8 m longer than the shorter 
side. Calculate the perimeter of the garden. (Problem 1) 

10 of 19 students in Maria’s class and 11 of 18 students in Anna’s class could not give a satisfactory solution 
because of trouble with translating the text into a mathematical equation or with solving the quadratic equations 
(Table 1).  

 

Table 1. Some examples of students’ solving strategies 

 x(x + 8) = 825 

x2 + 8x = 825 

x2 + 8x = 825/8 

x + x = 25.103  

2x = 10,2 

x = 5,1 

A= x(x – 8) = x2 – 8x = 825 

P = 4x +16 

0
2

8

2

8
2







 x  

 

x(x + 8) = 825 

x2+ 8x = 825 

29825   

29 + 4 = 33 

29 – 4 = 25 

x(x + 8) = 825 

x2+ 8x = 825 

x2 = 825 – 8x 

guess the solution 

 

Here, it is important to point out that working with applications related to problems solving that lead to a 
quadratic equation could not be observed in the enacted object of learning in Maria’s and Anna’s class. 

3.2.3 Quadratic Equations and Functions 

The third component of the object of learning was to connect the concept of function with that of equation and 
this was the principal purpose of contributing to solving problems that could give the students possibility to 
make sense of the intersections with the x-axis and the highest/lowest value of a quadratic function. 

At this moment the teachers simultaneously used both the graph interpretation of a function and the algebraic 
calculation to identify the intersections with x- axis, symmetry axis and the highest/lowest value of a quadratic 
function. I will also point out that the teachers had used the simplified form to solve the quadratic equations, but 
now they used functions that were represented in the general form. For example:  

f(x) = - 0.10x2 + x + 2.3 (Anna) and                            (6) 

y = 1.2 + 0.9x – 0.25x2 (Maria)                                (7) 

In the enacted object of learning Anna pointed out that there is a correspondence between the dependent and 
independent variables in the representation of a function, and he separated the interaction with the x- axis from 
the other points on the graph. In Maria’s enacted object of learning the correspondence between x and y cannot 
be identified in the communication and furthermore, she mixes up the concepts of functions and equations. The 
following video sequence shows this: 

Maria wrote the following on the blackboard:  

y2 = x2 + 2x – 3                                        (8) 

Teacher: It is still a quadratic equation (after a while) or function. 

The students’ way of making sense of the concept of function and equation influenced the students’ ways of 
working with realistic problems. In the enacted object of learning, the focus was unclear and many times 
incoherent, which led to an increase in the amount of trouble that the students had in this area. The following 
sequences show how the teachers were working with problems solving.  

Anna wrote the following on the blackboard:  

Shot putting (Figure 1):  

f(x) = - 0.10x2 + x + 2.3   

Teacher: I am interested in studying the height above the ground. 

The teacher shows the following on the OH: 

Highest height: 

F(5) = – 0.10·52 + 5 + 2.3 

F(5) = 4.8 m 
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Length: 11.9 + 0 = 11.9 m 

Teacher: The symmetry axis shows that x = 5 and that you get as half the coefficient of x with reversed 
sign. 

Maria wrote the following on the blackboard:  

y = 1.2 + 0.9x – 0.25x2 

Teacher: How high above the ground does the water jet reach highest? 

Teacher: This 1.8, here we have the symmetry axis. x is equal to 1.8….. We know that if x is 1.8 we have 
the highest height and then we can calculate it. 

She writes on the blackboard:  

ymax = 1.2 + 0.2·1.8-0.25·1.82 = 2.01 

At this moment we can see that both teachers used the general form of a quadratic function, and they found the 
highest value of the function on the basis of the function symmetry line. The critical point is that the teachers’ 
focus is not clear. This makes them and the students talk about two different objects even though they use the 
same words, namely the x coordinate, which gives the highest value of the function and the symmetry axis. 
Firstly, the symmetry axis is obtained by using the simplified form of a quadratic equation. Secondly, the 
calculation of the functions value in the point in which the symmetry line intersects the x-axis is confounded 
with the calculation of the value of the equation in the same point. Neither of the teachers had a clear focus on 
this nor does it reflect in the students’ lived object of learning, that is, in the test. For example, the students had 
to solve the following problem: 

 Pelle stands on a rock next to a lake and casts a stone over the lake. After t seconds, the height   

 of the stone above the water level is:  

h(t) = 8.5 + 9.8t – 4.9t2                                    (9) 

a. When is the stone 10 m above the water level? 

b. Calculate the greatest height above the water level that the stone has. (Problem 2) 

14 of 19 students in Maria’s class, and 13 of 18 students in Anna’s class could not give a satisfactory answer to 
the first question. 10 of 19 students in Maria’s class, and 13 of 18 students in Anna’s class could not give a 
satisfactory answer to the second question. The students difficulties, was that they mixed up the value of the 
functions with the variable value as a consequence of the way of making sense of the concept of function, or they 
could not solve the quadratic equation. For example:  

10 = 8.5 + 9.8t – 4.9t2  0 = 0.85 + 0.98t – 0.49t2 

or  

10 = 8.5 + 9.8t – 4.9t2   1.5 = 9.8t – 4.9t2   1.5 = 29.4 t   1.5 = 2.21t   t = 0.68 

We also can see that the function is denoted with h and the independent variable is called t. Since the 
generalisation in the several ways of representing a function symbolically was absent in the construction of the 
enacted object of learning, the students had trouble in fully understanding whether 10 m referred to an 
independent or a dependent variable. In problem 2b the students’ way of making sense of the concept of equation 
and function led them to calculate h(0.68) or h(0) or h(- 4.9). 

4. Conclusions  

The analysis of the enacted object of learning referring to solving a quadratic equation shows that the 
communication in Anna’s class was not effective and it is based on the fact that the communication is obstructed 
because Anna used central notions in the objectified way while the students failed to do so. If the 
communication is effective, for example when Maria treated the quadratic equation, the students get the 
possibility to make sense of critical aspects when solving a quadratic equation and this improves the students’ 
learning. Also, Maria opened up convergent dimensions of variation as she presented how to solve quadratic 
equations. This aspect could not be identified in Anna’s class. Even so, we can see that the students in both 
classes had difficulties to solve quadratic equations when they appeared in new situations (e.g. solving the 
problems 1 and 2). In Maria’s class, it can clearly be seen that the number of students having difficulties with 
solving quadratic equations written in general form increased drastically. This phenomenon can be understood 
by the absence of generalisation and fusion as patterns of variation in the enacted object of learning.  
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In a problem situation, the function is often written in general form and the students must determine the 
maximum/minimum point or the highest/lowest value. At this moment, it is necessary that the students 
understand that the x coordinate corresponding to the intersection of the symmetry axis with the x -axis is 
obtained on the basis of the simplified form of a quadratic function, and this value must be put in the general 
form to calculate the maximum/minimum point or the highest/lowest value of the function. It is also important 
for the students to understand that a function can be denoted in different ways and also to understand the 
connection between dependent and independent variables. In both classes, the students cannot make sense of 
how to calculate the highest respective the lowest value of a quadratic function. This is a consequence of the 
presentation of different aspects in the simplified form and general form of a quadratic function. This 
presentation was not clear communicated and x changed meaning several times. The dimension of variations 
called similarity was not offered to the students during the lessons. Also, the teachers opened up divergent 
dimensions of variation. The teachers did not specify that a function can have a highest/lowest value without 
having a maximi/minimi point and that this depends on the domain of definition for the function. 

The teacher’s inability to create an effective communication leads to the fact that the teacher’s efforts in 
differentiating, fusing, and generalising some important concepts are not understood by the students. In other 
words, not only the ways in which they communicate are important, but also the fact that they are able to do so 
while handling a specific mathematical issue. The mechanism for an effective of communication which may lead 
to students’ understanding pattern and structure, the logical analysis, and calculation with patterns and structures 
when working with algebra and functions during the classrooms lessons can be summarized as follows: (1) 
identify critical aspects of the object of learning, as reflected by students’ prior or actual understanding; (2) 
identify what kinds of pattern of variation can best be used to help students discern the critical aspects and their 
relationships; (3) plan learning experiences by making use of appropriate patterns of variation; (4) carefully 
analyse what kinds of assessment can be used to provide feedback to the students. In this way, they assign and 
convey meaning in an attempt to create shared understanding and develop an effective communication in the 
classroom.   

5. Further Implications to the Mathematics Field 

The direct object of learning in this study was the quadratic equations and functions, and the indirect one was to 
develop the students’ capabilities to solve quadratic equations, to make sense of the properties which 
characterize the quadratic functions and to use this knowledge in novel situations. To develop these capabilities 
teachers need to communicate aspects of the content in the classroom in accordance with how it was meant and 
focus on the whole, the parts that form the whole, the relation between the parts, the transformation between the 
parts, and the relation part-whole for a mathematical concept or between different concepts. In this way, it is 
possible for the teacher to create a meaningful interaction among the intended, enacted and lived objects of 
learning, which is to create a successful communication in the classroom.  

These studies indicate the need to plan the mathematical content of the starting point in the students exhibited 
critical aspects and open up the convergent dimensions of variation by contrast, separation, generalization, fusion 
and similarity. This is possible if teachers are constantly working with an iterative process in which they can 
discuss with each other and reflect on the implementation of lessons in relation to what students discern and 
what dimensions of variation are created in the classroom. 
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